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Abstract. A graph is H-free if it has no induced subgraph isomor-
phic to H. Brandstädt, Engelfriet, Le and Lozin proved that the class
of chordal graphs with independence number at most 3 has unbounded
clique-width. Brandstädt, Le and Mosca erroneously claimed that the
gem and the co-gem are the only two 1-vertex P4-extensions H for which
the class of H-free chordal graphs has bounded clique-width. In fact we
prove that bull-free chordal and co-chair-free chordal graphs have clique-
width at most 3 and 4, respectively. In particular, we prove that the
clique-width is:
(i) bounded for four classes of H-free chordal graphs;
(ii) unbounded for three subclasses of split graphs.
Our main result, obtained by combining new and known results, provides
a classification of all but two stubborn cases, that is, with two poten-
tial exceptions we determine all graphs H for which the class of H-free
chordal graphs has bounded clique-width. We illustrate the usefulness of
this classification for classifying other types of graph classes by proving
that the class of (2P1 + P3,K4)-free graphs has bounded clique-width
via a reduction to K4-free chordal graphs. Finally, we give a complete
classification of the (un)boundedness of clique-width of H-free weakly
chordal graphs.

1 Introduction

Clique-width is a well-studied graph parameter; see for example the surveys
of Gurski [29] and Kamiński, Lozin and Milanič [30]. In particular, there are
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numerous graph classes, such as those that can be characterized by one or more
forbidden induced subgraphs,1 for which it has been determined whether or not
the class is of bounded clique-width (i.e. whether there is a constant c such that
the clique-width of every graph in the class is at most c). Clique-width is one
of the most difficult graph parameters to deal with and our understanding of it
is still very limited. We do know that computing clique-width is NP-hard [25]
but we do not know if there exist polynomial-time algorithms for computing the
clique-width of even very restricted graph classes, such as unit interval graphs.
Also the problem of deciding whether a graph has clique-width at most c for
some fixed constant c is only known to be polynomial-time solvable if c ≤ 3 [13]
and is a long-standing open problem for c ≥ 4. Identifying more graph classes of
bounded clique-width and determining what kinds of structural properties ensure
that a graph class has bounded clique-width increases our understanding of this
parameter. Another important reason for studying these types of questions is
that certain classes of NP-complete problems become polynomial-time solvable
on any graph class G of bounded clique-width.2 Examples of such problems are
those definable in Monadic Second Order Logic using quantifiers on vertices but
not on edges.

Notation. The disjoint union (V (G) ∪ V (H), E(G) ∪ E(H)) of two vertex-
disjoint graphs G and H is denoted by G+H and the disjoint union of r copies
of a graph G is denoted by rG. The complement of a graph G, denoted by G,
has vertex set V (G) = V (G) and an edge between two distinct vertices if and
only if these vertices are not adjacent in G. If G is a graph, for S ⊆ V (G), we
let G[S] denote the induced subgraph of G, which has vertex set S and edge
set {uv | u, v ∈ S, uv ∈ E(G)}. For two graphs G and H we write H ⊆i G to
indicate that H is an induced subgraph of G. The graphs Cr,Kr,K1,r−1 and Pr

denote the cycle, complete graph, star and path on r vertices, respectively. The
graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is the tree
that has only one vertex x of degree 3 and exactly three leaves, which are of
distance h, i and j from x, respectively. For a set of graphs {H1, . . . ,Hp}, a
graph G is (H1, . . . ,Hp)-free if it has no induced subgraph isomorphic to a graph
in {H1, . . . ,Hp}. A graph G is chordal if it is (C4, C5, . . .)-free and weakly chordal
if both G and G are (C5, C6, . . .)-free. Every chordal graph is weakly chordal.

Research Goal and Motivation. The class of chordal graphs has unbounded
clique-width, as it contains the classes of proper interval graphs and split
graphs, both of which have unbounded clique-width as shown by Golumbic and
Rotics [28] and Makowsky and Rotics [35], respectively. We want to determine all
graphs H for which the class of H-free chordal graphs has bounded clique-width.
Our motivation for this research is threefold.
1 For a record see also the Information System on Graph Classes and their Inclu-
sions [22].

2 This follows from results [15,24,31,38] that assume the existence of a so-called c-
expression of the input graph G ∈ G combined with a result [37] that such a c-
expression can be obtained in cubic time for some c ≤ 8cw(G) − 1, where cw(G) is
the clique-width of the graph G.
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Firstly, as discussed, such a classification might generate more graph classes
for which a number of NP-complete problems can be solved in polynomial time.
Although many of these problems, such as the Colouring problem [27], are
polynomial-time solvable on chordal graphs, many others stay NP-complete for
graphs in this class. Of course, in order to find new “islands of tractability”, one
may want to consider superclasses of H-free chordal graphs instead. However,
already when one considers H-free weakly chordal graphs, one does not obtain
any new tractable graph classes. Indeed, the clique-width of the class of H-free
graphs is bounded if and only if H is an induced subgraph of P4 [21], and as
we prove later, the induced subgraphs of P4 are also the only graphs H for
which the class of H-free weakly chordal graphs has bounded clique-width. The
same classification therefore also follows for superclasses, such as (H,C5, C6, . . .)-
free graphs (or H-free perfect graphs, to give another example). Since forests,
or equivalently, (C3, C4, . . .)-free graphs have bounded clique-width it follows
that the class of (H,C3, C4, . . . )-free graphs has bounded clique-width for every
graph H. It is therefore a natural question to ask for which graphs H the class
of (H,C4, C5, . . . )-free (i.e. H-free chordal) graphs has bounded clique-width.

Secondly, we have started to extend known results [2,5,6,7,8,9,11,17,19,35]
on the clique-width of classes of (H1, H2)-free graphs in order to try to deter-
mine the boundedness or unboundedness of the clique-width of every such graph
class [18,21]. This led to a classification of all but 13 open cases (under some
equivalence relation, see [21]). An important technique that we used for showing
the boundedness of the clique-width of three new graph classes of (H1, H2)-free
graphs [18] was to reduce these classes to some known subclass of perfect graphs
of bounded clique-width (recall that perfect graphs form a superclass of chordal
graphs). An example of such a subclass, which we used for one of the three cases,
is the class of diamond-free chordal graphs (the diamond is the graph 2P1 + P2),
which has bounded clique-width [28]. We believe that a full classification of the
boundedness of clique-width for H-free chordal graphs would be useful to at-
tack some of the remaining open cases, just as the full classification for H-free
bipartite graphs [20] has already proven to be [18,21]. Examples of open cases
included the class of (2P1 + P3,K4)-free graphs and its superclass of (2P1 + P3,
2P1 + P3)-free graphs [21], the first of which turns out to have bounded clique-
width, as we shall prove in this paper via a reduction to K4-free chordal graphs.
The second case is still open.

Thirdly, a classification of those graphsH for which the clique-width ofH-free
chordal graphs is bounded would complete a line of research in the literature,
which we feel is an interesting goal on its own. As a start, using a result of
Corneil and Rotics [14] on the relationship between treewidth and clique-width
it follows that the clique-width of the class of Kr-free chordal graphs is bounded
for all r ≥ 1. Brandstädt, Engelfriet, Le and Lozin [5] proved that the class
of 4P1-free chordal graphs has unbounded clique-width. Brandstädt, Le and
Mosca [9] considered forbidding the graphs P1 + P4 (gem) and P1 + P4 (co-
gem) as induced subgraphs (see also Fig. 1). They showed that (P1 + P4)-free
chordal graphs have clique-width at most 8 and also observed that P1 + P4-free
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chordal graphs belong to the class of distance-hereditary graphs, which have
clique-width at most 3 (as shown by Golumbic and Rotics [28]). Moreover, the
same authors [9] erroneously claimed that the gem and co-gem are the only
two 1-vertex P4-extensions H for which the class of H-free chordal graphs has
bounded clique-width. We prove that bull-free chordal graphs have clique-width
at most 3, improving a known bound of 8, which was shown by Le [33]. We also
prove that S1,1,2-free chordal graphs have clique-width at most 4, which Le posed
as an open problem. Results [28,32,35] for split graphs and proper interval graphs
lead to other classes of H-free chordal graphs of unbounded clique-width, as we
shall discuss in Section 2. However, in order to obtain our almost-full dichotomy
for H-free chordal graphs new results also need to be proved.
Our Results. In Section 2, in addition to some known results for H-free
chordal graphs, we give our result that bull-free chordal graphs have clique-
width at most 3. In Section 3 we present four new classes of H-free chordal
graphs of bounded clique-width,3 namely when H ∈ {K1,3 + 2P1, P1 + P1 + P3,
P1+2P1 + P2, S1,1,2} (see also Fig. 1). We include most of the proof for the S1,1,2

case, but do not include any other proofs due to space restrictions. In the
same section we present three new subclasses of split graphs that have un-
bounded clique-width, namely H-free, (3P1 + P2)-free and (K3 + 2P1,K4 + P1,
P1 +P1 + P4)-free split graphs. By combining all these results with a number of
previously known results [5,9,28,32,33,35], we obtain an almost-complete classi-
fication for H-free chordal graphs, leaving only two open cases (see also Figs. 1
and 2). We omit the proof, which is based on case analysis.

Theorem 1. Let H be a graph with H /∈ {F1, F2}. The class of H-free chordal
graphs has bounded clique-width if and only if
– H = Kr for some r ≥ 1;
– H ⊆i bull;
– H ⊆i P1 + P4;
– H ⊆i P1 + P4;
– H ⊆i K1,3 + 2P1;
– H ⊆i P1 + P1 + P3;
– H ⊆i P1 + 2P1 + P2 or
– H ⊆i S1,1,2.

We also present our full classification for H-free weakly chordal graphs. We omit
the proof.

Theorem 2. Let H be a graph. The class of H-free weakly chordal graphs has
bounded clique-width if and only if H is an induced subgraph of P4.

3 In Theorems 8, 9 and 10, we do not specify our upper bounds as this would complicate
our proofs for negligible gain. In our proofs we repeatedly apply graph operations
that exponentially increase the upper bound on the clique-width, which means that
the bounds that could be obtained from our proofs would be very large and far from
being tight. We use different techniques to prove Lemma 5 and Theorem 11, and
these allow us to give good bounds for these cases.
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Finally, we illustrate the usefulness of having a classification for H-free chordal
graphs by proving that the class of (2P1+P3,K4)-free graphs has bounded clique-
width via a reduction to K4-free chordal graphs, and mention future research
directions.

S1,1,2 K1,3 + 2P1 P1 + P1 + P3 P1 + 2P1 + P2

bull Kr for r = 5 P1 + P4 P1 + P4

Fig. 1. The graphs H for which the class of H-free chordal graphs has bounded clique-
width; the four graphs at the top are new cases proved in this paper.

F1 F2

Fig. 2. The graphs H for which boundedness of clique-width of the class of H-free
chordal graphs is open.

2 Preliminaries

All graphs considered in this paper are finite, undirected and have neither multi-
ple edges nor self-loops. Let G = (V,E) be a graph. Let S, T ⊆ V with S∩T = ∅.
We say that S is complete to T if every vertex in S is adjacent to every vertex
in T , and we say that S is anti-complete to T if every vertex in S is non-adjacent
to every vertex in T . Similarly, a vertex v ∈ V \ T is complete or anti-complete
to T if it is adjacent or non-adjacent, respectively, to every vertex of T . A set
of vertices M is a module if every vertex not in M is either complete or anti-
complete to M . We say that a vertex v distinguishes two vertices x and y if v
is adjacent to precisely one of x and y. Note that if a set M ⊆ V is not a mod-
ule then there must be vertices x, y ∈ M and a vertex v ∈ V \M such that v
distinguishes x and y.
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Let G = (V,E) be a graph. The graph G is a split graph if it has a split
partition, i.e. a partition of V into two (possibly empty) sets K and I, where K
is a clique and I is an independent set; if K and I are complete to each other,
then G is a complete split graph. Every split graph is chordal. It is well known [26]
that a graph is split if and only if it is (C4, C5, 2P2)-free.
Clique-width. The clique-width of a graph G, denoted by cw(G), is the mini-
mum number of labels needed to construct G by using the following four oper-
ations:

1. creating a new graph consisting of a single vertex v with label i (denoted
by i(v));

2. taking the disjoint union of two labelled graphs G1 and G2 (denoted by
G1 ⊕G2);

3. joining each vertex with label i to each vertex with label j (i 6= j, denoted
by ηi,j);

4. renaming label i to j (denoted by ρi→j).

An algebraic term that represents such a construction of G and uses at most k
labels is said to be a k-expression of G (i.e. the clique-width of G is the mini-
mum k for which G has a k-expression). For instance, an induced path on four
consecutive vertices a, b, c, d has clique-width equal to 3, and the following 3-
expression can be used to construct it:

η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))).

The following lemma tells us that if G is a hereditary graph class then in order
to determine whether G has bounded clique-width we may restrict ourselves to
the graphs in G that are prime.

Lemma 3 ([16]). Let G be a graph and let P be the set of all induced subgraphs
of G that are prime. Then cw(G) = maxH∈P cw(H).

Known Results on H-free Chordal Graphs. To prove our results, we need
to use a number of known results. We present these results as lemmas below; a
number of relevant graphs are displayed in Figs. 1 and 3. For a graphG, let tw(G)
denote the treewidth of G. Corneil and Rotics [14] showed that cw(G) ≤ 3 ×
2tw(G)−1 for every graph G. Because the treewidth of a chordal graph is equal
to the size of a maximum clique minus 1 (see e.g. [1]), this result leads to the
following well-known lemma.

Lemma 4. The class of Kr-free chordal graphs has bounded clique-width for all
r ≥ 1.

The bull is the graph obtained from the cycle abca after adding two new ver-
tices d and e with edges ad, be (see also Fig. 1). In [9], Brandstädt, Le and Mosca
erroneously mentioned that the clique-width of S1,1,2-free chordal graphs and of
bull-free chordal graphs is unbounded. Using a general result of De Simone [23],
Le [33] proved that every bull-free chordal graph has clique-width at most 8.
Using a result of Olariu [36] we can show the following (we omit the proof).
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Lemma 5. Every bull-free chordal graph has clique-width at most 3.

Lemma 6 ([9]). Every P1 + P4-free chordal graph has clique-width at most 8
and every P1 + P4-free chordal graph has clique-width at most 3.

Lemma 7 ([5,28,32,35]). The class of H-free chordal graphs has unbounded
clique-width if H ∈ {4P1,K1,3, 2P2, C4, C5,net,net}.

3 New Classes of Bounded and Unbounded Clique-width

We first present four new classes of H-free chordal graphs that have bounded
clique-width. We omit the proofs for the first three of these.

Theorem 8. The class of K1,3 + 2P1-free chordal graphs has bounded clique-
width.

Theorem 9. The class of (P1+P1 + P3)-free chordal graphs has bounded clique-
width.

Theorem 10. The class of (P1 + 2P1 + P2)-free chordal graphs has bounded
clique-width.

To prove Theorem 8, we make use of the celebrated Menger’s Theorem
and a tool developed by Lozin and Rautenbach, who proved that a graph G
has bounded clique-width if and only if every block of G has bounded clique-
width [34]. To the best of our knowledge, this technique has not been explored in
previous research on clique-width. For Theorem 9, one may get the impression
that the class of (P1 + P1 + P3)-free chordal graphs is not much more compli-
cated than the class of P1 + P3-free chordal graphs and therefore expect it to
have bounded clique-width (and similarly for the class of (P1 + 2P1 + P2)-free
chordal graphs). We point out, however, that clique-width has a subtle transition
from bounded to unbounded even if the class of graphs under consideration has
a “slight” enlargement. For instance, the class of (2P1 + 3P1)-free chordal (or
even split) graphs (see Theorem 17) turns out to have unbounded clique-width.
In fact, our proofs for Theorems 9 and 10 are rather involved. We now present
a (detailed) proof sketch of our last new result for boundedness.

Theorem 11. Every S1,1,2-free chordal graph has clique-width at most 4.

We first provide a structural description of prime S1,1,2-free chordal graphs,
and then Theorem 11 follows easily from our structural result. To this end,
we appeal to the well-developed technique of prime extension. Results on prime
extension effectively say that a prime graph that contains a particular pattern H
as an induced subgraph must contain some extension of H (in the sense of
being a supergraph of H) from a prescribed list of graphs (see e.g. [23,33]). The
following two structural lemmas, both of which play fundamental roles in the
proof of Theorem 11, are of this flavour. The first is due to Brandstädt, Le and
de Ridder and the second is due to Brandstädt.
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X1 xbull net X2 P6 S1,2,2 X3 A d-A

Fig. 3. The minimal prime extensions of P1 + P4.

Lemma 12 ([10]). If a prime graph G contains an induced subgraph isomorphic
to P1 + P4 then it contains one of the graphs in Fig. 3 as an induced subgraph.

Lemma 13 ([3]). If a prime graph G contains an induced 2P1 + P2 then it
contains an induced P1 + P4, d-A or d-domino. (See also Figs. 1 and 3. The d-
domino is the graph with vertex set {x1, . . . , x6} and edge set {x1x2, x2x3, x3x4,
x4x5, x5x6, x6x1, x1x3, x1x4}.)

A graph G is a thin spider if its vertex set can be partitioned into a clique K,
an independent set I and a set R such that |K| = |I| ≥ 2, the set R is complete
to K and anti-complete to I and the edges between K and I form an induced
matching (that is, every vertex of K has a unique neighbour in I and vice versa).
Note that if a thin spider is prime then |R| ≤ 1. A thick spider is the complement
of a thin spider. A graph is a spider if it is either a thin or a thick spider. Spiders
play an important role in our result for S1,1,2-free chordal graphs and we will
need the following lemma (due to Brandstädt and Mosca).

Lemma 14 ([12]). If G is a prime S1,1,2-free split graph then it is a spider.

We now show that the clique-width of S1,1,2-free chordal graphs is bounded.
Switching to the complement, we study S1,1,2-free co-chordal graphs which are a
subclass of (2P2, C5, S1,1,2)-free graphs. The main step consists of the following
structural result.

Lemma 15. If a prime (2P2, C5, S1,1,2)-free graph G contains an induced sub-
graph isomorphic to the net (see Fig. 3) then G is a thin spider.

Proof. Suppose that G is a prime (2P2, C5, S1,1,2)-free graph and suppose that G
contains a net, say N with vertices a1, a2, a3, b1, b2, b3 such that a1, a2, a3 is an
independent set (the end-vertices of N), b1, b2, b3 is a clique (the mid-vertices
of N), and the only edges between a1, a2, a3 and b1, b2, b3 are aibi ∈ E(G) for
i ∈ {1, 2, 3}.

Let M = V (G) \V (N). We partition M as follows: For i ∈ {1, . . . , 5}, let Mi

be the set of vertices inM with exactly i neighbours in V (N). Let U be the set of
vertices inM adjacent to every vertex of V (N). Let Z be the set of vertices inM
with no neighbours in V (N). Note that Z is an independent set in G, since G
is 2P2-free. We now analyse the structure of G through a series of claims. The
proofs of these claims have been omitted.
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Claim 1. M1 ∪M2 ∪M5 = ∅.
Next, we show that vertices in M3∪M4 have a restricted type of neighbourhood
in V (N):

Claim 2. Every x ∈ M3 is adjacent to either exactly one end-vertex ai and its
two opposite mid-vertices bj and bk (j 6= i, k 6= i) or to all three mid-vertices
of N .
The situation for M4 is similar to that of M3, as shown in the following claim.

Claim 3. If x ∈ M4 then it is adjacent to exactly one end-vertex and all mid-
vertices.
Let Mid3 denote the set of vertices in M3 that are adjacent to all three mid-
vertices of N (and non-adjacent to any end-vertex of N).

Claim 4. U is complete to (M3 ∪M4).
Let Z1 denote the set of vertices in Z that have a neighbour in M3 ∪M4, and
let Z0 = Z \Z1. The next two claims show the adjacency between Z1 and other
subsets of V (G).

Claim 5. Z1 is anti-complete to ((M3 ∪M4) \Mid3).
Claim 6. U is complete to Z1.

Let X = V (N) ∪ M3 ∪ M4 ∪ Z1. Then X is a module: every vertex in U is
complete to X (due to the definition of U , together with Claims 4 and 6) and
every vertex in Z0 is anti-complete to X (due to the definitions of Z,Z0 and Z1,
together with the fact that Z is an independent set). Since G is prime, X must
be a trivial module. Since X contains more than one vertex, it follows that
V (G) = X = V (N) ∪M3 ∪M4 ∪ Z1. Hence U ∪ Z0 = ∅. It remains to show
that G = G[V (N) ∪M3 ∪M4 ∪ Z1] is a thin spider. For i ∈ {1, 2, 3} let M ′i =
(M3 ∪M4)∩N(ai). Note that M3 ∪M4 =Mid3 ∪M ′1 ∪M ′2 ∪M ′3. The next two
claims show how each M ′i is connected to other subsets of V (G).

Claim 7. For i 6= j, M ′i is complete to M ′j.
Claim 8. For every i = 1, 2, 3, M ′i is complete to Mid3.

By Claims 2, 3, 5, 7 and 8 we find that, for every i ∈ {1, 2, 3}, M ′i ∪ {bi} is a
module, soM ′i = ∅ (since G is prime). Consequently, V (G) = V (N)∪Mid3∪Z1.
Next, we show the following:

Claim 9. Mid3 is a clique.
By Claim 9 and the definition ofMid3, we find that {b1, b2, b3}∪Mid3 is a clique.
By the definition of Z and the fact that Z is independent, {a1, a2, a3}∪Z1 is an
independent set. Therefore G is a split graph. By Lemma 14, since G is prime
and S1,1,2-free, it must be a spider. Since G contains an induced net, it must be
a thin spider. ut

The following is our new structural theorem on prime chordal S1,1,2-free
graphs.

Theorem 16. If G is a prime chordal S1,1,2-free graph then it is either a
2P1 + P2-free graph or a thick spider.
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Proof. Let G be a prime S1,1,2-free chordal graph. Note that since G is S1,1,2-
free, it cannot contain d-A (see also Fig. 3) or d-domino as an induced subgraph.
If G is P1 + P4-free then, by Lemma 13, it must therefore be 2P1 + P2-free.

Now suppose that G contains an induced copy of P1 + P4. Since G is prime, G
is also prime. Furthermore, G is (2P2, C5, S1,1,2)-free. By Lemma 12, Gmust con-
tain one of the graphs in Fig. 3. The only graph in Fig. 3 which is (2P2, C5, S1,1,2)-
free is the net, so G must contain a net. By Lemma 15, G is a thin spider, so G
is a thick spider. ut

We are now ready to prove Theorem 11.

Theorem 11 (restated) Every S1,1,2-free chordal graph has clique-width at
most 4.

Proof. Let G be an S1,1,2-free chordal graph. By Lemma 3, we may assume
that G is prime. If G is 2P1 + P2-free then it has clique-width at most 3 by
Lemma 6. By Theorem 16, we may therefore assume that G is a thick spider.
Note that since a thick spider is the complement of a thin spider (see also the
definition of a thin spider), K is an independent set, I is a clique and R is
complete to I and anti-complete to K. Every vertex in K has exactly one non-
neighbour in I and vice versa. Since G is prime and R is a module, R contains
at most one vertex.

Let i1, . . . , ip be the vertices in I and let k1, . . . , kp be the vertices in K such
that for each j ∈ {1, . . . , p}, the vertex ij is the unique non-neighbour of kj
in I. Let Gj be the labelled copy of G[{i1, . . . , ij , k1, . . . , kj}] where every ih
is labelled 1 and every kh is labelled 2. Now G1 = 1(i1) ⊕ 2(k1) and for j ∈
{1, . . . , p− 1} we can construct Gj+1 from Gj as follows:

Gj+1 = ρ3→1(ρ4→2(η1,3(η1,4(η2,3(Gj ⊕ 3(ij+1)⊕ 4(kj+1)))))).

If R = ∅ then using the above recursively we get a 4-expression for Gp and there-
fore for G. If R = {x} then we obtain a 4-expression for G using η1,4(Gp⊕4(x)).
Therefore G indeed has clique-width at most 4. This completes the proof. ut

We now present three new subclasses of H-free split graphs that have un-
bounded clique-width. (The graph H is the graph on six vertices whose comple-
ment looks like a capital letter “H”.) We omit the proofs.

Theorem 17. The following classes have unbounded clique-width:
– H-free split graphs
– 3P1 + P2-free split graphs
– (K3 + 2P1,K4 + P1, P1 + P1 + P4)-free split graphs.

4 Concluding Remarks

Using our new results and a significant amount of non-trivial case analysis, we
are able to prove our classification theorems. As an application of this, we can
prove the following theorem via a reduction to K4-free chordal graphs (we omit
the proof). This has reduced the number of open problems posed in [21] to 13.
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Theorem 18. The class of (K4, 2P1+P3)-free graphs has bounded clique-width.

We still need to determine whether or not the classes of Fi-free chordal graphs
have bounded clique-width when i ∈ {1, 2}. For this purpose, we recently man-
aged to show that for i ∈ {1, 2}, the class of Fi-free split graphs has bounded
clique-width [4] and we are currently exploring whether it is possible to generalize
the proof of this result to the class of Fi-free chordal graphs.
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