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Abstract

In the last decade the Partition of Unity Method has become attractive as one approach for extending the allowable
frequency range for wave simulations beyond that available using piecewise polynomial elements. It is well known that
the conventional boundary integral equation obtained through Green’s representation theorem suffers from a problem
of nonuniqueness at certain frequencies. The standard methods of overcoming this problem are the so-called CHIEF
method and that of Burton and Miller. The latter method introduces a hypersingular operator which may be treated in
various ways. In this paper we present the collocation Partition of Unity BEM for Helmholtz problems and compare the
performance of CHIEF against a Burton-Miller formulation regularised using the approach of Li and Huang.
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1. Introduction

The theory of the boundary element method (BEM) for solving boundary integral equations (BIE) is well established
[1]. It is well known that the Conventional BIE (CBIE) for an exterior acoustic problem results in a nonunique solution
at irregular frequencies for the corresponding interior problem and that this is a purely mathematical phenomenon. A
well known method to avoid this problem is the so called Combined Helmholtz Integral Equation Formulation (CHIEF)
due to Schneck [2], where some additional Helmholtz integral equations evaluated at interior points are added in the
original system matrix. Although this results in an over-determined system, CHIEF ensures a unique solution at an
irregular frequency. Of course, one needs to set the interior points such that they do not lie on the nodal points of the
eigenmodes of the interior Helmholtz problem. This however can introduce uncertainties for complicated geometries at
high wavenumbers as the nodal points become densely packed in the interior which makes it difficult to find suitable
locations for the placement of interior points. Another method to avoid the nonuniqueness problem is due to Burton and
Miller [3]. They showed that the integral equation resulting from linear combination of the CBIE and its normal derivative
at the collocation point always results in a unique solution. The potential problem with this method is the evaluation of
the hypersingular integral which arises as a result of the differentiation of the CBIE at a collocation point. The Partition
of Unity BEM (PUBEM) is based on the use of the wave nature of the solution and is shown to produce highly accurate
results with improved efficiency in terms of degrees of freedom per wavelength. In the present study, we compare the
CHIEF method with one regularized form of the Burton-Miller formulation for acoustic scattering from hard cylinders in
two dimensions using PUBEM. The two methods are compared for their accuracy of the solution and efficiency.

2. Governing equation and the Boundary Integral Equations
The well known equation for time harmonic acoustic scattering and wave propagation is the Helmholtz equation

Vip(q) + K p(q) = 0 geq 40

where k is the acoustic wavenumber, ¢ the spatially dependent (e~ time dependence) total acoustic potential that we seek
in the computational domain Q and V? is the Laplacian operator. For exterior acoustic problems, the total (or scattered)
acoustic potential has to satisfy Sommerfeld’s radiation condition given by
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where r is the distance of a point in Q from the origin, i = V-1 and »n the dimension of the space. The mathematical for-
mulation for deriving the CBIE from the Helmholtz equation is well established [4]. The CBIE for an acoustic scattering
(or radiation) problem governed by the Helmholtz differential equation is given by
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where p is the collocation or source point, g the field point, G the free space Green’s function for the Helmholtz problem,
ng and n, the outward normals respectively at points ¢ and p pointing away from acoustic domain €, ¢(g) the unknown
acoustic potential and ¢'(p) the known incident acoustic wave. c(p) is the free coefficient which depends on the local
geometry of I' at p. In this study we assume I' is smooth and take c(p) = % The normal derivative of (3) at the collocation
point p is given by
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where « is a coupling constant most commonly taken as i/k. In the present study, we analyse the acoustic scattering
from sound hard cylinders. A sound hard surface is where the normal derivative of the total acoustic potential vanishes.
Therefore, all the terms involving the normal derivative of acoustic potential vanish. Although (5) results in a unique
solution, its main drawback remains the numerical treatment of the hypersingular integral, i.e. the last integral on the left
hand side. Li and Huang [5] give the following weakly singular form of the hypersingular integral
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where Gy is the free space Green’s function for the Laplace equation. Again, for the present case of a hard boundary, the

last term in the right hand side of (6) vanishes. Consequently, the final equation for this case of a hard boundary can be
expanded as
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3. Plane wave basis and and discretization of CHBIE

The injection of enrichment based on the wave nature of the solution into the basis functions for wave problems is very
well established. The dramatic improvement in the accuracy of the solution and an overall efficiency achieved in the
solution process has been widely reported, see [6],[7],[8]. The acoustic potential at a point X in the domain Q using plane
wave basis can be approximated as
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where N is the j™ shape function, A jm the unknown which can be thought of as the amplitude of the m™ plane wave with

wave number k associated with node j. The direction of the m™ plane wave at node j is given by unit vector d j,, and x is
the location of the point where the potential ¢ is sought. The element considered here is three noded and M is the number
of plane waves located around the j” node. In the context of the BEM, the plane wave basis defined in (8) can be used
to express the unknown acoustic potential on the boundary I'. The only change from conventional polynomial collocation



BEM is that now the unknowns are amplitudes of plane waves (A j,) located around boundary element nodes. It is now
convenient to write the following discretized form of (7) using (8)

s=4 NEL
c1+221_c2+c3 9)
s=1 e=1
where "
3 J
Cr=c(p) Y, N7 ) A7 im0 (10)
j=1 m=1
M.
e aG - q - q ikdj,-x(q) e
I =fre(%) NjZAjme mX@) gre(g) (11)
97 j=1 m=1
3
I¢ = N? Aq ikd i x(q) _ NP Ap ikd,n,x(p) | g€ 12
; fr anqanp(j_l Z Z mZ @) (12)
Gy ([ &
I = N? Al lkd,m x(q) _ NP AP ikd j-x(p) | _ 13
3 e ﬁn,,(?nq((jz /m; m® Z mz (13)
0 P f P ikd j,x(p) 9 P \ P ikd;,x(p) e
[5 [;Nj;Ajme g ;Nj;Ajme ry |dT(q)
14 14 lkdjm X(p) I /4 p lkd,m x(p) e
L= f(@x [ZN ZA ngx+ 5 ZN ZA } }dl" ) (14)
and
; d¢'(p)
C=¢(p) : C=a"2 L ()
P

where NEL is the total number of boundary elements dividing the boundary I" and I is the division of I" corresponding
to the ¢ boundary element and r, = x(g) — x(p), ry = y(q) — y(p). Choosing appropriate locations on the boundary I as
collocation point p yields the following set of linear equations

[Hl{a} = {b} (16)
where the vector a contains the amplitudes of plane waves. Vector b is obtained as
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where {C,} and {C3} are the vectors formed using (15). The matrix H is obtained by evaluating the boundary integrals.

4. Numerical results for scattering problems

We present a PUBEM solution for two acoustic scattering problems for which either an analytical solution or an approxi-
mate series solution is available. For both the examples presented we use two 3-noded continuous elements to model the
cylinder boundary. The shape functions are trigonometric and the collocation points are always equally spaced. It has
been shown recently that the use of trigonometric shape functions improves the accuracy of the PUBEM solution over the
conventional polynomial shape functions [9]. The integration points are always placed on analytical geometry.

4.1. Sound hard single cylinder

The first example is that of scattering of a plane incident wave due to a sound hard cylinder of radius a and of infinite
length placed in a homogeneous, unbounded acoustic medium (air). We assume the incident wave is of unit amplitude
and with direction vector (—1,0) i.e. travelling in the negative x direction. This problem has an analytical solution for
scattered potential, ¢*, given by an infinite series, see [10].
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where x = r(cos(0), sin(#)), H, (kr) is the Hankel function of the first kind and order v, J, (kr) is the Bessel function of the
first kind and order v. The prime sign denotes derivative with respect to kr. Fig. 1 shows the plot of relative L? error in ¢*
against the wavenumber k for CHIEF and Burton - Miller schemes. The relative L? error is defined as
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where ¢, is the numerically computed solution and ¢; is the analytical solution at the j* point computed using the series
in (18) on the boundary I'. NOP is the total number of points on the boundary T used for computing the relative L?
error. All results corresponding to CHIEF for this example are obtained with 50 randomly placed collocation points in the
interior of the cylinder. The coefficient matrix H generated using the plane wave basis is always highly ill-conditioned.
For this reason we use Singular Value Decomposition (SVD) in order to ensure solvability of the system of equations. All
the singular values below a threshold of 107!° are set to zero when computing the inverse. Fig. 2 shows the comparison
for 2-norm condition numbers for the coefficient matrix H for CHIEF and Burton-Miller. The 2-norm condition number,
k(A), for a general matrix A is calculated using
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where 0 max(A) and oyin(A) are the maximum and minimum singular values of the matrix A. As seen from Fig.1, CHIEF

K(A) = (20)
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Figure 1: L? errors: acoustic scattering by unitradius hard cylinder Figure 2: 2—norm condition numbers for single cylinder problem

provides better accuracy compared to Burton-Miller at 30 integration points per wavelength. Burton-Miller needs at
least 300 integration points per wavelength to achieve the same accuracy as that of CHIEF at 30 integration points per
wavelength. It should be mentioned here that although the regularised form of the Burton-Miller formulation used here
is only weakly singular, the first integral on the right hand side of (6) converges extremely slowly. Due to the slow
convergence of the said integral in (6), Burton-Miller needs a very high number of integration points to be used in order
to achieve the accuracy comparable to that from the CHIEF method. The condition numbers for CHIEF for k£ < 100
are better compared with Burton-Miller. However, the conditioning for Burton-Miller improves for higher wavenumbers
(k > 100) (Fig.2). Interestingly an accurately computed Burton-Miller solution provides a better conditioning of the
system matrix.

4.2. Array of sound hard cylinders

This is an example problem where the use of PUBEM is the most justified because of the multiple reflections from the
individual cylinders. Consider a setting where four sound hard cylinders of infinite extent and unit radius are placed in
an unbounded homogeneous acoustic medium (air). The cylinder centres are given as (-2,-2), (2,-2), (2,2) and (-2,2).
Consider a plane wave of unit amplitude with wavenumber 2.4048 incident upon the cylinder array at an angle 6 = 45°
with the horizontal where the 6’ is measured anticlockwise. For this example the results are compared with an approximate
series given in [11]. In figures 3-6 we compare the PUBEM solution (absolute value of total potential on the surface of
each cylinder) from CHIEF and Burton - Miller with the series solution from [11] for k = 2.4048. It may be noted that
k = 2.4048 is the first zero of the Bessel function Jy(ka) for a = 1 and thus corresponds to the first eigenmode of the
interior Dirichlet problem. Only one interior collocation point is used for CHIEF. Table 1 gives a comparison of the
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Figure 5: |¢| for Cylinder 1, k = 2.4048 Figure 6: |¢| for Cylinder 2, k = 2.4048

relative L? errors for various integration orders relative to the wavelength. The relative L? errors for this example are
computed using (19) except now ¢; is the approximate series solution obtained using the series from reference [11].

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4
NGP /A | CHIEF BM CHIEF BM CHIEF BM CHIEF BM
30 6.27e-007 | 1.52e-004 | 7.8e-007 1.29e-004 | 4.13e-007 | 1.23e-004 | 7.64e-007 | 1.29e-004
60 9.28e-007 | 2.0e-005 | 6.92e-007 | 1.70e-005 | 8.59e-007 | 1.62e-005 | 9.27e-007 | 1.70e-005
100 9.48e-007 | 4.38¢-006 | 8.41e-007 | 4.55e-006 9.3e-007 | 3.59e-006 | 1.04e-006 | 4.07e-006
300 1.12e-006 | 6.22e-007 | 1.02e-006 | 7.618e-007 | 8.358e-007 | 3.27e-007 | 1.2e-006 | 8.04e-007

Table 1: PUBEM results - Relative L? errors for scattering from four cylinder array for k = 2.4048 and ¢ = 45° (NGP/A: no. of Gauss
points per wavelength)

As seen from Tablel, CHIEF outperforms Burton-Miller for the case of 30 integration points per wavelength which is
practical. Again for a multiple cylinder case, Burton-Miller needs about 300 integration points to be in the same accuracy
range as that of CHIEF. The polar plots for total potential are for the case of 30 integration points per wavelength. Despite
the difference seen in the tablel it is not possible to distinguish CHIEF and Burton-Miller results as they virtually lie on
top of each other.



5. Conclusions

A comparison of CHIEF and Burton-Miller schemes for the use in the PUBEM has been presented for the first time.
From the results presented it is clear that CHIEF outperforms Burton-Miller for both single cylinder and multiple cylinder
problems. Accuracy of Burton-Miller improves only when a large number of integration points are used. CHIEF thus may
be preferred over Burton-Miller at least for simple geometries and moderate frequencies where choosing interior points is
easy. Burton-Miller offers only a moderate advantage in improving the conditioning of the coefficient matrix H at larger
k. It needs to be investigated if Burton - Miller offers any advantage for complex geometries where it might be difficult to
choose the interior points at high frequencies.
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