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Abstract. We study the design of small cost temporally connected
graphs, under various constraints. We mainly consider undirected graphs
of n vertices, where each edge has an associated set of discrete availabil-
ity instances (labels). A journey from vertex u to vertex v is a path
from u to v where successive path edges have strictly increasing labels.
A graph is temporally connected iff there is a (u, v)-journey for any pair
of vertices u, v, u 6= v. We first give a simple polynomial-time algorithm
to check whether a given temporal graph is temporally connected. We
then consider the case in which a designer of temporal graphs can freely
choose availability instances for all edges and aims for temporal connec-
tivity with very small cost ; the cost is the total number of availability
instances used. We achieve this via a simple polynomial-time procedure
which derives designs of cost linear in n, and at most the optimal cost
plus 2. To show this, we prove a lower bound on the cost for any undi-
rected graph. However, there are pragmatic cases where one is not free
to design a temporally connected graph anew, but is instead given a
temporal graph design with the claim that it is temporally connected,
and wishes to make it more cost-efficient by removing labels without
destroying temporal connectivity (redundant labels). Our main techni-
cal result is that computing the maximum number of redundant labels
is APX-hard, i.e., there is no PTAS unless P = NP . On the positive
side, we show that in dense graphs with random edge availabilities, all
but Θ(n) labels are redundant whp. A temporal design may, however,
be minimal, i.e., no redundant labels exist. We show the existence of
minimal temporal designs with at least n log n labels.

1 Introduction and motivation

A temporal network is, roughly speaking, a network that changes with time.
A great variety of modern and traditional networks are dynamic, e.g., social
networks, wireless networks, transport networks. Dynamic networks have been
attracting attention over the past years [3,4,7,9,21], exactly because they model
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real-life applications. Following the model of [1,13,20], we consider discrete time
and restrict attention to systems in which the connections between the partici-
pating entities may change but the entities remain unchanged. This assumption
is clearly natural when the dynamicity of the system is inherently discrete and
gives a purely combinatorial flavor to the resulting models and problems.

In several such dynamic settings, maintaining connections may come at a
cost; consider a transport network or an unstable chemical or physical structure,
where energy is required to keep a link available. We define the cost as the to-
tal number of discrete time instances, e.g., days or hours, at which the network
links become available, i.e., the sum over all edges of the number of the edge’s
availability instances. We focus on design issues of temporal networks that are
temporally connected; a temporal network is temporally connected if informa-
tion can travel over time from any node to any other node following journeys, i.e.,
paths whose successive edges have strictly increasing availability time instances.
If one has absolute freedom to design a small cost temporally connected tempo-
ral network on an underlying static network, i.e, choose the edge availabilities,
then a reasonable design would be to select a rooted spanning tree and choose
appropriate availabilities to construct time-respecting paths from the leaves to
the root and then from the root back to the leaves. However, in more compli-
cated scenarios one might not be free to choose edge availabilities arbitrarily
but instead specific link availabilities might pre-exist for the network. Imagine a
hostile network on a complete graph where availability of a link means a break
in its security, e.g., when the guards change shifts, and only then are we able to
pass a message through the link. So, if we wish to send information through the
network, we may only use the times when the shifts change and it is reasonable
to try and do so by using as few of these breaks as possible. In such scenarios, we
may need to first verify that the pre-existing edge availabilities indeed define a
temporally connected temporal network. Then, we may try to reduce the cost of
the design by removing unnecessary (redundant) edge availabilities if possible,
without loosing temporal connectivity. Consider, again, the clique network of n
vertices with one time availability per edge; it is clearly temporally connected
with cost Θ(n2). However, it is not straightforward if all these edge availabili-
ties are necessary for temporal connectivity. We resolve here the complexity of
finding the maximum number of redundant labels in any given temporal graph.

1.1 The model and definitions

It is generally accepted to describe a network topology using a graph, the vertices
and edges of which represent the communicating entities and the communica-
tion opportunities between them respectively. We consider graphs whose edge
availabilities are described by sets of positive integers (labels), one set per edge.

Definition 1 (Temporal Graph). Let G = (V,E) be a (di)graph. A temporal
graph on G is an ordered triplet G(L) = (V,E,L), where L = {Le ⊆ N : e ∈ E}
is an assignment of labels3 to the edges (arcs) of G. L is called a labeling of G.

3 The labels of an edge (arc) are the discrete time instances at which it is available.
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Definition 2 (Time edge). Let e = {u, v} (resp. e = (u, v)) be an edge (resp.
arc) of the underlying (di)graph of a temporal graph and consider a label l ∈ Le.
The ordered triplet (u, v, l) is called time edge.4

Definition 3 (Cost of a labeling). Let G(L) = (V,E,L) be a temporal
(di)graph and L be its labeling. The cost of L is defined as c(L) =

∑

e∈E |Le|.

A basic assumption that we follow here is that when a message or an entity
passes through an available link at time t, then it can pass through a subsequent
link only at some time t′ > t and only at a time at which that link is available.

Definition 4 (Journey). A temporal path or journey j from a vertex u to a
vertex v ((u, v)-journey) is a sequence of time edges (u, u1, l1), (u1, u2, l2), . . . ,
(uk−1, v, lk), such that li < li+1, for each 1 ≤ i ≤ k − 1. We call the last time
label, lk, arrival time of the journey.

Definition 5 (Foremost journey). A (u, v)-journey j in a temporal graph is
called foremost journey if its arrival time is the minimum arrival time of all
(u, v)-journeys’ arrival times, under the labels assigned to the underlying graph’s
edges. We call this arrival time the temporal distance, δ(u, v), of v from u.

In this work, we focus on temporally connected temporal graphs:

Definition 6 (Property TC). A temporal (di)graph G(L) = (V,E,L) satisfies
the property TC, or equivalently L satisfies TC on G, if for any pair of vertices
u, v ∈ V, u 6= v, there is a (u, v)-journey and a (v, u)-journey in G(L). A
temporal (di)graph that satisfies the property TC is called temporally connected.

Definition 7 (Minimal temporal graph). A temporal graph G(L) =
(V,E,L) over a (strongly) connected (di)graph is minimal if G(L) has the prop-
erty TC, and the removal of any label from any Le, e ∈ E, results in a G(L′)
that does not have the property TC.

Definition 8 (Removal profit). Let G(L) = (V,E,L) be a temporally con-
nected temporal graph. The removal profit r(G,L) is the largest total number of
labels that can be removed from L without violating TC on G.5

1.2 Previous work and our contribution

In recent years, there is a growing interest in distributed computing systems
that are inherently dynamic. For example, temporal dynamics of network flow
problems were considered in a set of pioneering papers [10,11,14,15]. The model
we consider here is a direct extension of the one considered in the seminal paper
of [13] and its sequel [20]. In [13], the authors consider the case of one label per
edge and examines how basic graph properties change in the temporal setting.

4 Note that an undirected edge e = {u, v} is associated with 2 · |Le| time edges, namely
both (u, v, l) and (v, u, l) for every l ∈ Le.

5 Here, removal of a label l from L refers to the removal of l only from a particular
edge and not from all edges that are assigned label l, that is, if l ∈ Le1 ∩Le2 and we
remove l from both Le1 and Le2 , it counts as two labels removed from L.
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In [20], this model is extended to many labels per edge and the number of labels
needed for a temporal design of a network to guarantee several graph properties
with certainty is examined. The latter also defined the cost notion and, amongst
other results, gave an algorithm to compute foremost journeys which can be
used to decide property TC. However, the time complexity of that algorithm
was pseudo-polynomial, as it was dominated by the cube of the maximum label
used in the given labeling. Random edge availabilities were first considered in [1]
in order to study the Expected Temporal Diameter of temporal graphs.

Here, we show that if the designer of a temporal graph can select edge avail-
abilities freely, then an almost optimal linear-cost (in the size of the graph)
design that satisfies TC can be easily obtained (cf. Section 3). We give an al-
most matching lower bound to indicate optimality. However, there are pragmatic
cases where one is not free to design a temporal graph anew, but is given a set
of possible availabilities per edge with the claim that they satisfy TC and the
constraint that she may only use them or a subset of them for her design. We
show that we can verify TC in low polynomial time (cf. Section 2). The given
design may also be minimal; we partially characterise minimal designs in Sec-
tion 4. On the other hand, there may be some labels of the initial design that
can be removed without violating TC (and also result in a lower cost). In this
case, how many labels can we remove at best? Our main technical result is that
this problem is APX-hard, i.e. it has no PTAS unless P = NP . On the positive
side, we show that in the case of complete graphs and random graphs, if the
labels are also assigned at random, we can remove all but O(n) labels.

Stochastic aspects and/or survivability of network design were also considered
in [12,18,19]. An extended report of related work [3–9,16,17,21–23] can be found
in our full paper (cf. Appendix).

2 Property TC is decidable in low polynomial time

In this section, we give a simple polynomial-time algorithm which, given a tem-
poral (di)graph G(L) and a source vertex s, computes a foremost (s, v)-journey,
for every v 6= s, if such a journey exists. Curiously enough, the previously known
algorithm was pseudo-polynomial [20]. Our algorithm significantly improves the
running time. In fact, we conjecture it is optimal.

Theorem 1. Algorithm 1 satisfies the following, for every vertex v 6= s:

(a) If arrival_time[v] < +∞, then there exists a foremost journey from s to
v, the arrival time of which is exactly arrival_time[v]. This journey can be
constructed by following the parent[v] pointers in reverse order.

(b) If arrival_time[v] = +∞, then no (s, v)-journey exists.
(c) The time complexity of Algorithm 1 is dominated by the sorting time of the

set of time edges (resp. time arcs).

Corollary 1. The time complexity of Algorithm 1 is O
(

c(L) · log c(L)
)

.

Conjecture We conjecture that any algorithm that computes journeys out of a
vertex s must sort the time edges (arcs) by their labels, i.e., we conjecture that
Algorithm 1 is asymptotically optimal with respect to the running time.
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Note that Algorithm 1 can even compute foremost (s, v)-journeys, if they
exist, that start from a given time tstart > 0 onward. Simply, one ignores the
time edges (arcs) with labels smaller than the start time.

Algorithm 1 Foremost journey algorithm

Input: A temporal (di)graph G(L) = (V,E, L) of n vertices, the set of all time edges
(arcs) of which is denoted by S(L); a designated source vertex s ∈ V

Output: A foremost (s, v)-journey from s to all v ∈ V \ {s}, where such a journey
exists; if no (s, v)-journey exists, then the algorithm reports it.

1: Sort S(L) in increasing order of labels; // Note that |S(L)| = c(L)

2: Let S′ be the sorted array of time edges (resp. time arcs) according to time labels;
3: R := {s}; // The set of vertices to which s has a foremost journey

4: for each v ∈ V \ {s} do

5: parent[v] := ∅;
6: arrival_time[v] := +∞;
7: Proceed sequentially in S′, examining each time edge (resp. time arc) only once;
8: for the current time edge (resp. time arc) (a, b, l) do

9: if a ∈ R and b 6∈ R then

10: parent[b] := a;
11: arrival_time[b] := l;
12: R := R ∪ {b};

3 Nearly cost-optimal design for TC in undirected

graphs.

In this section, we study temporal design on connected undirected graphs, so
that the resulting temporal graphs satisfy TC. In this scenario, the designer has
absolute freedom to choose the edge availabilities of the underlying graph.

Theorem 2. (a) Given a connected undirected graph G = (V,E) of n vertices,
we can design a labeling L of cost c(L) = 2(n− 1) that satisfies the property
TC on G. L can be computed in polynomial time.

(b) For any connected undirected graph G = (V,E) of n ≥ 2 vertices and for any
labeling L that satisfies the property TC on G, the cost of L is c(L) ≥ 2n−4.

4 Minimal Temporal Designs

Suppose now that a temporal graph on a (strongly) connected (di)graph G =
(V,E) is given6 to a designer with the claim that it satisfies TC. If the given
design is not minimal, she may wish to remove as many labels as possible, thus
reducing the cost. Minimality of a design can be verified using Algorithm 1.

6 In this scenario, the designer is allowed to only use the given set of edge availabilities,
or a subset of them.
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4.1 Minimal designs of non linear cost in the number of vertices

Notice that if many edges have the same label(s), we can encounter trivial cases
of minimal temporal graphs. For example, the complete graph where all edges are
assigned the same label is minimal, but there are no journeys of length larger
than 1. Here, we focus on minimal temporal graphs, where minimality is not
caused merely because of the use of the same labels on every edge. Consider
graphs every edge of which only becomes available at most one moment in time
and no two different edges become available at the same time. Are there minimal
temporal graphs of the above scenario with non linear (in the size of the graph)
cost? For example, any complete graph with a single label per edge, different
labels to different edges, satisfies TC. Are all these Θ(n2) labels needed for TC,
i.e., are there minimal temporal complete graphs? As we prove in Theorem 4,
the answer is negative. However, we give below a minimal temporal graph on n

vertices with non-linear in n cost, namely with O(n log n) labels.

A minimal temporal design of n logn cost

Definition 9 (Hypercube graph). The k-hypercube graph, commonly denoted
Qk, is the k-regular graph of 2k vertices and 2k−1 · k edges.

Theorem 3. There exists an infinite class of minimal temporal graphs on n

vertices with Θ(n · log n) edges and Θ(n · log n) labels, such that different edges
have different labels.

Sketch of proof. We present a minimal temporal graph on the hypercube.
Consider Protocol 2 for labeling the edges of G = Qk. The temporal graph,
G(L), that this labeling procedure produces on the hypercube is minimal. ⊓⊔

Protocol 2 Labeling the hypercube graph, G = Qk

Consider the k dimensions of the hypercube G = Qk, x1, x2, . . . , xk;
for i = 1 . . . k do

Let Xi := {ei1, ei2, . . . , ei2k−1} be the list of edges in dimension xi, in an arbitrary
order;
Let Li be the (sorted from smallest to largest) list of labels Li := {(i− 1) · 2k−1 +
1, (i− 1) · 2k−1 + 2, . . . , i · 2k−1} ;

for i = 1 . . . k do

for j = 1 . . . 2k−1 do

Assign the (current) first label of Li to the (current) first edge of Xi ;
Remove the (current) first label of Li from the list;
Remove the (current) first edge of Xi from the list;

return the produced temporal graph, G(L);

Cliques of at least 4 vertices are not minimal The complete graph on n

vertices, Kn, with a labeling L that assigns a single, different for every edge,
label per edge is an interesting case, since Kn(L) always satisfies TC. However,
it is not minimal as the theorem below shows.
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Theorem 4. Let n ∈ N, n ≥ 4 and denote by Kn the complete graph on n

vertices. Any labeling L that assigns a single label to every edge of Kn, different
label per edge produces a temporal graph Kn(L) that is not minimal. In fact,
∃S ⊆ ∪e∈E(Kn)Le, |S| = ⌊n

4 ⌋, such that when we remove all the labels of S

from L, the resulting temporal graph still satisfies TC. Note that by the union
∪e∈E(Kn)Le we denote the multiset of all labels used in L.

Proof. The proof is divided in two parts, as follows:

(a) We show that the theorem holds for K4. Without loss of generality, we use
labels 1 to 6, one label per edge, and show that we can always remove a label
and still satisfy TC. The proof requires an exhaustive check of 720 permuta-
tions of the labels and is done via a computer program (code can be found on-
line here: http://cgi.csc.liv.ac.uk/~akridel/research-results.html).

(b) Now, consider the complete graph on n ≥ 4 vertices, Kn = (V,E). Par-
tition V arbitrarily into ⌈n

4 ⌉ subsets V1, V2, . . . , V⌈n
4
⌉, such that |Vi| =

4, ∀i = 1, 2, . . . , ⌈n
4 ⌉ − 1 and |V⌈n

4
⌉| ≤ 4. In each 4-clique defined by

Vi, i = 1, 2, . . . , ⌊n
4 ⌋, we can remove a “redundant” label, as shown in (a). The

resulting temporal graph on Kn still preserves TC since for every ordered
pair of vertices u, v ∈ V :
– if u, v are in the same Vi, i = 1, 2, . . . , ⌊n

4 ⌋, then there is a (u, v)-journey
that uses time edges within the 4-clique on Vi, as proven in (a).

– if u ∈ Vi and v ∈ Vj , i 6= j, then there is a (u, v)-journey that uses the
(direct) time edge on {u, v}. ⊓⊔

4.2 Computing the removal profit is APX-hard

Recall that the removal profit is the largest number of labels that can be removed
from a temporally connected graph without destroying TC. We now show that it
is hard to arbitrarily approximate the value of the removal profit for an arbitrary
graph, i.e., there exists no PTAS7 for this problem, unless P=NP. It is worth
noting here that, in our hardness proof below, we consider undirected graphs.

We prove our hardness result by providing an approximation preserving poly-
nomial reduction from a variant of the maximum satisfiability problem, namely
from the monotone Max-XOR(3) problem. Consider a monotone XOR-boolean
formula φ with variables x1, x2, . . . , xn.8 The clause α = (xi ⊕ xj) is XOR-
satisfied by a truth assignment τ iff xi 6= xj in τ . The number of clauses of φ
that are XOR-satisfied in τ is denoted by |τ(φ)|. If every variable xi appears in
exactly k XOR-clauses in φ, then φ is called a monotone XOR( k) formula. The
monotone Max-XOR( k) problem is, given a monotone XOR(k) formula φ, to
compute a truth assignment τ of the variables x1, x2, . . . , xn that XOR-satisfies
the largest possible number of clauses, i.e., an assignment τ such that |τ(φ)| is
maximized. The monotone Max-XOR(3) problem essentially encodes the Max-
Cut problem on 3-regular (cubic) graphs, which is known to be APX-hard [2].

7 PTAS stands for Polynomial-Time Approximation Scheme.
8 A monotone XOR-boolean formula is a conjunction of XOR-clauses of the form
(xi ⊕ xj), where no variable is negated.
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Lemma 1. [2] The monotone Max-XOR(3) problem is APX-hard.

Now we provide our reduction from the monotone Max-XOR(3) problem to
the problem of computing r(G,L). Let φ be an arbitrary instance of monotone
Max-XOR(3) with n variables x1, x2, . . . , xn and m clauses. Since every variable
xi appears in φ in exactly 3 clauses, it follows that m = 3

2n. We will construct
from φ a graph Gφ = (Vφ, Eφ) and a labeling Lφ of Gφ.

For every i = 1, 2, . . . , n we construct the graph Gφ,i and the labeling Lφ,i of
Figure 1. In this figure, the labels of every edge in Lφ,i are drawn next to the
edge. We call the induced subgraph of Gφ,i on the 4 vertices {sxi , uxi

0 , wxi

0 , vxi

0 }
the base of Gφ,i. Also, for every p ∈ {1, 2, 3}, we call the induced subgraph of
Gφ,i on the 4 vertices {txi

p , uxi
p , wxi

p , vxi
p } the pth branch of Gφ,i. Finally, we call

the edges {uxi

0 , wxi

0 } and {wxi

0 , vxi

0 } the transition edges of the base of Gφ,i and,
for every p ∈ {1, 2, 3}, we call the edges {uxi

p , wxi
p } and {wxi

p , vxi
p } the transition

edges of the pth branch of Gφ,i. For every p ∈ {1, 2, 3} we associate the pth
appearance of the variable xi in a clause of φ with the pth branch of Gφ,i.

u
xi

1
v
xi

1

t
xi

1 t
xi

2 t
xi

3

sxi

w
xi

1

11

3

3
33

3

3

4 44 44

1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

1, 2 1, 2u
xi

0

w
xi

0

v
xi

0

u
xi

2
v
xi

2 u
xi

3

w
xi

3

v
xi

3

1 11

w
xi

2

Gφ,i, Lφ,i :

4

Fig. 1. The gadget Gφ,i for the variable xi.

We continue the construction of Gφ,i and Lφ,i as follows. First, we add an
edge between any possible pair of vertices wxi

p , w
xj
q , where p, q ∈ {0, 1, 2, 3} and

i, j ∈ {1, 2, . . . , n}, and we assign to this new edge e = {wxi
p , w

xj
q } the unique

label Lφ(e) = {7}. Note here that we add this edge {wxi
p , w

xj
q } also in the case

where i = j (and p 6= q). Moreover, we add an edge between any possible pair of
vertices txi

p , t
xj
q , where i 6= j, i, j ∈ {1, 2, . . . , n}, and p, q ∈ {1, 2, 3}. We assign

to this new edge e = {txi
p , t

xj
q } the unique label Lφ(e) = {7}.

Furthermore we add a new vertex t0 which is adjacent to vertex wxn

0 and to
all vertices in the set {sxi , txi

1 , txi

2 , txi

3 , uxi
p , vxi

p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}. First we
assign to the edge {t0, wxn

0 } the unique label Lφ({t0, wxn

0 }) = {5}. Furthermore,
for every vertex txi

p , where 1 ≤ i ≤ n and 1 ≤ p ≤ 3, we assign to the edge
{t0, txi

p } the unique label Lφ({t0, txi
p }) = {5}. Finally, for each of the vertices

z ∈ {sxi , uxi
p , vxi

p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3} we assign to the edge {t0, z} the
unique label Lφ({t0, z}) = {6}. The addition of the vertex t0 and the labels of
the (dashed) edges incident to t0 are illustrated in Figure 2(a).

Consider now a clause α = (xi ⊕ xj) of φ. Assume that the variable xi

(resp. xj) of the clause α corresponds to the pth (resp. qth) appearance of xi
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(resp. xj) in φ. Then we identify the vertices uxi
p , vxi

p , wxi
p , txi

p of the pth branch
of Gφ,i with the vertices vxi

q , uxi
q , wxi

q , txi
q of the qth branch of Gφ,j , respectively

(cf. Figure 2(b)). This completes the construction of Gφ and its labeling Lφ.
Denote the vertex sets A = {sxi , uxi

p , vxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}, B =

{wxi
p : 1 ≤ i ≤ n, 0 ≤ p ≤ 3}, and C = {txi

p : 1 ≤ i ≤ n, 1 ≤ p ≤ 3}.
Note that Vφ = A ∪ B ∪ C ∪ {t0}. Furthermore, for every i ∈ {1, 2, . . . , n}
and every p ∈ {1, 2, 3} we define for simplicity of notation the temporal paths
Pi,p = (sxi , uxi

0 , uxi
p , txi

p ) and Qi,p = (sxi , vxi

0 , vxi
p , txi

p ). For every i ∈ {1, 2, . . . , n}
the graph Gφ,i has 16 vertices. Furthermore, for every p ∈ {1, 2, 3}, the 4 vertices
of the pth branch of Gφ,i also belong to a branch of Gφ,j , for some j 6= i.
Therefore, together with the vertex t0, the graph Gφ has in total 10n+1 vertices.

t
xi

2

sxi

u
xi

0

w
xi

0

v
xi

0

uxi

p

wxi

p

vxi

p

5

6

6

6

6

6

11

33

4
4

1, 2 1, 2

1, 2 1, 2

1

t0

(a)

3

3

44

1, 2 1, 2

3

3
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xi

0 v
xi

0

sxi

11

1, 2 1, 2

w
xi

0

11

1, 2 1, 2

w
xj

0

sxj

txi
p
= txj

q

uxi
p
= vxj

q vxi
p
= uxj

q

wxi
p
= wxj

q

1

u
xj

0
v
xj

0

(b)

Fig. 2. (a) The addition of vertex t0. There exists in Gφ also the edge {t0, w
xn
0

} with
label Lφ({t0, w

xn
0

}) = {5}. (b) The gadget for the clause (xi ⊕ xj).

To provide some intuition about the correctness of Theorem 5, we now briefly
describe how we can construct a labeling L of Gφ by removing 9n+k labels from
Lφ, given a truth assignment τ of φ with |τ(φ)| ≥ k. First we keep in L all labels
of Lφ on the edges incident to t0. Furthermore we keep in L the label {7} of all
the edges {txi

p , t
xj
q } and the label {7} of all the edges wxi

p w
xj
q . Moreover we keep

in L the label {1} of all the edges {txi
p , wxi

p }. Let now i = 1, 2, . . . , n. If xi = 0 in
τ , we keep in L the labels of the edges of the paths Pi,1, Pi,2, Pi,3, as well as the
label 1 of the edge {vxi

0 , wxi

0 } and the label 2 of the edge {wxi

0 , uxi

0 }. Otherwise,
if xi = 1 in τ , we keep in L the labels of the edges of the paths Qi,1, Qi,2, Qi,3, as
well as the label 1 of the edge {uxi

0 , wxi

0 } and the label 2 of the edge {wxi

0 , vxi

0 }.
We now continue the labeling L as follows. Consider an arbitrary clause

α = (xi ⊕ xj) of φ. Assume that the variable xi (resp. xj) of α corresponds to
the pth (resp. to the qth) appearance of variable xi (resp. xj) in φ. Then, by the
construction of Gφ, the pth branch of Gφ,i coincides with the qth branch of Gφ,j ,
i.e., uxi

p = v
xj
q , vxi

p = u
xj
q , wxi

p = w
xj
q , and txi

p = t
xj
q . Let α be XOR-satisfied

in τ , i.e., xi = xj . If xi = xj = 0 (i.e., xi = 0 and xj = 1) then we keep in L

the label 1 of the edge {vxi
p , wxi

p } and the label 2 of the edge {wxi
p , uxi

p }. In the
symmetric case, where xi = xj = 1 (i.e., xi = 1 and xj = 0), we keep in L the
label 1 of the edge {uxi

p , wxi
p } and the label 2 of the edge {wxi

p , vxi
p }. Let now α be
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XOR-unsatisfied in τ , i.e., xi = xj . Then, in both cases where xi = xj = 0 and
xi = xj = 1, we keep in L the label 1 of both edges {vxi

p , wxi
p } and {wxi

p , uxi
p }.

This finalizes the construction of L from the truth assignment τ of φ.

Theorem 5. There is an assignment τ of φ with |τ(φ)| ≥ k iff r(G,L) ≥ 9n+k.

Theorem 6. The problem of computing r(G,L) on a graph G is APX-hard.

Proof. Denote now by OPTmon-Max-XOR(3)(φ) the greatest number of clauses
that can be simultaneously XOR-satisfied by a truth assignment of φ. Then The-
orem 5 implies that r(Gφ, Lφ) ≥ 9n+ OPTmon-Max-XOR(3)(φ). Note that a ran-

dom truth assignment XOR-satisfies each clause of φ with probability 1
2 , and thus

there exists an assignment τ that XOR-satisfies at least m
2 clauses of φ. There-

fore OPTmon-Max-XOR(3)(φ) ≥ m
2 = 3

4n, and thus, n ≤ 4
3OPTmon-Max-XOR(3)(φ).

Assume that there is a PTAS for computing r(G,L). Then, for every ε > 0 we
can compute in polynomial time a labeling L ⊆ Lφ for the graph Gφ, such that
|Lφ \L| ≥ (1− ε) · r(Gφ, Lφ). Given such a labeling L ⊆ Lφ we can compute by
the sufficiency part (⇐) of the proof of Theorem 5 a truth assignment τ of φ so
that |Lφ \L| ≤ 9n+ |τ(φ)|, i.e., |τ(φ)| ≥ |Lφ \L| − 9n. Therefore it follows that:

|τ(φ)| ≥ (1− ε) · r(Gφ, Lφ)− 9n

≥ (1− ε) ·
(

9n+ OPTmon-Max-XOR(3)(φ)
)

− 9n

≥ (1− ε) ·
(

OPTmon-Max-XOR(3)(φ)
)

− 9ε · 4
3
OPTmon-Max-XOR(3)(φ)

= (1− 13ε) ·
(

OPTmon-Max-XOR(3)(φ)
)

That is, assuming a PTAS for computing r(G,L), we obtain a PTAS for the
monotone Max-XOR(3) problem, which is a contradiction by Lemma 1, unless
P = NP . So, computing r(G,L) on an undirected graph G is APX-hard. ⊓⊔

4.3 Random labelings on dense graphs have high removal profit

We show here that dense graphs with random labels satisfy TC and have a very
high removal profit with high probability (whp).

Definition 10. We call normalized uniform random temporal graph any graph
on n ∈ N vertices, each edge of which receives exactly one label uniformly at
random, and independently of other edges, from the set {1, . . . , n}.

Theorem 7. (a) In the normalized uniform random temporal clique of n ver-
tices, we can delete all but 2n+O(log n) labels without violating TC whp.

(b) Let G = (V,E) be an instance of the Erdös-Renyi model of random graphs,

Gn,p, with p ≥ a
√
n logn

n
, where a is constant, and consider a normalized

uniform random temporal graph, G(L), on G. We can delete all but 2n +
O(

√
n) labels of G(L) without violating TC whp.
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Sketch of proof. We provide a sketch of the proof of (a). Partition the set
of available labels {1, 2, . . . , n} into 4 consecutive equisized subsets A1, . . . , A4.
Each edge receives a single random label l, with Pr[l ∈ Ai] =

1
4 , ∀i = 1, 2, 3, 4.

Color green(g), yellow(y), blue(b) and red(r) the edges that are assigned a label
in A1, A2, A3 and A4 respectively. A temporal router is a subgraph of the clique
consisting of a central vertex with a number of yellow incident edges and a
number of blue incident edges. Fix a vertex u of the graph. By use of Chernoff
bounds, we show the following:

Lemma 2. There is a set S1 of at least n
4 yellow edges incident to u and a set

S2 of at least n
4 blue edges incident to u, with probability at least 1− 2e−

n
16 .

Conditioning on the above property of u, we arbitrarily select a subset Di of Si

with |Di| = α log n, i = 1, 2. R = D1∪D2∪{u} is then a O(log n)-size temporal
router.

Lemma 3. Any vertex w ∈ V \R has an incident g edge to a vertex in D1 and

an incident r edge to a vertex in D2 with probability at least 1− 2e−
α log n

4 .

Using Lemma 3, we show that whp, we can remove all the labels from the random
labeling on the graph except for the labels on the edges of the “router” and the
two incident edges of any w ∈ V , one g connecting it to a vertex in D1 and one
r connecting it to a vertex in D2, and still satisfy the property TC. ⊓⊔

Acknowledgments We wish to thank Thomas Gorry for co-implementing the
code used in the proof of Theorem 4.
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