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1. Introduction 

Physics is, above al l else, mathematical. But its causal stories 
can be told in words. How then does mathematics bear on causal claims 
in physics? I want to make some very simple philosophical points about 
derivations, mathematical dependencies, and causal relations in 
physics. I am going to focus on the question, "How does mathematics 
provide theoretical support for physics' causal claims?" Theoretical 
support is only one among a variety of kinds of support that a causal 
claim may have, but I am not going to discuss how to balance these 
various kinds of support. Instead I will concentrate entirely on 
theoretical support and lay out some necessary conditions for the ideal 
case. Although the points I will make are not very involved philosoph- 
ical ly, I wil l flesh them in with a very detai led example concerning 
gas lasers. 

My first point is that derivations do not provide maps of causal 
processes. A derivation may start with the basic equations that govern 
a phenomenon. It may be highly accurate, and extremely realistic. Yet 
it may not pass through the causes. This is exactly what happens in 
our laser example. Even a highly accurate derivation of a phenomenon 
may not support the causal story we want to tell about it. 

Nevertheless, I shall argue, a derivation is necessary if the theory 
is to support the causal story. It is not the derivation itself that 
provides the support; but rather a kind of back tracing through the 
derivation to follow to their origins the features that are 
mathematically responsible for the effect. My second claim, then is 
that mathematical backtracking of dependencies of the kind I shal 1 
describe in section 4 is necessary for complete theoretical support of 
a causal story. 

The third point is that this special kind of backtracking is not 
sufficient for causal support. This is not surprising if the 
derivation through which we are tracing did not go via the causes in 
the first place. In our example we shal l see two structural ly similar 
tracings, one which leads back to the causes, and one which does not. 
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What picks the features targeted by one tracing as correct, and the 
others not, is the way they can be fitted into the causal process that 
we already know to be going on. This brings me to the last of my 
rather simple points: you can't get causes just from mathematics. 

2. The Lamb Dip 

The effect we shal 1 study occurs in gas lasers. It is cal led the 
Lamb dip, after Wi 1 1 is Lamb, who first predicted its occurrence. The 
dip occurs in the graph of laser intensity versus cavity frequency, as 
we see in Figure 2.1. The atoms in the cavity have a natural 
transition frequency, w; the cavity also has a natural frequency,li; 
depending on its physical structure. It is natural to expect that the 
intensity wil l be greatest when the cavity frequency matches the atomic 
transition. Indeed, Lamb reports, "I naively expected that the laser 
intensity would reach a maximum value when the cavity resonance was 
tuned to the atomic transition frequency. To my surprise, it seemed 
that there were conditions under which this would not be the case 
There could be a local minimum, or dip, when the cavity was tuned to 
resonance [i.e., cavity frequency = transition frequency]. I spent a 
lot of time checking and rechecking the algebra, and final ly had to 
believe the results." (Lamb 1984, p. 553). Lamb didn't know it at the 
time, but the Lamb dip is caused by a combination of saturation, with 
its consequent hole-burning, and Doppler-shifting, which occurs for the 
moving atoms in a gas laser such as helium-neon. 

I wil l explain in a moment what hole-burning and Doppler-shifting 
are, but first I want to give a short history of the dip. The concept 
of hole-burning is due to W.R. Bennett, and it was Bennett who first 
put together hole-burning and the Lamb dip in print (1962), though both 
a footnote in the Bennett paper and remarks of Lamb (conversation, Oct. 
1, 1984) suggest that the connection was first seen by Gordon Gould. 
Bennett had been using hole-burning to explain unexpected beat 
frequencies he had been seeing in helium-neon lasers at Bell Lab in 
1961. But, Bennett explains, "Ironically, a much more direct proof of 
the hole-burning process" is provided by the Lamb dip (1962, p. 58). 

Bennett's paper is in Applied Optics in 1962. Lamb's paper was 
circulating at the time, but was not finally published until 1964. In 
fact, Lamb had been working on the calculations from the spring of 
1961, and he says that he had already seen the dip (which Lamb cal ls 
"the double peak" after the humps rather than the trough) by the fal 1 
of 1961 (Lamb, conversation Oct. 1, 1984). Lamb wrote both to Bennett 
and to A. Javan about the prediction. Bennett, who had been measuring 
intensity versus tuning in the helium-neon laser sent back a tracing of 
a single peak. Javan answered more favorably, for he had been seeing 
frequency-pushing effects that could be easily reconciled with Lamb's 
general treatment. Javan then did a direct experiment to show the dip, 
which he published later with A. Szbke (Szbke and Javan 1963). The 
first published report of the dip was by R.A. McFarlane (McFarlane et 
al. 1963), who attributed earlier failures to see the dip to the use o 
natural neon, whose two isotopes confound the effect. McFarlane used a 
single isotope instead, and got the results shown in Figure 2.2 (Lamb, 
conversation Oct. 1, 1984; also Lamb 1984). 

We see that Lamb worked on the paper for three years before it was 
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Figure 2.1 
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published. He is in general very methodical, and slow to publish. But 
there was special motivation in this case for holding back: he did not 
know what caused the dip. He could predict it, and he knew it existed; 
but he did not know what physical process produced it. This raises the 
first philosophical point I want to make: the mathematical derivation 
of an effect may completely side-step the causal process which produces 
the effect; and this may be so even when the derivation is both a) 
faultless and b) realistic. 

a) Lamb's mathematical treatment was highly accurate and very 
careful. Bennett described it as "an extremely detailed and rigorous 
development of the theory of optical maser oscillation" (1962, p. 58), 
and that is still the opinion today. In fact Lamb's study of gas 
lasers was the first ful l theoretical treatment of any kind of laser, 
despite the fact that Javan had produced a gas l aser at the end of 
December, 1960, and ruby lasers had been operating since July of 1960. 
The work of Schawlow and Townes, which was so important for the devel- 
opment of these lasers, was by contrast piecemeal and unsystematic in 
its presentation. 

b) The calculations are based on a concrete, realistic model of the 
gas laser. This contrasts, for example, with an almost simultaneous 
theoretical treatment by Hermann Haken, which is highly formal and 
abstract (Haken and Sauermann 1963). Lamb's calculations refer to the 
real entities of the laser -- the moving gas molecules and the 
electromagnetic field that they generate; and the equations govern 
their real physical characteristics, such as population differences in 
the atoms and the polarization from the field. Nevertheless, the 
derivation fails to pass through the causal process. We will see 
exactly how this happened in section 5, but for now I want to stress 
this single point: a derivation of an effect may be both sound and 
realistic and yet provide no theoretical insight as to its causes. 

3. Causes of the Lamb Dip 

For simplicity, we will consider two level atoms with a transition 
frequency, w. At thermal equilibrium, most atoms are in the ground 
state. For laser action we need to pump atoms up, creating a 
population inversion where the majority of atoms are in the excited 
state. When that occurs, a signal near the transition frequency will 
stimulate transitions in the atoms. The size of the atomic response 
will be proportional both to the applied signal and to the population 
difference, Caa - Pbb. The stimulated emission in turn increases the 

signal, thereby stimulating an even stronger response. The response 
does not increase indefinitely because the signal depopulates the upper 
level, driving the population difference down, till a balance is 
achieved between the effects of the pumping and the signal. This is 
called saturation of the population difference. 

In a laser, oscillation begins when the gain of the beam in the 
cavity is enough to balance the losses due to things like leakage from 
the cavity. The intensity of the osci ll ations bui lds up til l the 
osci l ]ation saturates the gain, and brings it down. Steady state 
oscil lation occurs at the point where the saturation brings the gain 
exactly equal to the losses. 
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Figure 3.1 
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Figure 3.3 
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Saturation produces unexpected effects in gas lasers. In a gas 
laser the atoms are moving, and the observed spectral line will be much 
broader than the natural line for the atoms. That is because of 
Doppler-shifting. The moving atom sees a signal as having a different 
frequency than does the stationary one. The broadened line is actually 
made up of separate spectral packets with atoms of different 
velocities, where each packet itself has the natural line width, as in 
Figure 3.1. This gives rise to the possibility of hole-burning: an 
app l i ed s igna l wi ll saturate un i form l y across the natura I spectra l 
packet that contains its frequency; but it wi ll have almost no effect 
on other packets. So if we chart the popu l ation difference versus 
frequency across the Doppler broadened l ine, we wil l see a 'hole" in 
the population difference near the saturating frequency. (Figure 3.2) 

We now have al l the concepts necessary to explain the Lamb dip. We 
have been discussing the Doppl er shift due to the interaction of a 
mov i ng atom wi th a trav el l i ng wav e. In a l aser cav i ty there are two 
travelling waves, oppositely directed, which superpose to form a single 
standing wave. So the standing wave interacts with two groups of 
molecules -- those whose velocities produce the appropriate Doppler- 
shifted frequency to interact with the forward wave; and those which 
interact with the backward one. These atoms have equal and opposite 
velocities. The holes pictured in Figure 3.3 result. As Murray 
Sargent and Marlan Scully explain, following Lamb's treatment in their 
Laser Handbook article, ". . . the holes, i.e., lack of population 
difference, represent atoms which have made induced transitions to the 
lower state. Hence the area of the hole gives a measure of the power 
in the laser .... For central tuning (co=7), the laser intensity 
is driven by a single hole because the two holes for v and -v coincide. 
The area of this single hole [i.e., the power] can be less-than that 
for the two contributing to detuned oscil lation provided the Doppler 
width and excitation are sufficiently large." (1972, p. 80). Hence we 
get a power or intensity dip at central tuning. 

4. Mathematical Justification 

We have now seen the qualitative account of what causes the Lamb 
dip. How does this account relate to Lamb's mathematical derivation? 
Here again our example is a particularly felicitous one, for this 
question is explicitly taken up in the advanced-level textbook by 
Sargent, Scul ly and Lamb (1974). Here I wil l summarize their defense 
(Chapter 10.1) of the hole-burning/Doppler-shift hypothesis. 

Steady state oscil lation occurs in a laser when the saturated gain, 
,Lg, equals the losses due to structural features of the cavity. Thus, 

the amount of saturated gain at steady state is fixed. It is given by 

(4.1)i-~~I Ya, 1- 
= 

- 1) V) ` 

where the Lorentzian,j,((O) = X22 + 2. For Doppler spreads large 

compared to the decay constant,' , the Lorentzian in the numerator 
disappears on integration, and we have roughly 
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(4. 2) o9 - /( / 

(4.3) ot f on 

So in order for<Lg<_ofgfon, we must have o0n _ 1/2 Ioff. (This 

approximation ignores a factor exp[-()-Ooj)2/(Ku)2] ing off But from 

Sargent, Scul ly, and Lamb, figure 10-3, we expect to see a relative 
hump byi?- o = 230 MHz for Ku 21T x 1010 MHz. Hence this factor is 

in the order of magnitude of e&100. We are also ignoring a small 

contribution from the second Lorentzian ing doff.) The important 

question: why is there a factor of 1/2 inm'-off and not inc-g? 

Because in the denominator of (4.2) only one of the Lorentzians from 
(4.1) contributes non-neqliqibly. But in (4.3) both have contributed 

non-negligibly. It is because both Lorentzians are there that 1on must 

be less than Ioff to balance the same fixed cavity losses. 

So, how do the two different Lorentzians get into the denominator of 
(4.3)? Sargent, Scul ly, and Lamb explain, "We recal l from the discus- 
sion (of the equation that expands the standing wave as the sum of two 
oppositely directed running waves) that each Lorentzian . . . results 
from saturation by one running wave of the standing wave field."(1974, 
p. 154). 

In more detail, the Lorentzians get into (4.3) through the 
population difference, and they enter the expression for the population 
difference through the saturation factor; that is, the factor that 
reduces the population difference from what there would be without a 
fieTd oscil lation. Looking at the equation for the population 
difference, "The Lorentzians . . . show that holes are burned in the 
plot of (the population difference) Caa - tbb versus v. Off resonance 

(16 t- w), one of the Lorentzians is peaked at the detuning value X - = 
+Kv, and one at X - t) = -Kv, thereby burning two holes . .. . On 
resonance (J = j), the peaks coincide and a sin le hole is burned." 
(Sargent et al. 1974, p. 149). Populations are depleted at two veloci- 
ties because there are two running waves for the atoms to interact 
with. "ForO-'L., an atom moving along the z axis sees the first of 
the running waves . . . 'stretched out' or Doppler downshifted .. 
Comparison of the equation (which writes the standing wave as a sum of 
the two running waves) with (the equation used to generate the popula- 
tion difference) reveals that the Lorentzian in (the saturation factor) 
results(s) from this running wave ... . Similarly, an atom moving 
with velocity -v sees the second standing wave downshifted, interacts 
strongly if the atom with velocity v did, and produces the (second) 
Lorentzian." (Sargent et al. 1974, p. 150). Thus our story is complete. 
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The Lamb dip has found its source in the combination of saturation and 
Doppler broadening, as promised. 

The important philosophical point to notice is how Sargent, Scully, 
and Lamb trace the mathematics and the causal story in exact parallel. 
To make this point absolutely perspicuous, I present in Chart 1 a 
summary outline of the mathematical path, matching step-by-step with 
the causal story. In order to keep the exposition as simpl e as 
possible, I leave out a number of paral lel stages in both-- for 
example, the critical role of the polarization. 

Notice exactly what Sargent, Scully, and Lamb do here. They do not 
lay out a derivation. That has been done earlier. Rather, they take 
an intel l igent back-look through the derivation to pick out the cause: 
First, they isolate the mathematical feature that is responsible for 
the exact characteristic of the effect in question -- in this case the 
fact that two Lorentzians contribute off resonance, and only one on 
resonance; second, they trace the genealogy of this feature back 
through the derivation to its origin -- here, to the two terms for the 
oppositely directed running waves; third, they note, as they go, the 
precise mathematical consequences that the source terms force at each 
stage. The mathematics supports the causal story when these 
mathematical consequences traced bacYThrough the derivat ion match 
stage-by-stage the hypothesized steps of the causal story. This is the 
kind of support that causal stories need, and until it has been 
accomplished, their theoretical grounding is inadequate. 

We have looked at just one case, but it is not an untypical case in 
physics. Just staying within this particular example, for instance, we 
could easily lay out a similar retrospective mathematical tracing for 
the causal claim that an applied beam saturates the population 
difference. For contrast, we might look at Bennett's own "hole-burning 
model" (1962, 1967) which does not (so far as I can reconstruct) allow 
the kind of backwards causal matching that Lamb's does. I am not going 
to do that here, but simply summarize my conclusion: no matter how 
useful or insightful might be the more qualitative and piecemeal 
considerations of Bennett, they do not provide genuine theoretical 
support for the causal story connecting saturation and Doppler 
broadening with the Lamb dip. Only matching back-tracing through a 
rigorous derivation in a realistic model can provide true theoretical 
support for a causal hypothesis. 

5. How Mathematics Falls Short 

I have argued that a mathematical backtrack is necessary for a 
theory to support a causal story. In this section I want to illustrate 
that it is not sufficient. To do so, we need to look with some care at 
Lamb's derivation, and that involves one extra complication. So far, 
for simplicity, I have overlooked the role of the polarization. That 
will no longer be possible. 

Lamb calls his theory a "self-consistency" treatment. Here is his 
own description, and diagram: "We understand the mechanism of maser 
oscillation as follows: an assumed electromagnetic field E (r, t) 
polarizes the atoms of the medium creating electric dipole moments 
Pi (r, t) which add up to produce a macroscopic polarization density 
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Chart 1 

Off resonance a =:> b = a causes b Off resonance a -> b = b is derived from 

read down read up 

Existence of waves running in 2 directions ----> Each of the two running wave terms - one, each, 
saturation at the 2 velocities for which the 2 of the two Lorentzians in the saturation factor 
oscillating frequencies are appropriately up- 
and down-shifted 

Saturation at each velocity = reduction in each of the Lorentzians in the saturation 
the population difference at that velocity factor -3 a Lorentzian (in the denominator) 

that reduces the population difference at the 
appropriate Doppler-shifting velocity 

reduction in the population difference at 2 2 Lorentzians in the denominator of the popula- 
velocities X greater intensity in the cavity tion difference -e 2 Lorentzians in the denomi- 

nator of the gain formula -e greater intensity 
in the cavity 
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P (r, t). This polarization acts further as the source of a reaction 
field E' (r, t) according to Maxwel l's equations. The condition for 
maser oscillation is th[e]n that the assumed field be just equal to the 
reaction field." (Lamb 1963, p. 78). 

* * * * 

Schematic basis for calculation of the properties of the maser oscillator 

E(r,t) ecquanturic statistical p(^t) Maxwellq's _ E (rt) mechnit t,summationeqain 

Figure 5.1. From Lamb (1963), pg. 78 

* * * * 

The self consistency assumption gives rise to equations of motion 
for the population matrix, that is, the matrix which describes the 
"state" of the population. I wil l write these equations here in order 
to point out just one important feature of them. 

(5.1) Af(f) -pb) 

(5.2) 4 -- 

Here \f is the dipole interaction potential between the atoms and the 
field. We have seen vaa - ebb earlier. It is the population differ- 

ence. The elements eab andeba represent the atomic contribution to 

the polarization. Notice that the changing values of the population 
difference and of the atomic polarization are yoked toqether. The rate 
of change of the population difference at t depends on the polarization 
at t, which has itself been changing in a way dependent on the 
population difference at earlier times, which depends on the polariza- 
tion at those times, and so on. 

Lamb uses a perturbation analysis to sol ve these equations. 
Roughly, it goes like this. To get the 1st order approximation for 
eab' you insert the initial (t = 0) value for eaa - ebb in equation 

(5.1) for ')eab/at, and integrate over time. Similarly, for the 1st 

order approximation in taa - vbb* For the second order 

approximations, in the time integrals you use not the initial values, 
but the first-order values; and so on. 
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It turns out that the contributions alternate as you go through the 
orders, in much the way we think about the problem. First, in 0th 
order, we have the original inverted population difference interacting 
with the field, which produces a polarization contribution in 1st 
order; this in turn makes for a new population contribution in 2nd 
order; which gives rise to a new polarization in 3rd order. The first 
order polarization, which has not yet taken into account any feedback 
from the stimulated atoms, is accurate enough to calculate the thresh- 
old of oscillation but not to study steady state oscillation. Hence 
Lamb concentrated on the 3rd order polarization. 

Calculating the intensity from the 3rd order polarization, one 
discovers the Lamb dip. But Lamb did not see the cause for the dip. 
Why? Because of an unfortunate shift in the order of integration (see 
Lamb 1984, p. 553; Lamb 1964 pp. A1448, A1449). In calculating the 3rd 
order polarization one must, as I said, integrate through time over the 
2nd order population difference. Recal l, from our discussion of 
Doppler-shifting, that the population difference varies significantly 
with the velocity of the atoms. But the macroscopic polarization 
depends on the total contribution from al l the atoms at al l velocities, 
so the calculation must integrate over velocity as wel l. For 
mathematical convenience, Lamb did the velocity integral first, then 
the time integral. He wiped out the velocity information before 
solving for the population difference. He never saw the two holes at 
+v and -v that would account for the dip. 

By 1963 Gould and Bennett had suggested the hole-burning 
explanation, and Lamb had inverted the integrals and derived the 
velocity dependence of the population difference. The calculation of 
the intensity, and the backtracking we studied in section 4, is routine 
from that point on. 

But in 1961 and 1962 Lamb had not seen the true causal story, and 
he was very puzzled. What did he do? He did exactly the kind of 
mathematical backtracking that I have been advocating. He himself 
says, "I tried very hard to find [the] origin [of the dip] in > 
equations." (1984, p. 553, underl ining added). Lamb's back tracing is 
laid out in section 17 of the 1964 paper. Notice how the language is 
just what one would expect: "The dependence of a typical term . . . 
is . . ."; "the physical consequence of the appearance of terms 
involving +Kv . . . is . . .", "only the first two possibilities are 
able to lead to non vanishing interference . 

Final ly, Lamb conc l udes, "Physical ly, one may say that a dominant 
type of process involves three interactions: first, one with a right 
(left) running wave at t"', then one with a left (right) running wave 
at t", and finally one with a left (right) running wave at t', with the 
time integral s obeying t - t' = t" - t"' so that the accumul ated 
Doppler phase angle . . . cancels out at time t." (1964, p. A1448). 

Lamb spent a good deal of time trying to figure out the physical 
significance of these time interval terms but he could not find a 
causal role for them (conversation, Oct. 13, 1984). As he says in his 
publ ished historical account, "I never was able to get much insight 
from this kind of thing. The correct interpretation would have been 
obvious if I had held back the v integration... " (1984, p. 553). 
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So, here is a clear case. The mathematical backtracking that I 
claim is necessary to support a causal story is not sufficient to pick 
out the causal story. The velocity dependence of the population 
difference plays a significant role in the physical production of the 
dip, whereas facts about the time intervals are merely side effects. 
Yet the mathematical dependencies are completely analogous. The first 
is singled out rather than the second, not by mathematical 
backtracking, but by our antecedent causal knowledge, which in this 
case is highly detailed. Lamb starts with a sophisticated causal 
picture, whose outline is in Figure 5.1 -- a picture of an applied 
field which polarizes the atoms and produces dipole moments. The 
dipole moments add up to a macroscopic polarization that produces a 
field which polarizes the atoms, and so on. The velocity dependence 
fits in a clear and precise way into this picture. But no role can be 
found for the time difference equalities. These time factors find no 
place in the causal process that we already know to be taking place. 
Generalizing from this single - though typical - case we arrive at a 
not very surprising conclusion: mathematics is necessary to support 
the story, but you can't get new causes out without putting old ones 
in. 
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