
Randomized Renaming in Shared Memory Systems

Petra Berenbrink∗, André Brinkmann†, Robert Elsässer‡, Tom Friedetzky§, Lars Nagel†

∗ School of Computing Science, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada.
† Zentrum für Datenverarbeitung, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.

‡ Department of Computer Sciences, University of Salzburg, 5020 Salzburg, Austria.
§ School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE, U.K.

Abstract—Renaming is a task in distributed com-
puting where n processes are assigned new names
from a name space of size m. The problem is called
tight if m = n, and loose if m > n. In recent years
renaming came to the fore again and new algorithms
were developed. For tight renaming in asynchronous
shared memory systems, Alistarh et al. describe a
construction based on the AKS network that assigns
all names withinO(logn) steps per process. They also
show that, depending on the size of the name space,
loose renaming can be done considerably faster. For
m = (1 + ε) · n and constant ε, they achieve a step
complexity of O(log logn).
In this paper we consider tight as well as loose

renaming and introduce randomized algorithms that
achieve their tasks with high probability. The model
assumed is the asynchronous shared memory model
against an adaptive adversary. Our algorithm for
loose renaming maps n processes to a name space of
sizem = (1+2/(logn)`) ·n = (1+o(1)) ·n performing
O(` · (log logn)2) test-and-set operations. In the case
of tight renaming, we present a protocol that assigns n
processes to n names with step complexity O(logn),
but without the overhead and impracticality of the
AKS network. This algorithm utilizes modern hard-
ware features in form of a counting device which is
also described in the paper. This device may have the
potential to speed up other distributed algorithms as
well.

I. Introduction
Renaming is a task in distributed computing in which

processes are assigned distinct names from a new and
usually small name space. The number of processes is
denoted by n, the size of the name space by m. The
problem is called tight if m = n and loose if m > n.
Dependent on the model, the processes (synchronously)
communicate via messages or have asynchronous access
to shared memory. In the former case, one is interested
to restrict the number of communication rounds and
possibly the size of the messages, in the latter case, in
the step complexity which is the maximum number of
accesses to the shared memory by any process.

In recent years renaming gained new popularity and
several papers appeared that investigated renaming in
the message-passing model ([1], [2], [3]) and in the

shared memory model ([4], [5], [6], [7], [9]). Assuming the
asynchronous shared memory model, the authors of [7]
describe a construction based on the AKS network that
assigns all names to a tight name space within O(logn)
steps per process. For loose renaming in the same model,
it is shown in [9] that O(log logn) steps are sufficient to
provide n processes with distinct names from a name
space of size (1 + ε) · n where ε is a constant.

In this paper we consider tight as well as loose re-
naming in the shared memory model. The presented
algorithms use random bits and achieve their tasks with
high probability1.
For tight renaming, our algorithm has a step complex-

ity of O(logn), asymptotically equal to the algorithm of
Alistarh et al. [7] while avoiding the overhead of an AKS
network. In order to achive this result, the names must
be stored in a special type of hardware register with an
integrated counting device.

Our two algorithms for loose renaming map n pro-
cesses to a name space of size m = (1+ε)·n w.h.p. where
ε = o(1). The first algorithm requires a name space of
size m = (1+2/(log logn)`)·n and has a step complexity
of O((log logn)`). For the second algorithm, the size of
the name space is only m = (1 + 2/(logn)`) · n and
the step complexity O((log logn)2). To the best of our
knowledge, these are the first algorithms that achieve al-
most tight renaming (i. e., with only a sublinear addition
of names) in poly-double-logarithmic time.

The remainder of the paper is structured as follows:
After a discussion of the related work, the model and
a set of tools are described in Section II. The tools
include the special hardware register which is used by the
algorithm for tight renaming. This algorithm is stated
and analysed in Section III, the algorithm for loose
renaming in Section IV. The paper is summarized and
concluded in Section V.

A. Related Work
There is a substantial amount of work on algorithms

for renaming in different models. For the purpose of this
1An event A occurs with high probability (w.h.p.) if Pr [A] ≥

1− 1/nc for some constant c > 0.



section we only consider results in the shared memory
model using test-and-set registers, similar to our model.
Additionally, we focus on randomised algorithms; for
an overview of deterministic algorithms we refer the
reader to [10]. We distinguish between loose and tight
renaming. In loose renaming the name space is larger
than the number of processes, whereas the size of the
name space equals the number of processes in the case
of tight renaming. In the case of adaptive renaming the
number of processes is not known in advance.

Loose Renaming: The authors of [11] were the first
to use randomization for loose renaming. They assume
that test-and-set registers are implemented with read-
write registers. They present an algorithm that assumes
a name space of size (1 + ε) · n for a constant positive ε.
The expected runtime of their algorithm is O(M log2 n),
where M is the size of the initial name space. In [4] the
authors propose an adaptive implementation of test-and-
set registers with read-write registers. Based on that im-
plementation, they present a randomized loose renaming
algorithm which, w.h.p., requires O(k log4 k/ log2(1+ε))
steps using a name space of size (1 + ε) · k. This result
was further improved in [12] where the authors present
operations for implementing test-and-set with a step
complexity of O(log∗ k) for contention k. The authors
of [13] obtained strong long-lived randomized renaming
with amortized step complexity O(n logn). The step
complexity is defined as the maximum number of steps
that any process performs in order to find a name.

In [9] the authors assume that the test-and-set reg-
isters are given in hardware. They consider loose re-
naming where the name space is linear in the number
of processes. First they assume that n, the number of
processes, is known in advance, and present a renaming
algorithm with O(log logn) step complexity. Then they
present an adaptive algorithm with step complexity
O((log log k)2), where k is the number of processes
competing for a name. Both bounds hold with high
probability against a strong adaptive adversary. Finally,
they show an Ω(log logn) expected time lower bound on
the complexity of randomized renaming using test-and-
set operations and linear space. Implementing their test-
and-set operation would increase the step complexity
by a multiplicative O(log log k) and the error terms in
their high probability guarantees would become inversely
logarithmic rather than inversely polynomial.

For deterministic algorithms, in comparison, the lower
bound is known to be Ω(n) and, thus, exponentially
worse [9].

Tight renaming: The authors of [4] present a tight
renaming algorithm with a total step complexity of
O(n log3 n). In [7] the authors give two new randomized
renaming algorithms which work in the presence of
an adaptive adversary. The first algorithm has a step

complexity of O(log2 n) if the test-and-set registers are
implemented in hardware. The second algorithm trans-
forms any sorting network into an adaptive renaming
protocol with an expected step complexity cost equal
to the depth of the sorting network. Using an AKS
sorting network, this gives a strong adaptive renaming
algorithm with step complexity O(log k). This approach
has the disadvantage that the depth of the AKS network
is logarithmic but with a rather unwieldy constant,
not to mention the complicated structure of an AKS.
The approach also needs a large amount of test-and-set
registers since the width of the network equals the initial
name space of the processes. The authors show that the
later result is asymptotically optimal.

Deterministic algorithms for tight renaming, on the
other hand, have a step complexity of Θ(n) [9].

II. Preliminaries

A. Model

The considered machine model is the asynchronous
shared memory model with concurrent reads and concur-
rent writes (CRCW). The processes follow an algorithm
composed of steps. Any number of processes may fail by
crashing, and a failed process does not perform further
steps in the execution. The order in which processes
perform steps and their crashes are controlled by an
adversary. We assume an adaptive adversary that is
allowed to see the state of all processes (including the
results of coin flips) when making its scheduling choices.

The asynchronous shared memory contains the name
space with m names and can be accessed by all n
processes. Besides the name space, additional memory
can be used as temporary memory. Like in [9], each
name is stored in a test-and-set (TAS) register that can
be concurrently tested by several processes, but only won
by one process.

For our tight renaming algorithm, we use a special
hardware register, called τ -register. It includes a count-
ing device with TAS bits, i.e. TAS registers consisting of
only one bit. In each step each process is allowed to test
at most one TAS register or TAS bit. If the process wins
a TAS register or bit, it will get the name in it. Like in
other papers, e.g. [9], we assume that concurrent accesses
to the same TAS register or TAS bit can be executed
in one step and that every name and address can be
read or written in one step. Some of these names and
numbers have log(n) bits (or more). Likewise we assume
that a processor’s registers and instructions can handle
numbers of this size and run processor instructions like
xor and popcnt on these numbers in O(1).

The τ -register and the counting device are described
in more detail in the following two sections.



B. τ -register
In order to efficiently calculate tight renaming, our

algorithm depends on special hardware registers, called
τ -registers. Each of these registers has two parts: (i) a set
of τ TAS registers that contain the names, (ii) a counting
device managing 2 log(n) TAS bits. The counting device
counts the number of TAS bits set and allows at most τ of
them to be set. Any process that wants to get a name has
to win one of the 2 log(n) TAS bits first. After winning
a TAS bit, the process systematically goes through the
TAS registers, until it wins one of them, and retrieves the
name. It must win one of the TAS register because there
are exactly τ of them and at most τ processes that are
allowed to search.

As the TAS registers and the search are straightfor-
ward, we only have a closer look at the counting device.
C. Counting Device

The counting device is composed of 2 logn individual
TAS bits and can restrict the number of 1-bits to any
positive threshold τ ≤ 2 logn. We assume that all
individual bits of a τ -register have the same clock as
input and that it is possible to read all 2 logn individual
bits within one operation. The register operates in clock
cycles that are divided in phases. The synchronisation
of the bits permits that supernumerary TAS bits can be
unset before the counting device is accessed again by
new processes.

However, we do not make any assumptions about the
arrival or the order of the requests. Processes can use
different clocks and send their requests asynchronously
at any time. Yet, since requests are only answered in a
certain phase, the processing may start with a (constant)
delay. The implementation of a τ -register is based on the
following algorithm which represents one clock cycle:

1: allowed_bits← τ − popcnt(in_reg)
2: for i ∈ {1, . . . , 2 log(n)} in parallel do
3: processes test-and-set bit bi
4: if τ < popcnt(in_reg) then
5: util_reg0 ← out_reg xor in_reg
6: for i ∈ {1, . . . , 2 log(n)} in parallel do
7: util_regi ← util_reg0 << (i− 1)
8: if popcnt(util_regi) = allowed_bits then
9: if bt(util_regi, 1) then

10: util_regi ← util_regi >> (i− 1)
11: out_reg← out_reg or util_regi
12: in_reg← out_reg
13: else
14: out_reg← in_reg

The counting device has two main registers: in_reg
and out_reg. The register in_reg contains the TAS bits

the processes access. The bits of register out_reg can be
read by the processes to check whether they have really
won their respective TAS bit. After each execution, both
registers are updated such that exactly those bits are
set in in_reg that have been won by processes and that
out_reg is an exact copy of in_reg. Aside from these
two registers, 2 logn + 1 auxiliary registers util_regi,
i = 0, ..., 2 logn, are needed.

A clock cycle is divided in two phases, the first one
covers lines 1–3, the second lines 4–14: In the first line,
the algorithm determines the number of bits the register
in_reg is short of the threshold τ . Then, in lines 2–
3, the TAS bits of in_reg parallelly handle requests of
processes. Every request to a TAS bit bi fails if bi is
already set to 1. If bit bi is unset and if there is at least
one request to bi, bi will be (preliminarily) set by exactly
one of the processes. All other requests to bi also fail.

If the threshold τ is exceeded in line 4,
(popcnt(in_reg) − τ) many of the new bits have
to be removed. For this purpose, util_reg0 is prepared
in line 5 as a copy of in_reg without the old bits, i.e.
the bits set prior to this cycle. The algorithm then shifts
util_reg0 by every possible number of bits (line 7) and
selects the only resulting bit array util_regi which
has both, the correct number of new bits (line 8) and a
1-bit in the first position (line 9). (The first bit is tested
using the instruction bt(util_regi, 1).) util_regi is
shifted back (line 10) and combined with the old bits
in out_reg (line 11). The resulting bit array having
exactly τ bits, τ−allowed_bits old and allowed_bits
new bits, is stored in out_reg (line 11) and in_reg
(line 12).

If the threshold τ is not exceeded in line 4, in_reg
can simply be copied to out_reg (line 14).

A process that won a TAS bit (in line 3) has to check
whether this TAS bit was later unset (in line 12). It can
be certain that the TAS bit is unset as soon as it is unset
in in_reg, and it can be certain to have won it, once
the according bit has also been set in out_reg. In the
latter case, it can immediately start searching the TAS
registers for a free name.

Each step of the algorithm can be performed in a
constant number of time steps, usually in one time step,
so that the τ -register only induces a constant slowdown
compared to a standard TAS register. Nevertheless, there
is a significant hardware overhead of O(logn) additional
registers and arithmetic logic units. It is therefore un-
likely that such a register will be actually built, but it
could be constructed based on this description.

D. Technical tools
In the technical parts of this paper we will be using

the following version of the well-known Chernoff concen-
tration inequality.



Lemma 1. Let X1, . . . , Xn be independent random vari-
ables such that Xi ∈ {0, 1}. Let pi = P (Xi = 1) = E[Xi],
X =

∑n
i=nXi and µ = E[X] =

∑n
i=1 E[Xi] =

∑n
i=1 pi.

Then,
1) For any δ ∈ [0, 1], P [X ≥ (1 + δ) · µ] ≤ e−(µδ2)/3.
2) For any δ ≥ 1, P [X ≥ (1 + δ) · µ] ≤ e−(µδ)/3.
3) For any δ > 0, P [X ≤ (1− δ) · µ] ≤ e−(µδ2)/3.

III. Tight Renaming using logn-Register
In this section we will design and analyse an algorithm

for solving the tight renaming problem using (logn)-
registers in time O(logn) and space O(n). We will
now give a high-level description of the basic idea of
algorithm and analysis.

We will be using an auxiliary array Taux of length 2n
of TAS bits belonging to n/ logn many (logn)-registers.
Recall, each (logn)-register has 2 logn TAS bits (which
we also will refer to as blocks). We divide the array into
R = O(logn) clusters C1, C2, · · · , CR. Ci consists of ci
TAS bits with

ci = n/(2c)i

and c being a suitably large constant. Hence, the i-th
cluster Ci contains

bi = ci
2 logn = n

2 · (2c)i · logn

many (logn)-registers and each of the registers is respon-
sible for logn names.
The algorithm will proceed in rounds (for each given

process), where for i = 1, 2, . . ., in the i-th round all
processes still active (initially for i = 1 all n of them)
will randomly pick one TAS bit from cluster Ci. Each TAS
bit having received at least one request will accept an
arbitrary one of those. Each (logn)-register will keep at
most logn many successful requests (we refer to this as
the block discarding step). A request which was successful
will become inactive.
Each of the b1 many (logn)-registers in cluster C1

will receive n/b1 = n/(n/2(2c) logn) = 4c logn many
process requests in expectation, and at least 2c logn of
those with high probability. We will show that with high
probability, in each (logn)-register at least half the TAS
bits will receive at least one process request, so that after
the block discarding step we will have precisely logn
accepted requests per block, w.h.p. In other words, the
idea is to choose cluster sizes such that w.h.p. each block
in a given cluster (round) receives just sufficiently many
requests.

The remaining active processes will participate in
the next round. In the final round, when we are down
to a cluster size of 2 logn belonging to one (logn)-
register, the processes will access each of the TAS bits
and eventually find a free TAS bit.

We should like to point out that whilst we talk about
rounds as though we have a synchronised protocol this
is in fact not the case. We use the notion only for ease
of presentation. In reality, each process first tries cluster
C1, then cluster C2, and so forth, until successful. In this
sense the processes do operate in phases as indicated, but
quite independent of one another.

Definition 2.
1) Let

R = log(n)− log log(n)− 1
log(c) + 1

(number of rounds).
2) For 1 ≤ i ≤ R, let

ci = n/(2c)i

and
bi = ci

2 logn.

(cluster size and number of blocks in round i).
3) For 1 ≤ i ≤ R, let

c′i =
i−1∑
j=1

cj

and
Ci = Taux[c′i−1 + 1, . . . , c′i−1 + ci]

(the i-th cluster in Taux).
4) For 1 ≤ i ≤ R and 1 ≤ j ≤ bi, let

Bi,j = Taux[c′i−1+1+(j−1)·bi, . . . , c′i−1+1+j·bi−1]

(the j-th block in the i-th cluster in Taux).

The main lemma of this section will use the following
straightforward application of Chernoff’s.

Lemma 3. Let ` be an arbitrary, positive constant.
Let c ≥ max{ln 2, 2` + 2}. Suppose 2c log(n) balls are
allocated i.u.r. into 2 log(n) bins. With probability at least
1− 1/n`, there are no more than log(n) empty bins.

Proof: For 1 ≤ i ≤ 2 log(n), let Xi be a binary
random variable with Xi = 1 if and only if the i-th bin
remains empty. Let

X =
2 log(n)∑
i=1

Xi

denote the number of empty bins and

µ = E[X].

For 1 ≤ i ≤ 2 log(n) we have

E[Xi] = Pr [Xi = 1] =
(

1− 1
2 log(n)

)2c log(n)
< 1/ec



and therefore µ < 2 log(n)/ec. Choose δ such that

(1 + δ) · 2 log(n)
ec

= log(n),

that is, δ = ec/2 − 1. Notice that c > ln(2) implies
δ = ec/2 − 1 > 0. We wish to apply a Chernoff-type
bound to X, but clearly the Xi are not independent.
It is, however, well known (see e.g. Theorem 46 on
page 21 of [14]) that they are negatively associated,
which immediately implies that we may use any Chernoff
bound (normally requiring independent random vari-
ables) of our choosing. Intuitively, negative association
of a collection of random variables means that if we know
some subset of the variables to have “large” values, then
this decreases the probability of another, disjoint subset
to take “large” values as well – in our case, if a subset
of bins remains empty (with their Xi = 1) then another
subset is less likely to remain empty as well (with their
Xi = 1).
The remainder of the proof is now a mere formality.

We use the generic version of Chernoff’s, using our choice
of δ from above, giving

Pr [X ≥ log(n)]
= Pr [X ≥ (1 + δ)2 log(n)/ec]

≤
(

e(ec/2−1)

(ec/2)(ec/2)

)2 log(n)/ec

=
(

e(ec/2−1)2/ec

(ec/2)(ec/2)2/ec

)log(n)

=
(
e(1−2/ec)

ec/2

)log(n)

=
(

2
ec−1+2/ec

)log(n)
.

Our constraint on c in the statement of this lemma
implies

ec−1+2/ec

> ec−1 > e(2`+2)−1 = e2`+1 > 22`+1

and therefore

Pr [X ≥ log(n)] ≤
(

2
22`+1

)log(n)
=
(
2−2`)log(n)

< 1/n`.

We are now ready to state and prove the main lemma
of this section.

Lemma 4.
1) In round R, we have a cluster size of cR = 2 logn.
2) In each round, each block of size 2 logn receives

4c logn requests in expectation, and at least 2c logn
w.h.p.

Proof:
1) As per Def. 2(2) we have ci = n/(2c)i. We solve

n/(2c)i = 2 logn for i:

n

(2c)i = 2 logn ⇔ n

2 logn = (2c)i

⇔ log(n)− log logn− 1
log(2c) = i

⇔ log(n)− log log(n)− 1
log(c) + 1 = i.

This is exactly what we defined R to be in
Def. 2(1).

2) By induction on the round.

In round 1 we have c1 = n/(2c)1 = n/2c and
b1 = n/(4c logn). We throw n balls into cluster
C1, and therefore each of the b1 many blocks
receives 4c logn requests in expectation. A simple
application of Chernoff’s shows that each block
will receive 2c logn requests w.h.p. According to
Lemma 3, this implies that half of the 2 logn
TAS bits in each block will receive at least one
request. Consequently, after the block discarding
step, precisely log(n) of the 2 logn TAS bits in each
block will have accepted a request.

Suppose that up to and including round r, 1 ≤
r < R, each block of size 2 logn has had exactly
log(n) many TAS bits accept a request each in their
respective clusters, for a total of

r∑
i=1

bi logn =
r∑
i=1

n logn
2 · (2c)i · logn

=
r∑
i=1

n

2 · (2c)i = n

2 ·
1− (1/2c)r

2c− 1

accepted and

ρr+1 := n− n

2 ·
1− (1/2c)r

2c− 1

=
(

1− 1− (1/2c)r

2(2c− 1)

)
· n

remaining active processes. In round r + 1, those
ρr+1 processes will request bits in cluster Cr+1 of
size cr+1 = n/(2c)r+1. This cluster contains br+1 =

n
2·(2c)r+1·logn many blocks of size logn each. Each



such block will therefore receive
ρr+1

br+1
=
(

1− 1− (1/2c)r

2(2c− 1)

)
· n · 2 · (2c)

r+1 · logn
n

=
(

1− 1− (1/2c)r

2(2c− 1)

)
· 2 · (2c)r+1 · logn

=
(

2 · (2c)r+1 − 1− (1/2c)r

2(2c− 1) · 2 · (2c)
r+1
)
· logn

=
(

2 · (2c)r+1 − 1− (1/2c)r

2c− 1 · (2c)r+1
)
· logn

= (2c)r+1 ·
(

2− 1− (1/2c)r

2c− 1

)
· logn

≥ (2c)r+1 · logn
≥ 4c logn

requests in expectation (notice that 1−(1/2c)r

2c−1 ≤
1 and hence 2 − 1−(1/2c)r

2c−1 ≥ 1). We may apply
Chernoff’s and find that at least 2c logn requests
arrive in each block of cluster Cr+1, w.h.p. Again,
according to Lemma 3, this implies that half of the
2 logn TAS bits in each block will receive at least
one request.
A union bound over all rounds etc. proves the
claim.

We can now state the main theorem of this section.

Theorem 5. With high probability, the protocol as de-
scribed in this section assigns n processes to a name space
of size n in time O(logn), using O(n) extra space.

IV. Loose Renaming in the Standard Model
In this section we consider the problem of loose re-

naming where the name space is larger than n. In [8]
the authors propose a O(log logn)-time loose renaming
algorithm that uses a name space of size (1 + ε) · n
where ε > 0 is an arbitrary constant. In this section we
consider renaming algorithms using smaller name spaces
and assume the model that was introduced in [8].

In this model the processes have access to stan-
dard asynchronous shared memory. They share regis-
ters which contain the names and on which they can
perform TAS operations implemented in hardware. The
algorithms are composed of steps. Any number of pro-
cesses may fail by crashing, and a failed process does
not perform further steps in the execution. The order
in which the processes perform their accesses and the
crashes are controlled by an adaptive adversary. The
adversary is allowed to see the state of all processes
(including the results of coin flips) when making its
scheduling choices.

First we present some algorithms that rename most
but not all of n processes using a name space of size n.
To assign a name to all processes we apply the method

of [8] and assign to the remaining processes names from
a name space starting at n + 1. We call a renaming
algorithm k-almost tight if it assigns a name to all but
n− k processes, with k = o(n).

Note that one can also apply the framework of [8]
to transform our algorithms into adaptive algorithms
when the number of active processes that are looking
for a name is not known in advance. Unfortunately, the
name space would become O((1+ε) ·k), hence using our
protocols would not result in an improvement compared
to [8].

Lemma 6. Assume we have n test-and-set registers and
n processes. Then n

(log logn)` -almost tight renaming can
be done w.h.p. in the adaptive adversary model with a
step complexity of

O((log logn)`).

Proof: The algorithm works in ` log log logn many
rounds. Round i has 2i many steps. In every step of each
round, all unnamed processes send a request to a ran-
domly chosen test-and-set register. Registers receiving
a request are set by an arbitrary one of the accessing
processes. The corresponding process has a name now
and becomes inactive. Note that, if a register is set,
it remains set for the rest of the algorithm. The total
runtime of the algorithm (which is the number of steps)
is

` log log logn∑
i=1

2i ≤ (log logn)`

We call round i successful if, at the end of round i,
there are at most n/2i processes that are not assigned
to a register. If all ` · log log logn rounds are successful
there will be

n

2`·log log logn = 2 · n

(log logn)`

processes left which are not assigned to a name.
In the following we prove by contradiction that every

round is w.h.p. successful. Fix a round i, 1 ≤ i ≤
`·log log logn, and assume round that i is the first round
which is not successful. We can assume that during every
step of round i we have at least n/2i active processes
(otherwise round i is successful) and unset registers.
Hence, the total number of random choices in round i is
at least

n

2i · 2
i = n.

The probability that an arbitrary unset register does not
receive any of the requests is at most(

1− 1
n

)n
≤ 1
e
.



Let Xi be the random variable that counts the number
of unset registers at the end of round i. Then

E[Xi] ≤
n

2i−1 ·
(

1
e

)
.

Since E[Xi] ≥ n/ log log logn, we can use Chernoff
bounds to show that w.h.p. the number of unset registers
at the end of the round is at most n

2i , meaning that the
round is successful. Now we can use the union bound
over all rounds i to show the lemma.

Corollary 7. Assume we have n + 2n/(log logn)` test-
and-set registers and n processes. Then, w.h.p., loose
renaming can be done in the adaptive adversary model
with a step complexity of

O((log logn)`).

Proof: First we use Lemma 6 to assign a name to
all but n/(log logn)` many of the processes. Then we
use the algorithm of [8] on the name space n + 1 to
n + 2n/(log logn)` to assign a name to the remaining
unnamed processes.

Lemma 8. Assume we have n test-and-set registers
and n processes. Then, w.h.p., n/(logn)`-almost tight
renaming can be done in the adaptive adversary model
with a step complexity of

2` · (log logn)2.

Proof: This algorithm works in log logn phases. The
registers are now divided into a sequence of clusters.
For 1 ≤ j ≤ log logn the jth cluster contains n/2j
many registers. In phase i the processes randomly choose
registers from the ith cluster only. Every round consists
of 2` · log logn many steps. In every step of every round
i, all unassigned processes send a request to a randomly
chosen test-and-set register from cluster i. Registers
receiving a request are set by one of the accessing pro-
cesses, and the corresponding process becomes inactive.

At the beginning of round i ≥ 2 there are at least

n−
i−1∑
j=1

n

2j = n

2i−1

many active processes. The probability for a node in
cluster j to remain empty is(

1− 2j

n

)n/2j ·2` log logn

≤ 1
(logn)2` .

Hence, the expected number of empty modes (which
equals the expected number of not named processes) is
n/(logn)2`. The result follows now from an application
of Chernoff bounds.

Corollary 9. Assume, we have n+2· n
(logn)` test-and-set

registers and n processes. Then, w.h.p., loose renaming

can be done in the adaptive adversary model with a step
complexity of

O((log logn)2).

Proof: Similar to the proof of Corollary 7.

V. Conclusion

In this paper we have considered the renaming prob-
lem in the asynchronous shared memory model. By uti-
lizing new hardware features and extending the concept
of the test-and-set register, we have shown that even a
fairly straightforward randomized algorithm can perform
tight renaming in O(logn) steps with high probabil-
ity. The hardware added is a set of register clusters,
each containing logn names, which increase the success
probability for the random accesses of the processes by
seemingly enlarging the name space.

Our solutions to the loose renaming problem work in
the standard model in which the names are stored in
“plain” test-and-set registers. The algorithms are the
first to achieve almost tight renaming in poly-double-
logarithmic time mapping n names to a namespace of
size only (1 + o(1)) · n.

While there is a known matching lower bound for loose
renaming, it remains open to show that the lower bound
for tight renaming can be extended to the τ -register. An
interesting future task will be the exploration of modern
hardware capabilities and how new features can improve
solutions to the fundamental problems in distributed
computing.

References

[1] S. Chaudhuri, M. Herlihy, and M. R. Tuttle, “Wait-free
implementations in message-passing systems.” Theor.
Comput. Sci., vol. 220, no. 1, pp. 211–245, 1999.

[2] M. Okun, “Strong order-preserving renaming in the
synchronous message passing model.” Theor. Comput.
Sci., vol. 411, no. 40-42, pp. 3787–3794, 2010.

[3] D. Alistarh, O. Denysyuk, L. Rodrigues, and N. Shavit,
“Balls-into-leaves: Sub-logarithmic renaming in syn-
chronous message-passing systems,” in Proceedings of
the 2014 ACM Symposium on Principles of Distributed
Computing, ser. PODC ’14. New York, NY, USA: ACM,
2014, pp. 232–241.

[4] D. Alistarh, H. Attiya, S. Gilbert, A. Giurgiu, and
R. Guerraoui, “Fast randomized test-and-set and renam-
ing.” in DISC, ser. Lecture Notes in Computer Science,
N. A. Lynch and A. A. Shvartsman, Eds., vol. 6343.
Springer, 2010, pp. 94–108.

[5] A. Castañeda, S. Rajsbaum, and M. Raynal, “The re-
naming problem in shared memory systems: An intro-
duction,” Comput. Sci. Rev., vol. 5, no. 3, pp. 229–251,
Aug. 2011.



[6] D. Alistarh, J. Aspnes, S. Gilbert, and R. Guerraoui,
“The complexity of renaming,” in Proceedings of the
2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, ser. FOCS ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 718–727.

[7] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert, and
M. Zadimoghaddam, “Optimal-time adaptive strong
renaming, with applications to counting.” in PODC,
C. Gavoille and P. Fraigniaud, Eds. ACM, 2011, pp.
239–248.

[8] D. Alistarh, J. Aspnes, G. Giakkoupis, and P. Woelfel,
“Randomized loose renaming in O(log log n) time,” in
Proceedings of the 2013 ACM Symposium on Principles
of distributed computing, ser. PODC ’13. New York,
NY, USA: ACM, 2013, pp. 200–209.

[9] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert, and
R. Guerraoui, “Tight bounds for asynchronous renam-
ing,” J. ACM, vol. 61, no. 3, pp. 1–51, Jun. 2014. [On-
line]. Available: http://doi.acm.org/10.1145/2597630

[10] A. Brdosky, F. Ellen, and P. Woelfel, “Fully-adaptive
algorithms for long-lived renaming,” Distributed Com-
puting, vol. 24, no. 2, pp. 119–134, 2011.

[11] A. Panconesi, M. Papatriantafilou, P. Tsigas, and
P. M. B. Vitanyi, “Randomized naming using wait-free
shared variables,” Distributed Computing, vol. 11, no. 3,
1998.

[12] G. Giakkoupis and P. Woelfel, “On the time and
space complexity of randomized test-and-set,” in PODC,
D. Kowalski and A. Panconesi, Eds. ACM, 2012, pp.
19–28.

[13] W. Eberly, L. Higham, and J. Warpechowska-Gruca,
“Long-lived, fast, waitfree renaming with optimal name
space and high throughput,” in DISC, ser. Lecture
Notes in Computer Science, S. Kutten, Ed., vol. 1499.
Springer, 1998, pp. 149–160.

[14] D. Dubhashi and D. Ranjan, Balls and Bins: A Study in
Negative Dependence. BRICS, 1996. [Online]. Available:
http://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf


