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ABSTRACT 

Modeling the complex decision problems faced in the coordination of disaster response as a scheduling problem 
to be solved using an optimization algorithm has the potential to deliver efficient and effective support to 
decision makers.  However, much of the utility of such a model lies in its ability to accurately predict the 
outcome of any proposed solution.  The stochastic nature of the disaster response environment can make such 
prediction difficult.  In this paper we examine the effect of unknown disruptions to the road transport network 
on the utility of a disaster response scheduling model.  The effects of several levels of disruption are measured 
empirically and the potential of using real-time information to revise model parameters, and thereby improve 
predictive performance, is evaluated. 
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INTRODUCTION 

Many decision problems encountered in disaster response require consideration of how emergency responders 
move around the affected geographic area.  In making such decisions we may be concerned with two related 
aspects.  Firstly, the routing problem - which route should a responder take in order to move from location A to 
location B in as short a time as possible?  Secondly, the prediction problem - how can we predict how long it 
will take a responder to move from A to location B?  The degree to which these sub-problems can be solved 
effectively may have a significant impact on the overall decision problem, and so deserve our attention. 

Under certain assumptions regarding the nature of the disaster response environment both the routing and 
prediction sub-problems can be solved quickly and effectively using well-established algorithms from the fields 
of computer science and operational research.  In particular, if one can represent the affected geographical area 
as a set of nodes, each corresponding to a location of interest (for example, a hospital) or a road junction, 
together with a set of arcs linking nodes together, each with a parameter describing its distance, shortest path 
algorithms such as Djikstra’s algorithm can be employed to find the optimal route between any two locations.  If 
one assumes a constant speed of travel for responders along such routes, the associated travel time can then be 
derived.  However, this assumption may be hard to justify in a disaster environment.  Given a specified route 
and its distance it may not be possible to accurately predict the actual time needed to travel along the route as 
parts of it may be subject to unknown disruptions of some form, such as damage caused directly by the disaster 
or severe traffic congestion caused by the unpredictable behavior of civilians.  Under such conditions both the 
routing and prediction sub-problems become significantly more difficult to solve. 

Recent research in the development of optimization models for disaster management has taken a range of 
approaches in representing the transport network.  Considering the problem of prepositioning relief supplies 
prior to the occurrence of a disaster, Tzeng, Cheng and Huang (2007) assume the “availability and accessibility 
of information”, including the state of the transport network.  In contrast, Rawls and Turnquist (2010) propose a 
two-stage stochastic programming model to assist in its solution.  Such an approach allows for the consideration 
of uncertainty in the transport network parameters following a disaster.  A similar approach is employed by 
Mete and Zabinsky (2010) in a model which aims to minimize the time needed to transport relief commodities 
to sources of demand.  The routes used in this transportation are pre-computed before the disaster and the travel 
times on each route are assumed known. 

The problem of assigning ambulances to clusters of casualties is addressed in (Gong and Batta, 2007), where 
travel times of ambulances along routes are assumed to be constant.  The model is extended in (Jotshi, Gong and 
Batta, 2009) to acknowledge the uncertain and dynamic nature of the transport network.  A data fusion approach 
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is used in estimating the level of damage and disruption on each road link, as categorized into one of five 
discrete levels.  The transportation of casualties to hospital is also considered by Yi and Ozdemar (2007), where 
the authors employ a vehicle routing formulation assuming all transport network parameters are known. 

The transport network considered in the scheduling model proposed by Fiedrich, Gehbauer and Rickers (2000) 
is of a dynamic nature in that nodes and links can be added and removed to reflect further developments of the 
disaster.  The model does assume, however, that all such information is known with certainty in the scheduling 
model.  Stochastic travel times are modeled in the work of Wex, Schryen and Neumann (2012), where travel 
times between all incidents are modeled as normally distributed random variables.  Fuzzy logic is employed in 
the optimization model to account for such uncertainty.  A similar scheduling approach is employed by Wilson, 
Hawe, Coates and Crouch (2012), where travel times are assumed known and constant while the durations of 
response tasks are of a stochastic nature.  The empirical analysis presented demonstrates the significant impact 
of such stochastic durations upon the utility of the optimization model, which suggests other temporal variability 
(such as that arising through transport network disruption) would also have a significant effect. 

While uncertain disruption in the transport network of the environment following a disaster has been modeled to 
varying degrees in recent research, there has yet to be an empirical analysis into the effect of such disruption on 
the utility of an optimization model.  In this short paper we propose to extend the work presented in (Wilson et 
al., 2012) and perform such an analysis, in the context of a scheduling model designed for use during a Mass 
Casualty Incident (MCI) response, with a particular focus on the prediction sub-problem. 

MODEL AND ANALYSIS 

The scheduling model & an example problem 

In this paper we employ the same scheduling model of an MCI response described by Wilson et al. (2012).  
Briefly, the combinatorial optimization model defines a solution to the response problem through three 
components: an allocation of tasks to available responders; an ordering of all tasks assigned to each responder; 
and an allocation of each casualty to one of the available hospitals.  Solutions are evaluated through a multi-
objective function which predicts the number of fatalities resulting from the proposed solution together with a 
dimensionless measure of the suffering endured by casualties, which involves measuring how long each casualty 
must wait before being admitted to a hospital together with the level of care available at that hospital.  We 
denote these measures by  (fatalities) and  (suffering), omitting details of their form and instead referring the 
reader to (Wilson et al., 2012) for further details.   

Throughout this paper we shall refer to a single example scenario used when conducting all computational 
experiments.  The scenario involves three separate incident sites across central London, with each incident 
resulting in 70 casualties.  The response resources available consist of 53 ambulances (with crew) and 27 fire 
appliances (with crew).  The environment includes a graph representing the central London road network at a 
fine level of detail.  In solving the problem using the scheduling model described earlier, a number of tasks 
relating to each casualty (namely their extrication, treatment and transportation to hospital) must be assigned to 
appropriate responders and ordered in such a way as to minimize the objectives   and . 

 

 

 

 

 

 

 

 

 

Figure 1.  A possible consequence of inaccurate travel time forecasts due to transport network disruption, where 
tasks assigned to responders R1 and R2 are represented by clear boxes and periods of travel are represented by 
crisscrossed boxes. 
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Predicting and simulating travel times 

In order to calculate the objective values of any given solution we must first forecast a schedule of the response 
operation by predicting the start and end time of each task.  One consideration in making such predictions is the 
effect of routing and travel times.  As illustrated in Figure 1, an inaccurate initial prediction of a travel time can 
impact the finishing time of related tasks assigned to other responders as some tasks are constrained through 
dependency relations, as in the case of tasks A and B.  That is, a single error in the prediction of a travel time 
may propagate through a large section of the remaining schedule, leading to a significant negative impact. 

Figure 1 illustrates the fact that the problem considered is of an inherently dynamic nature, with information 
being revealed in a gradual manner in real time.  As such, the optimization model described has been designed 
for use in a real time, online manner, where the model continuously updates relevant parameters as and when 
information becomes available.  For example, the scheduling model predicts task A to begin at time t.  Upon 
reaching time t, the scheduling model continuously updates this expected starting time until confirmation is 
received that responder R2 has reached its target destination and can begin work on task A. 

Predicting travel times 

Travel times are estimated using the model described by Kolesar, Walker and Hausner, (1975), as recently 
validated by Budge, Ingolfsson and Zerom, (2010).  The formula gives the median travel time of an ambulance 
travelling from A to B given the distance travelled.  In order to find this distance, d, Djikstra’s algorithm is used 
in conjunction with the transport network represented as a graph, with the weight of each edge corresponding to 
its distance.  This distance is then used to give the median travel time, 

(1) 

where  denotes the distance required to travel in order to reach “cruise speed”  and a is the 
average acceleration of the vehicle as it increases speed to .  The values of these parameters are taken from 
the analysis of ambulance travel times in Calgary, Canada, presented in (Budge et al., 2010).  

Simulating travel times 

Whereas the scheduling model uses the median travel time of a given route in its predictions, in a simulation of 
a response operation the actual travel times will be subject to random variation around this median.  As 
discussed by Westgate, Woodward, Matteson and Henderson (2011), travel times may be modeled as random 
variables  following a lognormal distribution  with an assumed  = 0.00227.  Noting that the 
median of such a distribution is given by  (Johnson, Kotz and Balakrishnan, 1995), the parameter  can 
be calculated using the median value obtained in (1). 

In order to model the effect of transport network disruption of a given route we modify the distance parameter of 
each of the links involved.  Specifically, a random variable Y~exp( ) is sampled for each link, the distance of 
which is then multiplied by the factor (1+Y).  As such, we can interpret  as a parameter representing the level 
of disruption to the transport network.  For example, setting  = 0.5 will lead to the distance parameter of each 
link on the road network being increased on average by a factor of (1+E[Y]) = (1 + 2) = 3.  We note that this 
approach is a pragmatic one with the purpose of generating random, parameterized disruption to travel times and 
optimal routes, and is not intended to realistically represent the details of a transport network disruption. 

Improving prediction through online learning 

In order to improve prediction we note that, while a perfect knowledge of the effects of disruption from time t = 
0 may not be feasible, we can gather information as the response operation progresses and use this information 
to assist in better predictions for the remainder of the operation. 

As stated previously, travel times along any route with a given level of disruption are assumed to follow a 
lognormal distribution with an assumed, constant precision .  In order to incorporate 
knowledge of observed travel times we employ a Bayesian approach in estimating the unknown parameter .  
Specifically, using the conjugate prior distribution for ( , we can calculate the posterior 
distribution following the observation of n data , (  where 

,   . 
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The expectation of this posterior distribution, , is then used as an estimate of , giving 
.  As noted previously, the median travel time for the route in question can then be estimated as 

.  This routine is carried out for each single observation  immediately upon its observation. 

Experimental analysis 

In order to assess how sensitive the performance of the scheduling model is to uncertain disruptions in the 
transport network, a number of experiments were conducted according to the Monte Carlo method with various 
values of .  In each experiment the scheduling model was run over the course of an entire response operation.  
All routes between locations of interest (such as incident sites and hospitals) were found on initialization using 
the standard (undisrupted) network parameterization.  The network disruption was then applied in the manner 
described earlier, resulting in all travel times being extended by a random amount.  As the operation progresses 
the scheduling model is notified of when each trip is completed and can therefore maintain an accurate picture 
of all travel times up to the current point in time.  All future travel times continue to be predicted using the pre-
calculated values.  The results of these experiments are contrasted with corresponding cases where the 
scheduling model is assumed to know of the disrupted travel times, and can therefore make more accurate 
predictions.  The results are shown in Figure 2. 

 

 

Figure 2.  Comparisons of standard and full knowledge regarding network parameters for three levels of disruption. 

The results illustrate the benefit to the scheduling model of possessing full knowledge in terms of transport 
network disruption.  For the cases  = 2, 1 the observed difference in performance in both objective terms was 
not statistically significant under t-tests for means with assumed unequal variance.  Moving to  = 0.5, however, 
results in a statistically significant difference in means from 13615 to 12682 in the case of   .  We 
emphasize here that the difference in performance is due entirely to the ability to solve the prediction sub-
problem, as the routes taken by responders to get from A to B are always the same. 

In the preceding analysis we have shown that the availability of information regarding the state of disruption of 
the transport network has a significant effect on the utility of the scheduling model when the disruption 
parameter is set to 0.5.  In order to evaluate the potential of online learning to increase the performance of the 
scheduling model through facilitating better predictions of travel times, a number of experiments employing the 
methodology on the same example problem described previously were carried out.  The average value of   
under this approach was 50.8 with a standard deviation of 1.0.  The corresponding values of   were 13348 and 
299.  In comparison to those value observed for the same problem but where no information of network 
disruption was gathered, this results no statistically significant difference in .  In terms of , an average 
difference of 267 was observed with a p value .  This mild improvement suggests that information is 
most beneficial in the early stages of scheduling, before many trips have been made and travel times recorded. 

CONCLUSIONS AND FURTHER WORK 

The analysis presented in this paper has demonstrated the importance of acknowledging the possibility of 
disruptions to the transport network when attempting to deliver decision support during an MCI response 
through a scheduling model.  In particular, we have demonstrated the benefit of obtaining information regarding 
the extent of network disruption, both in the idealized case of full knowledge and a realistic case where travel 
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times are recorded and the model parameters are updated in real time. 

The presented analysis has assumed throughout that the route used in moving between any two locations can 
always be calculated prior to the incident and is based on finding the route of minimum distance.  Following a 
transport network disruption, however, alternative routes with lower expected travel time may exist.  Future 
work will focus on reviewing and developing appropriate methodology to find these improved routes, in 
particular considering a pragmatic approach where, rather than instructing each responder on which route to 
take, we let responders decide for themselves.  We assume that responders would combine local knowledge with 
exploration of the environment to gradually find routes of decreasing median travel time – indeed, this is exactly 
the situation recorded from a responder to the Haiti earthquake by de la Torre, Dolinskaya and Smilowitz 
(2012), who note that drivers had “no maps with updated information and had to discover the best routes by 
driving and exploring”.  This approach will likely lead to shorter travel times.  However, by releasing control 
over routing decisions it may also lead to increased variability and therefore make prediction more difficult. 
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