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Decay Rate Difference in the Neutral B-System:
∆ΓBs and ∆ΓBd

Alexander Lenz
Fakultät für Physik

Universität Regensburg
D-93040 Regensburg, Germany

We review the theoretical status of the predictions for the decay rate differences in the
neutral B-system. We find (∆Γ/Γ)Bs

= (12 ± 5) · 10−2 and (∆Γ/Γ)Bd
= (3 ± 1.2) · 10−3.

1 Introduction

Recently the width difference (∆Γ/Γ)Bs
of the Bs meson CP eigenstates was measured at the

Tevatron by the CDF Collaboration [1]:

(

∆Γ

Γ

)

Bs

= 0.65+0.25
−0.33 ± 0.01 . (1)

This result can be compared with the Particle Data Group [2] value

(

∆Γ

Γ

)

Bs

< 0.54 (95%C.L.) . (2)

In view of this new result it seems to be appropriate to update the theoretical numbers present
in the literature, see e.g. [3]. Phenomenological aspects of the width difference will not be
discussed in this letter, we refer the interested reader to e.g. [4].
The calculation of ∆ΓBs

is performed in the framework of the heavy quark expansion (HQE)[5],
which offers the possibility to expand decay rates in powers of ΛQCD/mb. In the case of
(∆Γ/Γ)Bs

, the leading contribution is parametrically of order 16π2(ΛQCD/mb)
3.

(

∆Γ

Γ

)

Bs

=
Λ3

m3
b

(

Γ
(0)
3 +

αs

4π
Γ

(1)
3 + . . .

)

+
Λ4

m4
b

(

Γ
(0)
4 +

αs

4π
Γ

(1)
4 + . . .

)

+ . . . (3)

Each of this Γ
(j)
i consists of perturbative Wilson coefficients and non-perturbative matrix ele-

ments. The LO-result Γ
(0)
3 (1/m3

b in the HQE, α0
s in QCD and vacuum insertion approximation

(VIA) for the matrix elements) was already calculated long time ago [6]. Corrections of or-

der 1/mb (Γ
(0)
4 ) were calculated in [7] and turned out to be unexpectedly large. Therefore

terms of order 1/m2
b (Γ

(0)
5 ) should be determined [8] in order to check the convergence of the

HQE. O(αs) radiative corrections (Γ
(1)
3 ) were first calculated in [9] and confirmed in [10]. The

non-perturbative matrix elements of local four-quark operators (which appear in Γ3) between
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B-meson states have been determined within the framework of QCD sum rules [11] and lattice
QCD [12],[13]. The overall normalization of these matrix elements is given by the Bs decay
constant, fBs

. Since ∆ΓBs
is proportional to f 2

Bs
already minor changes in the numerical value

of the decay constant have a big impact on the final prediction for ∆ΓBs
. Recently unquenchend

lattice calculations were performed, which yielded large values for fBs
[14]. These numbers are

in perfect agreement with recent sum rule determinations, see [15] and references therein. We
will use the value which was quoted in LATTICE 2004 [16]

fBs
= 245 ± 30 MeV . (4)

The calculation of the next-to-leading order QCD radiative corrections to the Wilson coefficient
functions for ∆ΓBs

was a very important step in gaining a relieable theoretical prediction. First
the renormalization scale dependence will be reduced compared to the leading order prediction
- unfortunateley it turned out that for ∆ΓBs

the remaining scale dependence is still quite large.
Second, the inclusion of O(αs) corrections is necessary for a satisfactory matching of the Wilson
coefficients to the matrix elements. The unphysical renormalization scheme dependence has to
cancel between the Wilson coefficients and the matrix elements. Since in the Wilson coefficients
this scheme dependence arises first at NLO one has to go beyond LO in order to obtain reliable
predictions. Moreover, the consideration of subleading QCD radiative effects was of conceptual
interest for the construction of the HQE, since one could show hereby explicitly the infrared
safety of the HQE in that order. For powerlike IR divergencies the cancellation was already
shown in [17].
The result in [9] was the first complete calculation of perturbative QCD effects beyond the
leading logarithmic approximation to spectator effects in the HQE for heavy hadron decays.
Currently NLO-QCD corrections to spectator effects are known for the lifetime ratios of heavy
hadrons [18, 19, 20] and for ∆ΓBd

and the semileptonic CP-asymmetries [21, 10].

2 Theoretical prediction of ∆ΓBs

2.1 Preliminaries

The nature of the weak interaction leads to the fact that the physical eigenstates of the neutral
B mesons are linear combinations of the flavor eigenstates

BH := p B + q B , (5)

BL := p B − q B . (6)

Three measurable quantities can be deduced from this particle-antiparticle mixing:

∆M := MH − ML , (7)

∆Γ := ΓL − ΓH , (8)

afs = −2

(
∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

− 1

)

. (9)

afs describes CP asymmetries in flavor specific B decays, which are often called semi-leptonic
CP asymmetries. This quantity is discussed e.g. in [21, 10]. In the following we restrict
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ourselves to ∆Γ. The decay rate difference can be expressed as the matrix element of the
transition operator T

∆Γ = −
1

mBs

〈Bs|T |Bs〉 , (10)

which consists of a double insertion of the ∆B = 1 effective Hamiltonian

T = Im i
∫

d4xT [Heff(x),Heff (0)] . (11)

Formally one performs now a operator product expansion for the transition operator, graphically
one matches the ∆B = 1 double insertion to a ∆B = 2 insertion.

2.2 Leading order

In LO in the HQE the matching equation is described by fig. (1). The l.h.s. of fig.(1)
corresponds to the double insertion of the effective ∆B = 1 Hamiltoninan. By calculating
this loop diagram one obtains the r.h.s., which consists of the Wilsoncoefficent cLO

6 and a
four-quark ∆B = 2 operator. One can express the transition operator in the following form

= c6
LO

Figure 1: LO matching condition for ∆Γ.

T = −
G2

F m2
b

12π
(V ∗

cbVcs)
2 [F (z)Q(µ2) + FS(z)QS(µ2)] (12)

with the Wilson coefficients F and FS (z = m2
c/m

2
b) and the following ∆B = 2-operators

Q = (bisi)V −A · (bjsj)V −A (13)

QS = (bisi)S−P · (bjsj)S−P (14)

The color-rearranged operators which arise during the calculation have been eliminated via

Q̃ = Q (15)

Q̃S = −QS −
1

2
Q + O(αs) + O

(

1

mb

)

(16)

The matrix elements of Q and QS can be parametrized in terms of the decay constant fBs
and

bag parameters B and BS.

〈Bs|Q|Bs〉 =
8

3
f 2

BS
M2

BS
B (17)

〈Bs|QS|Bs〉 = −
5

3
f 2

BS
M2

BS

M2
BS

(mb + ms)2
BS (18)

Assuming VIA for the matrix elements, which corresponds to setting the bag parameters equal
to one, we get with z = 0.085, mb = 4.2 GeV, ms = 0.1 GeV, Vcb = 40.1 · 10−3, mb = 4.8 GeV

(

∆Γ

Γ

)

Bs

= O(30)% . (19)
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2.3 Next-to-Leading QCD corrections

If one dresses the diagrams of fig. (1) with one gluon in all possible ways one gets the NLO
QCD correction to the Wilson coefficients. At this level one has to take the αs-corrections to
eq. (16) into account. The NLO-QCD calculation was performed in [9] and [10] and gives a
sizeable reduction of the LO result:

(

∆Γ

Γ

)

Bs

= O(24)% . (20)

Unfortunateley it turned out that the reduction of the renormalization scale dependence was not
very pronounced. An improvement of this point would require the calculation of α2

s-corrections,
which will be a hard endeavour, even though the three-loop anomalous dimensions of the
effective Hamiltonian are now known [22].

2.4 Lattice evaluation of the matrix elements

Since the scheme dependence is now visible due to the NLO QCD calculation, a next step
to obtain a relieable prediction for ∆ΓBs

is the inclusion of lattice predictions for the bag
parameters instead of VIA. Now the unphysical scheme dependence, which can be numerically
large cancels up to effects of order α2

s. With [12]

B = 0.87 ± 0.06 (21)

BS = 0.84 ± 0.05 (22)

one obtains again a reduction of the final number:

(

∆Γ

Γ

)

Bs

= O(20)% . (23)

2.5 Power corrections

Till now we were setting the momentum of the light quark in the B-meson to zero. Power cor-
rections (≡ 1/mb-corrections) can be obtained by expanding the transition operator in powers
of the light quark momentum. In addition one has to take the 1/mb-corrections to eq. (16)
into account. The calculation of the 1/mb-corrections was performed first in [7]. In this order
of the HQE operators of dimension 7 appear. Some of these operators can be rewritten with
the help of e.o.m. to dimension 6 operators, the remaining operators have to be estimated by
VIA. Once again we get a sizeable reduction of our prediction:

(

∆Γ

Γ

)

Bs

= O(12)% . (24)

The power corrections turn out to be the most important corrections and at the same time the
least well known ones. In order to improve our knowledge about this corrections several tasks
have to be completed:

• Test the HQE expansion: the calculation of 1/m2-corrections is under way [8].

4



• Matrix elements of dimension 7 operators: As was noted already in [10] some of these
power suppressed operators can be obtained from the lattice evaluation in [12]. Despite
this progress it is still necessary to have a relieable determination of the remaining di-
mension 7 operators.

• QCD corrections to power corrections: with a lattice determination of the dimension 7

operators at hand it might be worthwhile to calculate Γ
(1)
4 .

2.6 The Final number

We have here the very special situation that all corrections have a negative sign and are quite

sizeable. Moreover we have an additional source of uncertainty. So far we were actually only

calculating ∆ΓBs
, the ratio (∆Γ/Γ)Bs

can be obtained in different ways (A, B and C)

(

∆Γ
Γ

)A

Bs
= ∆ΓBs

τBs/d
= G2

F

12πm2
bV

2
cbτBs/d

f 2
Bs

K ,

(

∆Γ
Γ

)B

Bs
= ∆ΓBs

1
Γsl

Bsl
τBs

τBd

= 16π2 Bsl

g(z)ηslm3

b

τBs

τBd

f 2
Bs

K ,

(

∆Γ
Γ

)C

Bs
= ∆ΓBs

∆MBs

∆MBs

∆MBd

∆MBd
τBs

= π
2M2

W

∆MBd

MBd

m2

bV
2

cbξ
2τBs

(VtbVtd)2ηBS0(xt)B
K ,

(25)

with
K = MBs

V 2
cs [F 〈Q〉 + FS〈QS〉] .

Unfortunateley we have here a similar situation like in the case of the missing charm puzzle
[23], that different normalizations lead to big numerical effects. Method C, which was used e.g.
in [10] tends to give values which are about 25% smaller than method B, which was used e.g.
in [9]. In this letter we were using method B, for future estimates we suggest to use method A,
see [8].
Putting everything together and estimating the dominant errors we get

(

∆Γ

Γ

)

Bs

=

(

fBs

245MeV

)2

[0.234BS(mb) − 0.086 + 0.008B(mb)] (26)

= (12 ± 5) % . (27)

3 Theoretical prediction of ∆ΓBd

In principle the calculation of ∆ΓBd
proceeds in the same way, but one has to keep in mind

that in this case different CKM structures contribute with a similar strength (order λ6 in the
Wolfenstein parameter λ), while in the case of ∆ΓBs

the contribution of two internal charm
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quarks is leading by two powers of λ.

internal quarks ∆ΓBs
∆ΓBd

uu λ8 λ6

uc λ6 λ6

cu λ6 λ6

cc λ4 λ6

(28)

The uu and the cc contribution can be taken from the ∆ΓBs
-calculation, while the uc and cu

contributions have to calculated anew. Γ
(0)
3 was calculated in [6], Γ

(0)
4 was calculated in [24]

and Γ
(1)
3 was calculated in [21] and [10].

(

∆Γ

Γ

)

Bd

= (3 ± 1.2) · 10−3 . (29)

4 Outlook for ∆ΓBs

What do we expect for the future? First we are waiting eagerly for the D0 number for ∆ΓBs

and we of course expect much smaller errors in the future. From the theory side we have the
following what-to -do-list

• Calculation of 1/m2
b-corrections: Γ

(0)
5

• Lattice determination of dimension 7 operators for Γ4

• Calculation of αs-corrections to the 1/mbcorrections: Γ4(1)

• Calculation of α2
s-corrections to the leading term: Γ3(2)

It was shown in [25] that new physics effects can not enhance ∆ΓBs
compared to the standard

model value. If after all these efforts the central experimental und theoretical numbers stay at
their current values, this would probably be a signal of local quark-hadron duality violation. The
operator product expansion of the transition operator is based on the duality assumption. Little
is known in QCD about the actual numerical size of duality-violating effects. Experimentally
no violation of local quark-hadron duality in inclusive observables of the B-meson sector has
been established so far. Comparison of experiment and theory for τ(B+)/τ(Bd) supports the
duality assumption, but in that case we have only one heavy charm in the intermediate state,
compared to two charm quarks in the ∆ΓBs

-case. In [26] it has been shown that for ∆ΓBs
local

duality holds exactly in the simultaneous limits of small velocity (ΛQCD ≪ mb − 2mc ≪ mb)
and large number of colours (Nc → ∞). In this case

(

∆Γ

Γ

)

Bs

=
G2

F m3
bf

2
Bs

4π
|VcsVcb|

2

√

2 − 4
mc

mb

τBs
≈ 0.18. (30)

It is interesting that the numerical value implied by the limiting formula (30) appears to be
quite realistic.

6



Acknowledgments

I would like to thank the organizers of FPCP2004 for the invitation and the financial support,
M. Beneke, G. Buchalla, C. Greub and U. Nierste for the pleasant collaboration and Fermilab
and DFG for financial support, while calculating the 1/m2-corrections.

References

[1] Stephanie Menzemer, these proceedings;
http://www-cdf.fnal.gov/physics/new/bottom/040708.blessed-dgog-bsjpsiphi/

[2] S. Eidelmann et al., Phys. Lett. 592 (2004) 1.

[3] M. Beneke and A. Lenz, J. Phys. G 27 (2001) 1219 [arXiv:hep-ph/0012222]; U. Nierste, in
Proc. of the 5th International Symposium on Radiative Corrections (RADCOR 2000) ed.
Howard E. Haber, arXiv:hep-ph/0105215; A. Lenz and S. Willocq, J. Phys. G 27, 1207
(2001); A. Lenz, arXiv:hep-ph/0107033; A. Lenz, arXiv:hep-ph/9906317.

[4] I. Dunietz, Phys. Rev. D 52 (1995) 3048 [arXiv:hep-ph/9501287]; T. E. Browder and
S. Pakvasa, Phys. Rev. D 52 (1995) 3123 [arXiv:hep-ph/9501224]; Y. Grossman, Phys.
Lett. B 380 (1996) 99 [arXiv:hep-ph/9603244]; R. Fleischer and I. Dunietz, Phys. Lett.
B 387 (1996) 361 [arXiv:hep-ph/9605221]; R. Fleischer and I. Dunietz, Phys. Rev. D 55

(1997) 259 [arXiv:hep-ph/9605220]; I. Dunietz, R. Fleischer and U. Nierste, Phys. Rev.
D 63 (2001) 114015 [arXiv:hep-ph/0012219]; D. Atwood and A. Soni, Phys. Lett. B 533

(2002) 37 [arXiv:hep-ph/0112218]; K. Anikeev et al., arXiv:hep-ph/0201071; R. Fleis-
cher, Phys. Lett. B 562 (2003) 234 [arXiv:hep-ph/0301255]; R. Fleischer, Nucl. Phys.
B 659 (2003) 321 [arXiv:hep-ph/0301256]; R. Fleischer, Nucl. Phys. B 671 (2003)
459 [arXiv:hep-ph/0304027]; M. Battaglia et al., arXiv:hep-ph/0304132; I. I. Bigi and
A. I. Sanda, arXiv:hep-ph/0411135.

[5] M. A. Shifman and M. B. Voloshin, Sov. J. Nucl. Phys. 41 (1985) 120 [Yad. Fiz. 41 (1985)
187]; J. Chay, H. Georgi and B. Grinstein, Phys. Lett. B 247 (1990) 399.

[6] J.S. Hagelin, Nucl. Phys. B193, 123 (1981); E. Franco, M. Lusignoli and A. Pugliese, Nucl.
Phys. B194, 403 (1982); L.L. Chau, Phys. Rep. 95, 1 (1983); A.J. Buras, W. S l ominski
and H. Steger, Nucl. Phys. B245, 369 (1984); V. A. Khoze, M. A. Shifman, N. G. Uraltsev
and M. B. Voloshin, Sov. J. Nucl. Phys. 46 (1987) 112 [Yad. Fiz. 46 (1987) 181]; A. Datta,
E.A. Paschos and U. Türke, Phys. Lett. B196, 382 (1987); A. Datta, E.A. Paschos and
Y.L. Wu, Nucl. Phys. B311, 35 (1988).

[7] M. Beneke, G. Buchalla and I. Dunietz, Phys. Rev. D54, 4419 (1996).

[8] A. Lenz and U. Nierste, to appear.

[9] M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Phys. Lett. B 459 (1999) 631
[arXiv:hep-ph/9808385].

7

http://www-cdf.fnal.gov/physics/new/bottom/040708.blessed-dgog-bsjpsiphi/
http://arxiv.org/abs/hep-ph/0012222
http://arxiv.org/abs/hep-ph/0105215
http://arxiv.org/abs/hep-ph/0107033
http://arxiv.org/abs/hep-ph/9906317
http://arxiv.org/abs/hep-ph/9501287
http://arxiv.org/abs/hep-ph/9501224
http://arxiv.org/abs/hep-ph/9603244
http://arxiv.org/abs/hep-ph/9605221
http://arxiv.org/abs/hep-ph/9605220
http://arxiv.org/abs/hep-ph/0012219
http://arxiv.org/abs/hep-ph/0112218
http://arxiv.org/abs/hep-ph/0201071
http://arxiv.org/abs/hep-ph/0301255
http://arxiv.org/abs/hep-ph/0301256
http://arxiv.org/abs/hep-ph/0304027
http://arxiv.org/abs/hep-ph/0304132
http://arxiv.org/abs/hep-ph/0411135
http://arxiv.org/abs/hep-ph/9808385


[10] M. Ciuchini, E. Franco, V. Lubicz, F. Mescia and C. Tarantino, JHEP 0308 (2003) 031
[arXiv:hep-ph/0308029].

[11] C. S. Huang, A. Zhang and S. L. Zhu, Eur. Phys. J. C 21 (2001) 313
[arXiv:hep-ph/0011145].

[12] D. Becirevic, V. Gimenez, G. Martinelli, M. Papinutto and J. Reyes, JHEP 0204 (2002)
025 [arXiv:hep-lat/0110091].

[13] S. Hashimoto and T. Onogi, arXiv:hep-ph/0407221;
S. Aoki et al. [JLQCD Collaboration], Phys. Rev. D 67 (2003) 014506
[arXiv:hep-lat/0208038];
Phys. Rev. D 62 (2000) 114502 [arXiv:hep-lat/0004022];
D. Becirevic, V. Gimenez, G. Martinelli, M. Papinutto and J. Reyes, Nucl. Phys. Proc.
Suppl. 106 (2002) 385 [arXiv:hep-lat/0110117];
V. Gimenez and J. Reyes, Nucl. Phys. Proc. Suppl. 94 (2001) 350 [arXiv:hep-lat/0010048];
D. Becirevic, D. Meloni, A. Retico, V. Gimenez, V. Lubicz and G. Martinelli, Eur. Phys.
J. C 18 (2000) 157 [arXiv:hep-ph/0006135].

[14] A. Ali Khan et al. [CP-PACS Collaboration], Phys. Rev. D 64 (2001) 054504
[arXiv:hep-lat/0103020]; S. Aoki et al. [JLQCD Collaboration], Phys. Rev. Lett. 91 (2003)
212001 [arXiv:hep-ph/0307039]; M. Wingate, C. T. H. Davies, A. Gray, G. P. Lepage and
J. Shigemitsu, Phys. Rev. Lett. 92 (2004) 162001 [arXiv:hep-ph/0311130].

[15] M. Jamin and B. O. Lange, Phys. Rev. D 65 (2002) 056005 [arXiv:hep-ph/0108135].

[16] M. Wingate, arXiv:hep-ph/0409099.

[17] . I. Y. Bigi and N. G. Uraltsev, Phys. Lett. B 280 (1992) 271.

[18] Y. Y. Keum and U. Nierste, Phys. Rev. D 57 (1998) 4282 [arXiv:hep-ph/9710512].

[19] M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Nucl. Phys. B 639 (2002) 389
[arXiv:hep-ph/0202106].

[20] M. Ciuchini, E. Franco, V. Lubicz and F. Mescia, Nucl. Phys. B 625 (2002) 211
[arXiv:hep-ph/0110375]; E. Franco, V. Lubicz, F. Mescia and C. Tarantino, Nucl. Phys. B
633 (2002) 212 [arXiv:hep-ph/0203089].

[21] M. Beneke, G. Buchalla, A. Lenz and U. Nierste, Phys. Lett. B 576 (2003) 173
[arXiv:hep-ph/0307344].

[22] M. Gorbahn and U. Haisch, arXiv:hep-ph/0411071.

[23] A. Lenz, arXiv:hep-ph/0011258; C. Greub and P. Liniger, Phys. Rev. D 63 (2001) 054025
[arXiv:hep-ph/0009144]; A. Lenz, U. Nierste and G. Ostermaier, Phys. Rev. D 59, 034008
(1999) [arXiv:hep-ph/9802202]; A. Lenz, U. Nierste and G. Ostermaier, Phys. Rev. D 56,
7228 (1997) [arXiv:hep-ph/9706501].

8

http://arxiv.org/abs/hep-ph/0308029
http://arxiv.org/abs/hep-ph/0011145
http://arxiv.org/abs/hep-lat/0110091
http://arxiv.org/abs/hep-ph/0407221
http://arxiv.org/abs/hep-lat/0208038
http://arxiv.org/abs/hep-lat/0004022
http://arxiv.org/abs/hep-lat/0110117
http://arxiv.org/abs/hep-lat/0010048
http://arxiv.org/abs/hep-ph/0006135
http://arxiv.org/abs/hep-lat/0103020
http://arxiv.org/abs/hep-ph/0307039
http://arxiv.org/abs/hep-ph/0311130
http://arxiv.org/abs/hep-ph/0108135
http://arxiv.org/abs/hep-ph/0409099
http://arxiv.org/abs/hep-ph/9710512
http://arxiv.org/abs/hep-ph/0202106
http://arxiv.org/abs/hep-ph/0110375
http://arxiv.org/abs/hep-ph/0203089
http://arxiv.org/abs/hep-ph/0307344
http://arxiv.org/abs/hep-ph/0411071
http://arxiv.org/abs/hep-ph/0011258
http://arxiv.org/abs/hep-ph/0009144
http://arxiv.org/abs/hep-ph/9802202
http://arxiv.org/abs/hep-ph/9706501


[24] A. S. Dighe, T. Hurth, C. S. Kim and T. Yoshikawa, Nucl. Phys. B 624 (2002) 377
[arXiv:hep-ph/0109088].

[25] Y. Grossman in Ref. [4].

[26] R. Aleksan et al., Phys. Lett. B316, 567 (1993).

9

http://arxiv.org/abs/hep-ph/0109088

	Introduction
	Theoretical prediction of Bs
	Preliminaries
	Leading order
	Next-to-Leading QCD corrections
	Lattice evaluation of the matrix elements
	Power corrections
	The Final number

	Theoretical prediction of Bd
	Outlook for Bs

