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Abstract 
Coordinated or cooperative control of wind 

farms can increase power output reducing 

cost of energy (COE) per area. The increase 

in production depends upon wind 

conditions, terrain characteristics and wind 

farm layout. This work develops an 

assessment methodology for identifying 

potential wind conditions where coordinated 

control can increase farm power output. 

Average normalised power across all 

directions, average relative power with 

reference to a specified turbine and average 

relative efficiency with respect to the turbine 

producing maximum power were used for 

identifying the negative impact of wakes on 

power output.  

A dynamic farm controller is presented that 

exploits the benefits of reducing power of 

the upstream turbine(s) for increasing 

overall farm production. The dynamic 

controller uses a modified version of the 

Jensen model for wind speed deficit 

calculation. This model calculates the wake 

decay coefficient on a turbine by turbine 

basis. The decay coefficient varies according 

to turbulence intensity inside the farm. 

Particle Swarm Optimisation (PSO) is used 

for selecting an optimum set of turbine 

coefficients of power (Cp). 

The assessment methodology and farm 

controller were applied to data from two 

operating onshore wind farms to determine 

the benefits of coordinated control. The 

dynamic farm controller can increase power 

production up to 10% when compared to the 

conventional greedy control. The modified 

Jensen model accurately predicted the wind 

speed deficit in most of the cases. The case 

study farms were optimised in under 5 

seconds on a simple computer. This makes 

the dynamic controller very suitable for 

online real time operations. 

 

Keywords: Wake losses, wind farm coordinated 

control, dynamic farm controller, modified 

Jensen model, farm power maximisation.  

1. Introduction 

Wind energy is the fastest growing renewable 

source of energy. Achieving wind energy targets 

and to make it competitive with conventional 

sources of energy require reduction in Levelised 

Cost of Energy (LCoE). Therefore, wind turbines 

are installed together in clusters to take 

advantages of economy of scales, obtaining 

higher energy production reducing the 

installation and interconnection costs as well as 

operation and maintenance costs [1]. However, 

installing turbines together creates aerodynamic 

interactions between these turbines called wake 

effects. Wakes can reduce power production of 

shadowed turbines up to 40% [2]. Wakes not 

only reduce the farm output but also increase 

turbulence intensity inside the farm. This can 

increase fatigue loads up to 80% [3]. 

The severity of wake effects depends upon wind 

conditions and farm topology. When the spacing 

between turbines is low, wake impacts are high. 

Similarly wind direction and speed also has 

impact on power losses due to wakes. An 

assessment methodology is presented in this 

research for quantifying the wake power losses. 

This assessment methodology is validated with 

data from two case study wind farms. 

A possible solution for diminishing wake effects 

is to install the turbines as far from one another 

as possible but due to space and economic 

constraints, it is impossible to completely 



diminish these interactions as wakes can prevail 

up to 20 km [4]. 

Another way for reducing negative impacts of 

wakes on farm power output is to use a 

coordinated control of wind turbines [4]. A 

dynamic farm controller with a coordinated 

control approach has been developed and used 

for maximising the farm power output. This 

controller has two integral parts – a wind deficit 

model and an optimiser. This work develops a 

modified version of the Jensen wake model for 

wind speed deficit calculation [5, 6]. The wind 

deficit model is evaluated with the case study 

wind farms. PSO is used for selecting the 

optimum production of individual winds turbines 

which can increase overall farm production [7]. 

This paper is organised as follows. Section 2 

describes the methodology applied in this paper. 

Section 3 details the case study wind farms and 

data filtering. Section 4 presents results and 

analysis. The conclusion and some future work 

is presented in section 5 and 6 respectively. 

2. Methodology 

This section describes the assessment 

methodology and dynamic farm controller 

developed in this study. Section 2.1 describes 

the assessment methodology. Section 2.2 

details the dynamic farm controller. 

2.1. Assessment 

As described in section 1, wakes can negatively 

impact farm power output. The severity of this 

impact depends up on farm layout and wind 

conditions. The proposed assessment 

methodology is used for quantifying negative 

impacts of wakes and identifying wind conditions 

where coordinated control of the farm can 

increase overall farm output. The methodology 

comprises of the following three steps. 

First average normalised power is calculated in 

each direction. Power is normalised between 0 

and 1. Normalisation is performed for the 

following reasons. 

1. Turbines have different capacities. 

Normalising the power production within the 

same limits make the comparison easy. 

2. Powers are amplified as can be seen in 

equation (1). Turbine producing minimum 

power at a particular instant has zero 

normalised power as the numerator in 

equation (1) becomes zero. The denominator 

amplifies the normalised power. 

𝐴𝑣𝑔. 𝑁𝑜𝑟𝑚 𝑃𝑤𝑟 = 𝐴𝑣𝑔 (
𝑃𝑜𝑤𝑒𝑟(𝑖) − 𝑎

(𝑏 − 𝑎)
)      (1) 

where 

𝑎 = min  (𝑃𝑜𝑤𝑒𝑟(1), … , 𝑃𝑜𝑤𝑒𝑟(𝑛)) 

𝑏 =  max (𝑃𝑜𝑤𝑒𝑟(1), … , 𝑃𝑜𝑤𝑒𝑟(𝑛) 

This is used for identifying areas where wakes 

produce severe power losses on shadowed 

turbines. Usually the crosswind spacing is lesser 

than the downwind spacing [4]. Therefore, the 

farm output is affected more in some wind 

directions than others. The average normalised 

power presents a comparison of wakes impact 

on power output in all directions. 

Once wind conditions where wakes adversely 

affect the farm are identified, average power 

relative to the first turbine (A1 or B1) is 

calculated for all the turbines in the array as 

shown in equation (2). (Power (i)) is the power 

of turbine under consideration and (ref turbine) 

is the turbine with reference to which the relative 

power is calculated. This shows the impact of 

wake on average power production of each 

turbine. 

𝐴𝑣𝑔 𝑅𝑒𝑙 𝑃𝑤𝑟 = 𝐴𝑣𝑔 (
𝑃𝑜𝑤𝑒𝑟(𝒊)

𝑃𝑜𝑤𝑒𝑟(𝑟𝑒𝑓 𝑡𝑢𝑟𝑏𝑖𝑛𝑒)
) (2) 

The final step of assessment methodology is to 

calculate relative efficiency of the turbines with 

respect to the turbine producing maximum 

power. This means that for each record, the 

turbine producing maximum power will have 

relative efficiency of 1. Average relative 

efficiency shows the performance of turbines 

relative to the turbine producing maximum and 

can be found with equation (3). 

𝐴𝑣𝑔 𝑅𝑒𝑙 𝐸𝑓𝑓 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (
𝑃𝑜𝑤𝑒𝑟(𝒊)

b
)           (3) 

2.2. Dynamic Farm Controller 

Traditionally wind turbines in a wind farm are 

controlled individually with a greedy control. 

Each turbine maximises its own power, 

neglecting the wake effects on shadowed 

turbines [4, 8, 9]. This control strategy does not 

yield maximum farm power production in certain 

wind conditions as identified by the assessment 

methodology. Coordinated control of the 

turbines can increase the farm production in 

these wind conditions. Curtailing the upstream 



Table 1: Variables in the modified 
Jensen Model 

𝐶T Coefficient of Thrust 

𝐼+ Wake Added turbulence intensity 

𝐼0 Free stream turbulence intensity 

 𝐼𝑢 Longitudinal turbulence intensity 

𝐼𝑤𝑎𝑘𝑒 Wake added Turbulence intensity 

𝑘 Wake Decay coefficient 

𝑟 Radius of spread of the wake 

𝑟0 Blade length 

𝑢 Wind Speed in the wake 

𝑢0 Free Stream Wind Speed 

𝑥 
Distance at which wake is 
calculated 

𝑥𝑛 Length of the near wake 

𝑧 
Hub height of wake generating 
Turbine 

𝑧0 Surface Roughness length 

 

turbine(s) leaves more wind for production of 

downstream turbine(s). If this control is applied 

in such a way that decrease in upstream 

turbines’ production is less than increase in 

downstream turbines’ production then their 

combined production will increase. 

The concept of coordinated control was first 

presented by [6]. The work in [9] used axial 

induction factor for controlling wakes and 

increasing farm production. Previous studies in 

[4, 10-15] have also explained the benefits of 

coordinated control. These studies suggest that 

the farm controller should be fast and accurate.  

The dynamic controller developed in this work 

has two integral parts – a wind deficit model and 

an optimiser as shown in Figure 1. The term 

dynamic here means that the controller can be 

used online dynamically for optimising power 

production of a wind farm. The wind deficit 

model is used for evaluating different power 

settings of turbines. The optimiser searches for 

optimal individual turbine settings resulting in the 

maximum combined output. 

2.2.1. Control Strategy and Optimisation 

The control strategy, objective function and 

optimisation procedure were presented in [7]. 

The objective function is to minimise the 

difference between farm output power assuming 

there are no wakes (theoretical maximum 

possible for a given wind speed) and the power 

produced in presence of wakes as shown in 

equation (4). PSO is used for optimising this 

objective function [7]. 

𝑶𝒃𝒋 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏  

= 𝑀𝑖𝑛(𝑃𝑜𝑤𝑒𝑟𝑛𝑜 𝑤𝑎𝑘𝑒𝑠 − 𝑃𝑜𝑤𝑒𝑟𝑤𝑖𝑡ℎ 𝑤𝑎𝑘𝑒𝑠)   (4) 

2.2.2. Modified Jensen Model 

This work exploits the Jensen model [5, 6] for 

wind speed deficit calculation. The Jensen 

model is practical as long as the mean 

production rather than velocity field is area of 

interest [6]. However, the simplified assumptions 

such as ideal flow of wind and constant wake 

decay make it unable to predict wind deep 

inside the farm correctly [14]. In some cases, the 

model can even result in negative speeds in 

wakes making the model invalid for near wake 

regions. 

The Jensen model assumes that wake spreads 

linearly behind the turbine with a constant decay 

coefficient. The downstream deficit in wind 

speed can be found with equation (5). 𝑟 and 𝑘 

can be found with equation (6) and (7) 

respectively [5, 6]. Table 1 gives a description of 

all the variables used in this section. 

𝑢 =  𝑢0 [1 −  (
1−√1−𝐶T

(1+
𝑘𝑥

𝑟0
)

2 )]  (5) 

𝑟 =  𝑟0 +  𝑘𝑥     (6) 

𝑘 =  1 / [2 𝑙 𝑛 (𝑧 /𝑧0)]   (7) 

Turbines affected by wakes experience more 

turbulent wind, changing the atmospheric 

 

Maximum 

Farm Output 

Wind Modified Jensen 
Model 

Particle Swarm 
Optimisation 

1 2 3 4 n 

Figure 1: Dynamic Wind Farm Controller 
Schematic Diagram 



Figure 2: Layout of the Brazos Wind Farm 
(A1 - A7) [22] 

West 

stability and hence surface roughness length. 

Therefore, 𝑘 shall have different values inside 

the wind farm. Different approaches have been 

used for adjusting the value of 𝑘 to match the 

wind speed reduction in wakes. Two different 

values of 𝑘 have been used in [16]. One value is 

used for free stream wind and the other one for 

all the downstream turbines under wake effects. 

Linear regression is used in [14] for obtaining 

the value of 𝑘 matching the results of SOWFA. 

Discrete bins of turbulence intensity were used 

in [17] for determining the value of 𝑘 to match 

the values provided by WindPro software. The 

work in [18] evaluates the value of k for 

matching real time data under different wind 

conditions. 

The model developed in this work adjusts the 

value of k according to a correction factor. This 

correction factor is based on the turbulence 

intensity inside the wind farm. Wakes increase 

turbulence intensity inside the farms [14]. This 

increases rate of dissipation of wakes resulting 

in higher values of 𝑘 According to [16] the 

longitudinal turbulence intensity is specified by 

equation (8). 

 𝐼𝑢 =  1.0
𝑙𝑛(𝑧

𝑧0⁄ )⁄    (8) 

Replacing equation (8) in (7) 

𝑘 =   𝐼𝑢 / 2     (9) 

Wake added turbulence can be found with 

equation (10) as given in [16]. 

𝐼+ = 5.7 ∗ 𝐶𝑇
0.7 ∗ 𝐼0

0.68 ∗ (𝑥
𝑥𝑛⁄ )−0.96 (10) 

Turbulence Intensity in the wake can now be 

found with equation (11) [16]. 

𝐼𝑤𝑎𝑘𝑒 =  √𝐼+
2 + 𝐼0

2   (11) 

For isotropic conditions, lateral, vertical and 

longitudinal turbulence intensities are equal 

therefore IU is one third of the total turbulence 

intensity as given in following equation (12). 

𝐼𝑢 =  
𝐼𝑤𝑎𝑘𝑒

3⁄     (12) 

This value of 𝐼𝑢 is used in equation (5) for 

finding the actual value of k inside the wind 

farm. Wake expansion still remains linear but 

the value of k changes on turbine by turbine 

basis in the wind farm. 

The model determines if a shadowed turbine is 

under full, partial or no wake effects. Multiple 

wakes are superimposed as given in [6]. The 

model uses a predetermined value of 𝑘 for the 

free stream conditions. This value depends 

upon turbulence intensity, terrain characteristics 

and wind conditions.  

3. Wind Farm Case Studies  

Case-study farms are Brazos Texas, USA 

(labelled Wind Farm A) and another farm in 

France (labelled Wind Farm B as details of this 

wind farm cannot be disclosed due to 

commercial interests). Figure 1 represents the 

layout of the Brazos wind farm. The row A1 – 

A7 from Brazos, shown in Figure 1, is 

considered for analysis as the layout is similar 

to Farm B. It can be seen that the first 5 

turbines are installed in a straight line. The last 

two turbines are not completely in line with the 

first 5 turbines but in line with each other. 

Terrain of both the farms is also very similar. 

Detailed information about the Brazos wind 



farm and terrain characteristics can be found in 

[18]. 

The Brazos data is SCADA data from 2004 – 06 

from the ReliaWind project [19]. Farm B SCADA 

data from 2013 -15 was used in this study. 

Details of Brazos row A1– A7 and the turbine 

characteristics are presented in Table 2.  

3.1 Data Filtering 

A database was created from the SCADA data 

of the wind turbines. Records where data for all 

the turbines was available and where the 

turbines were producing at full capacity were 

used in analysis. Turbine power and wind 

direction signal from the SCADA data were 

used.  

A wind speed bin of ±0.5m/s was used. The 

directional bin starting from ±20
O
 refined to ±1

O
 

was analysed. It was observed that a bin of ±5
O
 

captures most of the wake affected area. 

Studies in [20] suggested a directional bin of 

±10
O
 for offshore farms. Onshore, higher 

surface roughness causes the wind speed to 

recover quickly. Therefore, the directional bin 

was kept at ±5
O
. Wind direction for Brazos was 

rotated by 90
O
 to match the data of Farm B.  

4. Results and Analysis 

The analysis for 5m/s – 14m/s were conducted. 

Results for the extreme cases at 8m/s are 

presented here. 

4.1 Assesment 
The assesment methodology was applied to 

data from both the wind farms. Figure 3A and 

Figure 3B shows the average normalised power 

in each direction at 8m/s for the Brazos and 

Farm B respectively. It can be seen that the 

power losses due to wakes are very high in 0
O
 

±40
O 

and 180
O
 ±40

O
.This is when the wind is 

completely or almost parallel to the turbine 

array. This was the case for all the wind speed 

bins. This step of the assesment methodology 

shows the severity of wake effects on power 

production in different directions. 

Table 2: Brazos 1MW Turbine Characteristics 
[21] 

Capacity 1 MW 

Max Cp 0.405 

Hub Height 68 m 

Blade Length 29.5m 

Rated Wind Speed 12.5 m/s 

Cut-in Wind Speed 2.5 m/s 

Cut-off Wind Speed 24 m/s 

A1–A2–A3-A4-A5 separation 2D 

A5 – A6 separation 3.5D 

A6 – A7 separation 2D 

Wind direction has been rotated by 90
O
 to match the 

data of Farm B 

Figure 3A:  Average Normalised Power at 
8 m/s for Brazos A1 - A7 

Figure 3B: Average Normalised Power 
at 8 m/s for Farm B B1 - B7 



The next step is to quantify these wake power 

losses by calculating relative average power in 

each directional bin. with respect to turbine A1 

and B1 (randomly choosen).This gives the 

average power drop for different turbines. Figure 

4 compares the relative average power in the 

two farms at 8m/s in four different dirrectional 

bins. The line bar represents standard deviation 

of the data. High spread of data shows the 

stochastic nature of wind. It can be seen that 

power losses can be as high as 55% in the 

worst conditions.  

Figure 5: Average relative efficiency at 

8m/s in four directional bins 
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Figure 4: Average relative power at 8m/s in 

four directional bins 
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Figure 5 shows a comparison of the two farm in 

terms of average relative efficiency for four 

different directional bins. This shows the 

performance of turbines with respect to each 

other. The relative efficiency could go as low as 

40%. This shows that some of these wind 

turbines produces very low in certain wind 

conditions. 

The assessment methodology has identified 

wind directions 0
O
 ±40

O 
and 180

O
 ±40

O 
i.e. wind 

flowing parallel to the turbine arrray affects the 

power production badly. These wind conditions 

were further investigated with average relative 

power and average relative efficiency of the 

turbines. Power losses due to wakes can be as 

high as 55% in the worst case. The relative 

efficiency of some of the turbines can go as low 

as 40%. Main reason for these huge power 

losses is the very short spacing between the 

turbines and peculiar layout of the turbine array.  

4.2. Dynamic Farm Controller 

This section first validates the modified Jensen 

model with data from Farm B. This model is then 

combined with PSO and applied to the data to 

show the increase in farm production compared 

to the state of the art greedy control. 

4.2.1. Modified Jensen Model 

Three days wind data set was chosen for 

evaluating the wind deficit model. During this 

period the wind predominantly flew parallel to 

the turbine array. That’s why this data was 

chosen. The actual wind speed at the turbine 

was determined through the power signal from 

the SCADA data. The power signal is much 

more reliable as compared to the wind speed 

signal. 

Figure 6 shows the comparison between the 

actual and predicted wind speed by the modified 

Jensen model for turbine B2 – B5 (Farm B). The 

difference between actual and predicted wind 

speed is also shown. It can be seen that the 

model accurately predicts the wake affected 

wind speed. A difference of ±0.5m/s is 

acceptable as long as the purpose is farm 

control. It shall also be noted that the model is 

acceptable for developing control strategies as 

long as it is underpredicting the wind speed on 

shadowed turbines in a given limit. However, if it 

overpredicts the wake affected wind speed then 

the farm controller will result in false increase in 

power production. This can result in lower farm 

production in real time operations as compared 

to the conventional greedy control. It was noted 

that in very few cases the model overpredicts 

the wind speed more than ±0.5m/s. The model 

Figure 6: Comparison of actual and predicted 
wind speed for 3 continuous days for turbines 

B2 – B5 (Farm B) 
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is accurate and fast processing. This makes the 

modified Jensen model very suitable for 

developing farm control strategies. 

4.2.2. Optimisation 

The modified Jensen model was combined with 

PSO for optimising the objective function in 

equation (4). It is already shown in the previous 

section that the wind deficit model can 

accurately predict the wind speed deficit. The 

PSO based control strategy is detailed in [7]. 

Figure 7 shows application of the dynamic farm 

controller on one instance of data. Figure 8 

shows the CP values suggested by the dynamic 

farm controller and the CP values used by the 

conventional greedy control. Figure 9 shows 

comparison of turbines’ power produced with the 

two control strategies. It can be seen that the 

power of head turbine has been reduced by 

almost 400 kW. The last turbine always 

operates at the maximum CP with a greedy 

approach. Reduction in power of the upstream 

turbines resulted in an increase of up to 10% 

with the case study wind farms compared to 

state of the art. The control algorithm takes less 

than 5 seconds to complete on a simple 

computer. Speed and accuracy are the two main 

strengths of the farm controller proving that it 

can be used online (dynamically) for farm 

control. It can accurately optimise the farm 

power within a few seconds making it very 

suitable for online control in the field. 

5. Conclusion  
This work presented an assessment 

methodology for deployment of a dynamic farm 

controller.  This was illustrated using two 

operating onshore farms as case-studies. 

Average normalised power across all directions 

was used for identifying potential wind 

conditions where farm control can be used. 

Relative average power and relative efficiency 

were then used to show how severely wakes 

can impact production and efficiency of 

shadowed turbines. The results shows that 

wakes can reduce the power of shadowed 

turbines up to 55%. Efficiency of some of the 

turbines was reduced up to 40% in certain wind 

conditions. The analysis show that a wind speed 

bin of ±0.5m/s and directional bin of ±10
O
 is 

suitable for the case study farms. 

Figure 7: Comparison of actual with predicted 
wind speed by the Jensen model and modified 

Jensen mode (Farm B) 

Figure 8: CP of first six turbines with 
conventional control and the proposed dynamic 

controller (Farm B) 
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A modified Jensen model was developed which 

calculates the wake added turbulence intensity 

for deriving the value of wake decay coefficient. 

This model was first validated with real time data 

from Farm B and then combined with PSO to 

form a dynamic farm controller based on 

coordinated control of the wind farm. Based on 

the two case studies presented, the dynamic 

farm controller can increase farm production up 

to 10% compared to the current state of the art 

control, completing the optimisation in less than 

5 seconds making this suitable for online field 

use. 

6. Future Work 

The modified Jensen model will be validated 

with data from 2 dimensional wind farms. 

Performance of this wind deficit model will be 

compared to high fidelity CFD models. The farm 

controller will be extended for multi-objective 

optimisation considering power production and 

loads experienced by the turbines.  
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