Proceedings of the 22" UK Conference of the
Association for Computational Mechanics in Engineering
2 - 4 April 2014, University of Exeter, Exeter

3D EXTENDED ISOGEOMETRIC BOUNDARY ELEMENT METHOD
(XIBEM) FOR ACOUSTIC WAVE SCATTERING

*Michael J. Peake, Jon Trevelyan and Graham Coates
Durham University, School of Engineering and Computing Sciences, South Road, Durham, DH1 3LE
*m.j.peake @dur.ac.uk

ABSTRACT

An isogeometric boundary element method based on NURBS is used to find solutions to the Helmholtz
equation. The method is extended in a partition-of-unity sense, multiplying the NURBS functions with
families of plane waves; this new method is called the eXtended Isogeometric Boundary Element Method
(XIBEM). When compared to non-enriched boundary element simulations, using XIBEM significantly
reduces the number of degrees of freedom required to obtain a solution with a given error.

The extension used here (and in similar Trefftz methods) requires a set of wave directions to be spec-
ified. Ideally, these directions are uniformly spaced points over the unit-sphere. Simple schemes (e.g.
latitude/longitude and discretised cube methods) have been proposed previously. However, while these
schemes provide adequate spacing of wave directions, they do not allow an arbitrary number of wave
directions to the be chosen. The authors use a novel algorithm, based on a physical analogy of charged
particles held in static equilibrium on a spherical surface.

The XIBEM formulation will be described, including a focus on the novel method of choosing a uni-
formly spaced set of plane wave directions for the enrichment. Numerical results show the reduction in
degrees of freedom required to obtain approximations of engineering accuracy.
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1. Introduction

The boundary element method (BEM) is an effective tool for analysing homogeneous acoustic scattering
problems: it inherently includes the conditions of infinite domains and only requires the boundary of a
scatterer to be meshed.

Recently, in general BEM research, various authors have explored the possibility of taking the basis
functions used to describe a geometry in CAD and using them directly in a numerical analysis [1, 2, 6].
This concept is known as isogeometric analysis (IGA).

The papers above have shown that an IGA-BEM approach is viable and produces accurate results. How-
ever, simulations in acoustics are still limited by an old heuristic rule that dictates that 10 degrees of
freedom per wavelength per coordinate direction are required to obtain approximations of engineering
accuracy. A number of enriched (or Trefftz) methods have been developed to overcome this. In particular,
the authors are interested in the partition-of-unity BEM (PU-BEM) [5]. In this, the approximation basis
of the boundary elements is enriched by a family of plane waves. This greatly reduces the numbers of
degrees of freedom that are required to solve a problem of a given wavelength.

When using the PU-BEM, it has been found important to use an analytical description of the geometry.
This has only been available a few geometries, thus far. However, by using the basis functions used in
CAD, this requirement is automatically fulfilled. This paper shows how the combination of IGA-BEM
and partition-of-unity enrichment provides for an accurate and computationally efficient algorithm that
can interface well with a CAD environment.

The authors have successfully used a partition-of-unity enrichment with 2D isogeometric BEM
simulations—a combination termed the eXtended Isogeometric Boundary Element Method (XIBEM)



[3]. This conference paper considers the advance to 3D simulations. The authors focus on a novel ap-
proach to determine the directions of propagation of the enriching waves. Some initial results of 3D
XIBEM simulations are given.

2. XIBEM
2.1. Analytical formulation

Q c R3 is an unbounded, homogeneous domain containing a smooth scatterer of boundary I' := 9Q.
Acoustic waves, considered in the frequency domain with exp(—wwr) time dependence, are governed by
the Helmholtz equation:

Vo(p) +K*¢() =0, ¢cC.qeQ, (1)
where V2(-) is the Laplacian operator, ¢ is a complex wave potential, and k the is wavenumber—directly
related to the wavelength 4 = 2x/k. ¢ is used to denote the imaginary number, to avoid confusion with
subscripts i and j later. The scatterer is impinged by an incident plane wave,

¢inc(p) — Ainc exp (Lkdinc . p) , |dinc' =1, )
where A" is the incident wave amplitude and the unit vector, d™, is the direction of propagation.

To solve this problem using boundary elements, a boundary integral equation is required. The derivation
of the conventional BIE is well-known and yields:
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where p is an evaluation point, q is an integration point, and #n is an outward-pointing, unit normal.
Further, G(p, q) is the fundamental solution or Green’s function, representing the field effect experienced
at q due to a source radiating at p. The potential at any point p can be evaluated with (3) if ¢(q) and
0¢(q)/0on(q) over the entire the boundary is found.

2.2. Numerical implementation

Non-uniform rational B-splines (NURBS) are ubiquitous in CAD software and so it is NURBS basis
functions that the authors use to discretise the scatter boundary, I'. Another current development in IGA
is T-splines, a superset of NURBS. Regardless of using NURBS or T-splines, both can be decomposed
into their constituent Bézier patches. It is this decomposed mesh that the current authors use in the
simulations of this work.

The boundary, T, is discretised into E + 1 boundary elements which provide the analytical geometry of

the scatterer. On each element, I',, the variation in ¢ is expressed in terms of the rational Bézier basis
functions, Rfj,

P 4
$@ELE) = Y| D RGEL E65 @)

i=0 j=0
where ¢fj is the potential associated with each NURBS basis function. A partition-of-unity enrichment
is introduced, multiplying each basis function by a linear expansion of plane waves; (4) is rewritten
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where there are M + 1 plane waves expanded on each basis function; each wave has a prescribed direction

of propagation, dfjm € R3, and unknown amplitude, Afjm e C.

Substituting (5) into (3) and, for compact presentation, applying the sound hard boundary condition,
9¢(q)/9n(q) = 0, gives
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where |J| is the Jacobian of transformation of the mapping from global coordinates to local (&1, &)
coordinates.

(6) is collocated at a sufficient number of points to yield a linear system of equations can can be solved

to find the unknown values of Af]m



3. Equal spacing of dfj ., about the unit sphere

Works in plane-wave enriched FEM and BEM approaches most commonly involve a uniformly spaced
set of directions df i In 2D, it is a simple procedure to take equally spaced points about the unit circle.
In 3D, the same process for the unit sphere is more complex.

The authors have developed an algorithm based upon the physical analogy of an arbitrary num-
ber of charged particles held in static equilibrium on a spherical surface [4]. M + 1 particles
of unit mass and electrical charge lie on the surface S of a unit radius sphere at locations de-
scribed by vectors u;. At time #, the Coulomb force vector acting on each particle is given by

M .
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where where A is a scalar multiplier, ¢;; is the Kronecker
delta, and r = u; — u;. Fﬁ will be oriented away from S, so
the vector f! is defined as the projection of F on S, given
by

f! = (F! x u)) x ul. (8)

The acceleration, ii;, of each particle is
..t _ pt .t
i; = f; — cu;, )

where ¢ is a viscous damping coefficient and w; is the ve-
locity of the particle. The velocity and position at the sub-

Figure 1: Converged solution of Coulomb sequent time, 7 + At, are given by
force algorithm [4]; M = 151.
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where (11) normalises the position vectors to relocate the
particles back onto S. Equations (7) to (11) are repeated in
a time-stepping scheme to reach a converged solution, such
as the one seen in Figure 1. Suitable values of A, ¢ and At
can be found in [4].

4. Numerical results

Here, numerical results from simulations of a plane wave
scattering on the surface of a sound hard sphere (radius a =
08 -03 03 09 14 20 1])are presented. The incident wave has unit amplitude and

I A propagates in the direction d"® = [1,0,0]. An analytical
solution exists such that the scattered acoustic potential ¢
can be found at any point x(r, §) by

Figure 2: Scattering by a sphere at k = 20.
Real-part of acoustic potential are shown.
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where j, is the spherical Bessel function of the first kind, 4, is the spherical Hankel function of the first
kind, and P, is the Legendre function of the first kind. A visual representation of the real part of the
potential over the surface of the sphere can be seen in Figure 2.

Figure 3 shows a comparison of the number of degrees of freedom required to obtain an L? error of
engineering accuracy (1%) using a conventional BEM scheme and the proposed XIBEM scheme. It
shows that far fewer degrees of freedom are required with XIBEM simulations. With a conventional
BEM scheme, approximately 10 degrees of freedom per wavelength in each coordinate direction are
required on each element. With the XIBEM, only 3 degrees of freedom per wavelength are required.
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Figure 3: Comparison of Ny required to obtain 1% Figure 4: L? errors of XIBEM of medium wavelength
error with conventional BEM and XIBEM. simulations of unit sphere problem.

Figure 4 shows the errors of XIBEM simulations using 3 degrees of freedom per wavelength in each
coordinate direction for shorter wavelengths than Figure 3. All simulations exhibit reasonable levels of
accuracy, with all but two achieving the 1% target accuracy. A small increase in the number of degrees
of freedom used would guarantee that all simulations were below this threshold. The last simulation on
the figure, for ka = 60, uses 10,322 degrees of freedom; a similar conventional BEM simulation would
require Ngor = 114, 608.

5. Conclusions

The PU-BEM reduces the number of degrees of freedom required to solve a Helmholtz problem such as
the example in this paper. However, until now, only a few geometries have been considered due to the
requirement of an analytically described geometry.

Using the functions used to describe geometry in CAD directly in a BEM simulation and enriching
this basis in a partition-of-unity fashion—a combination termed XIBEM—has dramatically reduced the
number of degrees of freedom required, per wavelength per coordinate direction, to solve a problem to
engineering accuracy.

Using only 3 degrees of freedom per wavelength means that XIBEM needs approximately 9% of the
number of equations that conventional BEM schemes need and the resulting matrix is < 1% of the size
of the conventional BEM system matrix. This means, for a fixed computational resource, problems of
much shorter wavelengths can now be solved.
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