
A Two-tier Index Architecture for Fast Processing Large
RDF Data over Distributed Memory

Long Cheng123, Spyros Kotoulas2, Tomas E Ward1, Georgios Theodoropoulos4

1 National University of Ireland Maynooth, Ireland 2 IBM Research, Ireland
3 Technische Universität Dresden, Germany 4 Durham University, UK

long.cheng@tu-dresden.de, spyros.kotoulas@ie.ibm.com, tomas.ward@nuim.ie, theogeorgios@gmail.com

ABSTRACT
We propose an efficient method for fast processing large RDF data
over distributed memory. Our approach adopts a two-tier index
architecture on each computation node: (1) a light-weight primary
index, to keep loading times low, and (2) a dynamic, multi-level
secondary index, calculated as a by-product of query execution, to
decrease or remove inter-machine data movement for subsequent
queries that contain the same graph patterns. Experimental results
on a commodity cluster show that we can load large RDF data very
quickly in memory while remaining within an interactive range for
query processing with the secondary index.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed Databases, Query Processing

Keywords
Distributed RDF Processing, Dynamic Indexing

1. INTRODUCTION
Responding to the rapid growth of Linked Data, several approaches

for distributed RDF data processing have been proposed [18, 16,
10, 15], along with clustered versions of more traditional approaches [9,
2, 17]. Depending on the data partitioning and placement patterns,
these solutions can be divided into four categories: (1) Similar-size
partitioning: Partitions containing similar volumes of raw triples
are placed on each computation node without a global index. Dur-
ing query processing, nodes provide bindings for each triple pat-
tern and formulate the intermediate (or final) results using parallel
joins [18, 15]. (2) Hash-based partitioning: Exploiting the fact that
SPARQL queries often contain “star" graph patterns, triples un-
der this scheme are commonly hash partitioned (by subject) across
multiple machines and accessed in parallel at query time [16, 11].
(3) Sharded/Partitioned indexes: Perhaps the approach closest to
centralized stores, triple indexes in the form of SPO, OPS etc are
distributed across the nodes in a cluster and stored as a B-Tree [9,
17]. (4) Graph-based partitioning: Graph partitioning algorithms

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
HT’14, September 1–4, 2014, Santiago, Chile.
ACM 978-1-4503-2954-5/14/09.
http://dx.doi.org/10.1145/2631775.2631789.

are used to partition RDF data in a manner that triples close to each
other can be assigned to the same computation node. SPARQL
queries generally take the form of graph pattern matching so that
sub-graphs on each computation node can be matched indepen-
dently and in parallel, as much as possible [10].

In general, the techniques outlined above operate on a trade-off
between loading complexity and query efficiency, with the earlier
ones in the list offering superior loading performance at the cost of
more complex/slower querying and the latter ones requiring signif-
icant computational effort for loading and/or partitioning. In this
paper, we are proposing an efficient parallel way that combine the
loading speed of similar-size partitioning with the execution speed
of graph-based partitioning.

2. OUR APPROACH
The main elements of our approach are: (1) We maintain a local

light-weight primary index supporting very fast data loading and
retrieval. (2) Secondary indexes supporting non-trivial access pat-
terns are built dynamically, as a byproduct of query execution. In
the following, we refer to the primary index as (l1) and secondary
indexes as 2nd-level (l2), 3rd-level (l3), etc.
Triple Encoding. We first transform RDF terms into 64-bit in-
tegers and represent statements using this encoding. We utilise a
distributed dictionary encoding method as described in our previ-
ous work [8]. The overall implementation strategy for each node
and the corresponding data flow are shown in Figure 1.

Input Statements

Remote

Dictionaries

Parsing into Terms

Filter

Grouped

Unique

Terms

Grouped

IDs

Local Dictionary

Local Compression

Figure 1: Workflow of triple encoding at each node.

Every statement in the input set is parsed and split into individ-
ual terms, namely, subject, predicate, and object. Duplicates are
locally eliminated, and the extracted set of unique terms is then di-
vided into individual groups according to their hash values. The
groups of unique terms are then pushed to the responsible remote
dictionaries for encoding. After that, every node builds a local dic-
tionary, for encoding the parsed statements, based on the grouped

unique terms and the corresponding group of ids received from re-
mote nodes.

Primary Index. After encoding, we build the primary index l1
for the encoded triples at each node. We use a modified vertical
partitioning approach [1] to decompose the local data into multiple
parts. Triples in [1] are placed into n two-column vertical tables
(n is number of unique properties), and all the subjects in each
table are sorted. In comparison, we only insert each tuple in an un-
ordered list in a corresponding vertical table. To support multiple
access patterns, we build additional tables. By default, we build
P → SO, PS → O and PO → S, corresponding to the most
common access patterns. Note that there is no communication over
the network for this step.

Parallel Hash Joins. Once we have built the primary index, we can
compute SPARQL queries through a sequence of lookups and joins.
For a basic graph pattern (BGP), looking up the results can be im-
plemented in parallel and independently for each node. Regardless,
a join between any two sub-queries can not be executed indepen-
dently since we have no guarantee that join keys will be located
on the same node. We adopt the parallel hash-join implementa-
tion here, namely, results of each subquery are redistributed among
computation nodes by hashing the values of their join keys, so as to
ensure that the appropriate results for the join are co-located [18].

Secondary Indexes. For join operations, as we have to redistribute
all results for each triple pattern as well as the intermediate results,
data transfers between each node become costly. To remedy this
shortcoming, we employ a bottom-up dynamical programming par-
allel algorithm to build secondary indexes (l2 ... ln), based on each
query execution plan.

For simplification, here, we just give a simple example to show
the process of building the 2nd-level index l2 based on a join be-
tween two basic graph patterns. As shown in Algorithm 1, the first
three steps (lines 1-3) is actually a parallel hash joins processing.
Regardless, after that, the redistributed results will be kept locally
in l2, according to the non-variables appearing in the responsible
BGP. For instance, the redistributed results of the BGP <?s p1 ?o>
will be added into the vertical table p1 → SO of l2.

Algorithm 1 Implementation of building l2 at each node
Phase 1: Tuple redistribution
1: retrieve result ri (i = 1, 2) of each BGP from the index l1
2: redistribute ri to all nodes according to hash values of join keys
Phase 2: l2 index building
3: implement local joins and formulate outputs
4: insert received tuples r′i into local l2

Since the index is constructed by a simple copy of the redis-
tributed data, which is introduced by a join of a query, the sec-
ondary indexes can be re-used by other queries that contain pat-
terns in common. In fact, according to the terminology regard-
ing graph partitioning used in [10], the 2nd-level index on each
node will construct a 2-hop subgraph, the 3rd-level one will be a 3-
hop subgraph, and lk will become to k-hop subgraph. This means
that our method essentially does dynamic graph-based partitioning
starting from an initial equal-size partitioning, based on the query
load. Therefore, our approach can combine their advantages on fast
data loading and efficient querying.

3. EVALUATION
Platform. We use 16 IBM iDataPlexr nodes with two 6-core Intel
Xeonr X5679 processors, 128GB of RAM and a single 1TB SATA

hard-drive, connected using Gigabit Ethernet. We use Linux ker-
nel version 2.6.32-220 and implement our method using X10 [3]
version 2.3, compiled to C++ with gcc version 4.4.6.
Setup. We load LUBM(8000), containing about 1.1 billion triples,
and run the two most complex queries Q2 and Q9. As we do not
support RDF inference, we use a modified version shown in the
Appendix. To focus on analyzing the core performance only, we do
not count the time spent on parsing, planning, dictionary lookup or
result output as described in [4].
Data Loading. We load 1.1 billion triples and build three primary
indexes (on P, PO and PS) in memory. As shown in Table 1, it
takes 254 seconds to encode triples and 86 seconds to build the
primary index l1, for an average throughput of 540MB or 3.24M
triples per second. This is faster than any other implementation in
the literature.

Table 1: Time to load 1.1 billion triples using 192 cores
Triple encoding: 254 seconds
Building l1 (P, PO, PS): 86 seconds
Total: 340 seconds

Data Querying. We examine the runtime of Q2 and Q9 using l1,
l2 and l3. Meanwhile, we also record the time cost to build indexes.
Figure 2 shows that the secondary index can obviously improve the
query performance. Moreover, the higher the level of index is, the
lower the execution time. At the same time, we can also see that
the operation of building a high-level index is very fast, taking only
hundreds of ms, which is extremely small compared to the query
execution time.

8.2
44 9.5

33

0.3
76

0.4
21

3.9
17

4.1
73

0.5
1

0.3
04

0.4
46

0.4
4

0
2
4
6
8

1 0
1 2
1 4

Ru
nti

me
 (s

ec
)

 q u e r y o v e r p r i m a r y i n d e x
 b u i l d 2 n d - l e v e l i n d e x i n g
 q u e r y o v e r 2 n d - l e v e l i n d e x
 b u i l d 3 r d - l e v e l i n d e x
 q u e r y o v e r 3 r d - l e v e l i n d e x

Q 2 Q 9

Figure 2: Runtime over different indexes using 192 cores.

4. CONCLUSION
In this work, we propose a dynamic two-tier index architecture

designed for fast processing large RDF data over distributed mem-
ory. Our experimental results demonstrate that the approach can
both load and query large RDF datasets quickly.

We will investigate extensions to our design through the applica-
tion of methods for skew handling [15, 5, 6, 7], index size reduc-
tion [14] and incremental sorting [12, 13] which should further im-
prove performance. Our long term goal is to develop a highly scal-
able distributed analysis framework for extreme-scale RDF data.
Acknowledgments. This work is supported by the Irish Research
Council and IBM Research Ireland.

5. REFERENCES

[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach.
Scalable semantic web data management using vertical
partitioning. In Proceedings of the 33rd International
Conference on Very large Data Bases, VLDB’ 07, pages
411–422, 2007.

[2] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev,
and R. Velkov. OWLIM: A family of scalable semantic
repositories. Semantic Web, 2(1):33–42, 2011.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar. X10: An
object-oriented approach to non-uniform cluster computing.
ACM SIGPLAN Notices, 40(10):519–538, 2005.

[4] L. Cheng, S. Kotoulas, T. Ward, and G. Theodoropoulos.
Runtime characterization of triple stores. In Proceedings of
the 15th IEEE International Conference on Computational
Science and Engineering, CSE’ 12, pages 66–73, 2012.

[5] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos.
QbDJ: A novel framework for handling skew in parallel join
processing on distributed memory. In Proceedings of the
15th IEEE International Conference on High Performance
Computing and Communications, HPCC’ 13, pages
1519–1527, 2013.

[6] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos.
Efficient handling skew in outer joins on distributed systems.
In Proceedings of the 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing,
CCGrid’14, pages 295–304, 2014.

[7] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos.
Robust and efficient large-large table outer joins on
distributed infrastructures. In Proceedings of the 20th
European Conference on Parallel Processing, Euro-Par’ 14,
2014.

[8] L. Cheng, A. Malik, S. Kotoulas, T. E. Ward, and
G. Theodoropoulos. Efficient parallel dictionary encoding
for RDF data. In Proceedings of the 17th International
Workshop on the Web and Databases, WebDB’ 14, 2014.

[9] O. Erling and I. Mikhailov. Virtuoso: RDF support in a
native RDBMS. In Semantic Web Information Management,
pages 501–519. Springer, 2010.

[10] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. Proceedings of the VLDB
Endowment, 4(11):1123–1134, 2011.

[11] M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and B. M.
Thuraisingham. Heuristics-based query processing for large
RDF graphs using cloud computing. IEEE Transactions on
Knowledge and Data Engineering, 23(9):1312–1327, 2011.

[12] S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. In CIDR, pages 68–78, 2007.

[13] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing
tuple reconstruction in column-stores. In Proceedings of the
2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD’ 09, pages 297–308, 2009.

[14] K. Kim, B. Moon, and H.-J. Kim. R3F: RDF triple filtering
method for efficient SPARQL query processing. World Wide
Web, pages 1–41, 2013.

[15] S. Kotoulas, J. Urbani, P. Boncz, and P. Mika. Robust
runtime optimization and skew-resistant execution of
analytical SPARQL queries on PIG. In Proceedings of the
11th International Semantic Web Conference, ISWC’ 12,
pages 247–262. 2012.

[16] K. Rohloff and R. E. Schantz. High-performance, massively
scalable distributed systems using the MapReduce software
framework: The SHARD triple-store. In Programming
Support Innovations for Emerging Distributed Applications,
2010.

[17] B. Thompson and M. Personick. Bigdata: The semantic web
on an open source cloud. In International Semantic Web
Conference, 2009.

[18] J. Weaver and G. T. Williams. Scalable RDF query
processing on clusters and supercomputers. In The 5th
International Workshop on Scalable Semantic Web
Knowledge Base Systems, SSWS’ 09, 2009.

APPENDIX
The rewritten LUBM SPARQL queries Q2 and Q9 used in our eval-
uation are as follows.
Q2: select ?x ?y ?z where { ?x rdf:type lubm:GraduateStudent. ?y
rdf:type lubm:Department. ?z rdf:type lubm:University. ?y lubm:sub
OrganizationOf ?z. ?x lubm:memberOf ?y. ?x lubm:undergraduate
DegreeFrom ?z.}
Q9: select ?x ?y ?z where { ?x rdf:type ub:GraduateStudent. ?y
rdf:type ub:FullProfessor. ?z rdf:type ub:Course. ?x ub:advisor ?y.
?y ub:teacherOf ?z. ?x ub:takesCourse ?z.}

