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Abstract

A graph is H-free if it has no induced subgraph isomorphic to H. We continue
a study into the boundedness of clique-width of subclasses of perfect graphs. We
identify five new classes of H-free split graphs whose clique-width is bounded. Our
main result, obtained by combining new and known results, provides a classification
of all but two stubborn cases, that is, with two potential exceptions we determine
all graphs H for which the class of H-free split graphs has bounded clique-width.
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1 Introduction

The clique-width of a graph G, denoted cw(G), is the minimum number of
labels needed to construct G by using the following four operations:

(i) creating a new graph consisting of a single vertex v with label i;

(ii) taking the disjoint union of two labelled graphs G1 and G2;

(iii) joining each vertex with label i to each vertex with label j (i 6= j);

(iv) renaming label i to j.

Clique-width is a well-studied graph parameter; see for example the sur-
veys of Gurski [10] and Kamiński, Lozin and Milanič [12]. A graph class is said
to be of bounded clique-width if there is a constant p such that the clique-width
of every graph in the class is at most p. Much research has been done identi-
fying whether or not various classes have bounded clique-width. For instance,
the Information System on Graph Classes and their Inclusions [8] maintains
a record of graph classes for which this is known. In a recent series of pa-
pers [2,5,6,7] the clique-width of graph classes characterized by two forbidden
induced subgraphs was investigated. In particular we refer to [7] for details on
how new results can be combined with known results to give a classification
for all but 13 open cases (up to an equivalence relation). Similar studies have
been performed for variants of clique-width, such as linear clique-width [11]
and power-bounded clique-width [1]. Moreover, the (un)boundedness of the
clique-width of a graph class seems to be related to the computational com-
plexity of the Graph Isomorphism problem, which has in particular been inves-
tigated for graph classes defined by two forbidden induced subgraphs [13,16].

In this paper we continue a study into the boundedness of the clique-width
of subclasses of perfect graphs. Clique-width is still one of the most difficult
graph parameters to deal with. For instance, deciding whether or not a graph
has clique-width at most c for some fixed constant c is only known to be
polynomial-time solvable if c ≤ 3 [3], but is a long-standing open problem for
c ≥ 4. Our long-term goal is to increase our understanding of clique-width.
To this end we aim to identify new classes of bounded clique-width. In order
to explain some previously known results, along with our new ones, we first
give some terminology.

Terminology. For two vertex-disjoint graphs G and H , the disjoint union
(V (G)∪V (H), E(G)∪E(H)) is denoted by G+H and the disjoint union of r
copies of G is denoted by rG. The complement of a graph G, denoted by G,
has vertex set V (G) = V (G) and an edge between two distinct vertices if and



K1,3 + 2P1 F1 F2 F3

F4 F5 bull +P1 Q

Fig. 1. The graphs K1,3+2P1, F1, F2, F3, F4, F5,bull +P1 and Q from Theorems 1.2
and 1.4.

only if these vertices are not adjacent in G. For two graphs G and H we write
H ⊆i G to indicate that H is an induced subgraph of G. A set M of vertices
is a module if every vertex not in M is either adjacent to every vertex of M or
non-adjacent to every vertex of M . A module of G is trivial if it contains zero,
one or all vertices of G. A graph G is prime if every module in G is trivial.
The graphs Cr, Kr, K1,r−1 and Pr denote the cycle, complete graph, star and
path on r vertices, respectively. The graph Sh,i,j, for 1 ≤ h ≤ i ≤ j, denotes
the subdivided claw, that is the tree that has only one vertex x of degree 3 and
exactly three leaves, which are of distance h, i and j from x, respectively. For
a set of graphs {H1, . . . , Hp}, a graph G is (H1, . . . , Hp)-free if it has no in-
duced subgraph isomorphic to a graph in {H1, . . . , Hp}. The bull is the graph
with vertices a, b, c, d, e and edges ab, bc, ca, ad, be. A graph G is chordal if it is
(C4, C5, . . .)-free and weakly chordal if both G and G are (C5, C6, . . .)-free. Ev-
ery chordal graph is weakly chordal and every weakly chordal graph is perfect.

Known Results on Subclasses of Perfect Graphs. We start off with the
following known theorem, which shows that the restriction of H-free graphs to
H-free weakly chordal graphs does not yield any new graph classes of bounded
clique-width, as both classifications are exactly the same.

Theorem 1.1 ([2,7]) Let H be a graph. The class of H-free (weakly chordal)
graphs has bounded clique-width if and only if H is an induced subgraph of P4.

Motivated by Theorem 1.1 we investigated classes of H-free chordal graphs
in an attempt to identify new classes of bounded clique-width and as a (suc-
cessful) means to find reductions to solve more cases in our classification for
(H1, H2)-free graphs. This classification for classes of H-free chordal graphs
is almost complete except for two cases (see also Fig. 1).

Theorem 1.2 ([2]) Let H be a graph not in {F1, F2}. The class of H-free



chordal graphs has bounded clique-width if and only if

• H = Kr for some r ≥ 1;

• H ⊆i bull;

• H ⊆i P1 + P4;

• H ⊆i P1 + P4;

• H ⊆i K1,3 + 2P1;

• H ⊆i P1 + P1 + P3;

• H ⊆i P1 + 2P1 + P2 or

• H ⊆i S1,1,2.

In contrast to chordal graphs, the classification for bipartite graphs, an-
other class of perfect graphs, is complete. This classification was used in
the proof of Theorem 1.2 and it is similar to a characterization of Lozin and
Volz [14] for a different variant of the notion of H-freeness in bipartite graphs
(see [6] for an explanation of the difference).

Theorem 1.3 ([6]) Let H be a graph. The class of H-free bipartite graphs
has bounded clique-width if and only if

• H = sP1 for some s ≥ 1;

• H ⊆i K1,3 + 3P1;

• H ⊆i K1,3 + P2;

• H ⊆i P1 + S1,1,3 or

• H ⊆i S1,2,3.

Our Results. We consider subclasses of split graphs. A graph G = (V,E)
is a split graph if it has a split partition, that is, a partition of V into two
(possibly empty) sets K and I, where K is a clique and I is an independent
set. The class of split graphs coincides with the class of (2K2, C4, C5)-free
graphs [9] and is known to have unbounded clique-width [15]. As with the
previous graph classes we forbid one additional induced subgraph H . We
aim to classify the boundedness of clique-width for H-free split graphs and to
identify new graph classes of bounded clique-width along the way. Theorem 1.2
also provides motivation, as it would be useful to know whether the clique-
width of H-free split graphs is bounded when H = F1 or H = F2 (the two
missing cases for chordal graphs). We give affirmative answers for both of
these cases. It should be noted that the complement of a split graph is split
and that complementation preserves boundedness of clique-width [12]. Hence,



for any graph H , the class of H-free split graphs has bounded clique-width if
and only if the class of H-free split graphs has bounded clique-width. As such
our main result shows that there are only two open cases.

Theorem 1.4 Let H be a graph such that neither H nor H is in {F4, F5}.
The class of H-free split graphs has bounded clique-width if and only if

• H or H = rP1 for some r ≥ 1;

• H or H ⊆i bull +P1;

• H or H ⊆i F1;

• H or H ⊆i F2;

• H or H ⊆i F3;

• H or H ⊆i Q or

• H or H ⊆i K1,3 + 2P1.

2 Our Techniques

A labelled bipartite graph Hℓ = (Bℓ
H ,W

ℓ
H , EH) consists of a bipartite graph H

together with a labelling ℓ that assigns either the colour “black” or the colour
“white” to each vertex of H in such a way that the two resulting monochromatic
colour classes Bℓ

H and W ℓ
H form a partition of H into two (possibly empty) in-

dependent sets. Note that the triples (Bℓ
H ,W

ℓ
H , EH) and (W ℓ

H , B
ℓ
H , EH) corre-

spond to different labelled bipartite graphs. Two labelled bipartite graphs Hℓ
1

and Hℓ∗

2
are isomorphic if the (unlabelled) graphs H1 and H2 are isomorphic,

and if in addition there exists an isomorphism f : V (H1) → V (H2) such that
for all u ∈ V (H1), we have that u ∈ W ℓ

H1
if and only if f(u) ∈ W ℓ∗

H2
. We

write Hℓ
1
⊆li H

ℓ∗

2
if H1 ⊆i H2, B

ℓ
H1

⊆ Bℓ∗

H2
and W ℓ

H1
⊆ W ℓ∗

H2
, in which case we

say that Hℓ
1

is a labelled induced subgraph of Hℓ∗

2
. An (unlabelled) bipartite

graph G is weakly Hℓ-free if there is a labelling ℓ∗ of G such that Gℓ∗ does
not contain Hℓ as a labelled induced subgraph. If ℓ is a labelling of H , we
let ℓ denote the opposite labelling of H , in which the colours are swapped. If
a bipartite graph H has a unique (up to isomorphism) labelling in which the
number of black vertices is maximised, we call this labelling b. We will make
use of the following theorem (see also Fig. 2).

Theorem 2.1 ([6]) Let Hℓ be a labelled bipartite graph. The class of weakly
Hℓ-free bipartite graphs has bounded clique-width if and only if one of the
following cases holds:

• Hℓ or Hℓ = (sP1)
b for some s ≥ 1;



• Hℓ or Hℓ ⊆li (P1 + P5)
b;

• Hℓ ⊆li (P2 + P4)
b or

• Hℓ ⊆li (P6)
b.

(sP1)
b for s = 5 (P1 + P5)

b (P2 + P4)
b (P6)

b

Fig. 2. The labelled bipartite graphs from Theorem 2.1.

Similarly to the way that a bipartite graph can have multiple labellings, a
split graph G may have multiple split partitions, say (K1, I1) and (K2, I2). We
say that two such split partitions are isomorphic if there is an isomorphism
f : V (G) → V (G) of G such that u ∈ K1 if and only if f(u) ∈ K2. By
exploring the properties of split partitions and using Theorem 2.1, we are able
to prove the following:

Lemma 2.2 If the class of H-free split graphs has bounded clique-width
then H or H is isomorphic to Kr for some r or is an induced subgraph of F4

or F5.

Note that both F4 and F5 have seven vertices. The six-vertex induced
subgraphs of F4 are: bull +P1, F1, F3 and K1,3 + 2P1. The six-vertex induced
subgraphs of F5 are: bull +P1, F1, F2, F2, F3, F3 and Q. These graphs and their
complements are precisely the cases listed in Theorem 1.4. The H = rP1,

bull +P1 and Q cases of Theorem 1.4 follow from Theorem 2.1 using similar
arguments to those used to prove Lemma 2.2. The H = K1,3 + 2P1 case
follows from Theorem 1.2. To prove the H = F1, F2 and F3 cases we make
use of Theorem 2.1 combined with the following lemma, which allows us to
restrict ourselves to studying prime graphs in the respective classes.

Lemma 2.3 ([4]) If P is the set of all prime induced subgraphs of a graph G

then cw(G) = maxH∈P cw(H).
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