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ABSTRACT

Analyzing large-scale traffics by simulation needs repeating
execution many times with various patterns of scenarios or
parameters. Such repeating execution brings about big re-
dundancy because the change from a prior scenario to a later
scenario is very minor in most cases, for example, block-
ing only one of roads or changing the speed limit of several
roads. In this paper, we propose a new redundancy reduc-
tion technique, called exact-differential simulation, which
enables to simulate only changing scenarios in later execu-
tion while keeping exactly same results as in the case of
whole simulation. The paper consists of two main efforts:
(i) a key idea and algorithm of the exact-differential simula-
tion, (ii) a method to build large-scale traffic simulation on
the top of the exact-differential simulation. In experiments
of Tokyo traffic simulation, the exact-differential simulation
shows 7.26 times as much elapsed time improvement in av-
erage and 2.26 times improvement even in the worst case as
the whole simulation.

Categories and Subject Descriptors

I.6.8 [Simulation and Modeling]: Types of Simulation—
parallel, distributed, discrete event

General Terms

Algorithms, Performance

Keywords

Large-scale traffic simulation; parallel discrete event simula-
tion; redundancy reduction

1. INTRODUCTION
Large-scale microscopic traffic simulation has been a ben-

eficial way to research on areas such as prediction of traffic
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congestion, planning of urban developments, citizen’s behav-
ior in emergencies. Unlike other statistical and mathemati-
cal ways, such approaches can give detail analysis results of
the individual vehicles and other entities like junctions and
roads because it actually emulates the vehicles’ behavior and
interactions with each other.

To analyse by such simulation, it needs to repeat execu-
tion many times with different scenarios and parameters.
In Tokyo traffic simulation [13, 14, 16, 6], for example, we
need to execute 770K times simulation when we simulate
what happens if one of the roads is blocked because there
are 770K junctions in Tokyo. When we simulate multiple
blocks of the roads, we need to execute 2770K times (the
sum of combination from 770K choosing 0 to 770K). Also,
it often needs to execute a lot of times for parameter tuning
(e.g. road speed limit, a time interval of signals) to imitate
a realistic situation.

However, previous simulating methods and simulators have
a big overhead and a lot of redundancy when repeating the
simulation, especially when very small part of scenarios are
changed. For example, if only one of all roads is changed
in later repeating execution, almost all of simulating results
are same as prior execution and the change affects only small
part but we have to simulate whole scenarios from the be-
ginning. The reason why the previous simulators have to
simulate whole scenarios from the beginning is that a naive
spatial partial way (separating simulation space in advance
and only simulating the separated part) brings about in-
consistency of simulating results from the whole simulating
results because it cannot simulate an influence from outside
of the separated part and such influence cannot be fixed in
advance.

In this paper, we propose a novel technique to simulate
only a part of all scenarios and states keeping exact same
simulating results as whole execution, called exact-differential
simulation. The ”exact” implies that the output result will
be identical. The ”differential” implies that only affected
events will be reprocessed.

The main idea of the exact-differential simulation is that,
in initial whole execution, the simulator stores all events and
intermediate states before reprocessing only changing events
in later repeating executions by using the stored events and
states. There are 3 main contributions in this paper: (i) we
describe a way to store processed events and intermediate
states and a way to reuse them. (ii) we illustrate imple-



mentation of the simulator, which meets requirements of
the exact-differential simulation. (iii) we evaluate an effi-
ciency and performance of the exact-differential simulation
by Tokyo traffic simulation.
The rest of paper is organized as follows. In Section 2, we

give the main idea of the exact-differential simulation. We
also discuss about static analysis of performance. In Section
3, we illustrate the system implementation. In Section 4, we
show modeling of large-scale traffics. In Section 5, we eval-
uate the exact-differential simulation with the Tokyo traffic
simulation. In Section 6, we illustrate related work to our
research before conclude in Section 7.

2. EXACT-DIFFERENTIAL SIMULATION
In this section, we describe the processing flow of the

exact-differential simulation and its static performance anal-
ysis.

2.1 Processing Flow
The simulation flow basically consists of two parts: ini-

tial whole execution and repeating execution. In the initial
whole execution, the simulator stores all processed events
and intermediate states. After the initial whole execution,
the simulator starts the repeating execution from a changing
point and reprocesses only affected events using the stored
events and states.

2.1.1 Initial Whole Execution

In the initial whole execution, events are processed in the
almost same way as the optimistic PDES [10], where un-
like the normal optimistic PDES, events, cancel events and
stored states are never released by the global synchroniza-
tion (or GVT, global virtual time). Instead, such events,
cancel events and states are stored to storage for reusing
in later repeating execution. Thus, in full, each LP pro-
cesses events in parallel with a time-sorted event queue and
exchanges new generated events with other LPs. When a
LP receives the new event with earlier time stamp than its
own local time, the LP rollbacks its local time and sends
cancel events to neighbors. In the other case that the new
received event is older than its local time, the new event is
just inserted to its event queue. Cancel events and states
are stored whenever a new event is generated. In the global
synchronization, older events, cancel events and states than
the global time are stored to storage instead of releasing as
usual.

2.1.2 Exact-Differential Simulation in Repeating Ex-
ecution

In the repeating execution, the simulator, at first, inputs
a what-if query, which defines changing time and place (LP)
and a query’s type: ADD or DELETE. Algorithm 1 shows
the what-if query processing. In the case of ADD (line 3 –
7), a new event generated from the ADD query is inserted to
the event queue and the local time is rollbacked to the new
event’s time before cancel events are sent to all affected LPs.
In the case of DELETE (line 8 – 13), an old event generated
from the DELETE query is removed before a cancel event
related to the old event is sent. The local time is rollbacked
to the old event’s time. And finally, cancel events are send
to affected LPs. After finishing processing what-if queries,
the simulation starts from the rollbacked time in the same
way as the optimistic PDES. In the repeating execution,

Algorithm 1 Query Processing Flow

1: while hasWhatIfQuery() do
2: query ← getWhatIfQuery()
3: if query.type = ADD then
4: newEvent← query.event
5: insert(newEvent)
6: rollback(newEvent.time)
7: sendCancelsToNeighbors()
8: else if query.type = DELETE then
9: oldEvent← query.event
10: delete(oldEvent)
11: sendCancel(oldEvent)
12: rollback(oldEvent.time)
13: sendCancelsToNeighbors()
14: end if
15: end while
16: while getGlobalT ime() < TIME TO FINISH do
17: reprocess unprocessed events with optimistic PDES
18: end while

events, cancel events and states are sometimes required to
load from storage unlike the usual optimistic PDES. Algo-
rithm 2 shows a mechanism to load the events, cancel events
and states during receiving events. We extend the optimistic
PDES as showed in algorithm 2 (line 3 – 24). In the exact-
differential simulation, received events from other LPs are
once buffered before they are inserted to event queues (line
1). If a new received event has less received time than min-
imum loaded time, which is initialized as infinity, then the
stored events, cancel events and states are loaded from the
storage (line 7 – 9) before they are inserted to the queues
(line 14 – 21). After that, the minimum loaded time is up-
dated to the new received time (line 22), and then the new
received event is inserted to the event queue as usual (line
25).

2.2 Static Analysis
In this part, we illustrate efficiency of the repeating exe-

cution compered to a naive way. In the repeating execution,
a main factor of its performance is how often redundancy
events are skipped to process. To clarify the performance
improvement, we first define speed up based on the number
of processing events and redundancy reduction rate. After
that, we discuss detail on the redundancy reduction rate in
the repeating execution.

2.2.1 Speed Up

Let E be a set of events; Eall be a set of all events;
tsim(·) be execution time of processing events; and tinit(·) =
tinit local(·)+tinit global be execution time of initiation, where
tinit local(·) is initializing events time and tinit global is ini-
tializing time including state initialization and other initial-
ization independent of events.

The execution time of whole simulation twhole is repre-
sented as following.

twhole = tsim(Eall) + tinit(Eall)

= tsim(Eall) + tinit local(Eall) + tinit global

We represent Tn diff as execution time of n times repeating
exact-differential simulation.

Tn diff =
n
∑

tsim(Ere) + t′init



Algorithm 2 Receive Event Processing Flow

1: while receiveEventBuffer.isEmpty() do
2: newEvent← receiveEventBuffer.dequeue()
3: /* Extended Part */
4: if newEvent.time < store.minLoadedT ime then
5: from← newEvent.time
6: to← store.minLoadedT ime
7: oldEvents← store.getEvent(from, to)
8: oldCancels← store.getCancel(from, to)
9: oldStates← store.getState(from, to)
10: while oldEvents.isEmpty() do
11: loadedEvent← oldEvens.dequeue()
12: eventQueue.insert(loadedEvent)
13: end while
14: while oldCancels.isEmpty() do
15: loadedCancel← oldCancels.dequeue()
16: cancelQueue.insert(loadedCancel)
17: end while
18: while oldStates.isEmpty() do
19: loadedState← oldStates.dequeue()
20: stateQueue.insert(loadedState)
21: end while
22: store.minLoadedT ime← from
23: end if
24: /* Extended Part End */
25: eventQueue.insert(newEvent)
26: end while

, where Ere(⊆ Eall) is a set of reprocessing events and t′init is
initialization execution time in the exact-differential simula-
tion. Actually, the global initialization is required to execute
only one time. Thus, we can represent t′init as follows.

t′init =
n
∑

tinit local(Ere) + tinit global

As the result, Tn diff is represented as following.

Tn diff =

n
∑

tsim(Ere) + t′init

=
n
∑

tsim(Ere) +
n
∑

tinit local(Ere) + tinit global

=
n
∑

{tsim(Ere) + tinit local(Ere)}+ tinit global

We assume processing and initializing time per event is con-
stant. Then, we can represent the execution time by one
event processing time tev as follows.

tsim(E) = |E| · tev

tinit local(E) = |E| · tinit ev

, where |E| is the number of elements in E and tev =
tsim({e}), tinit ev = tinit local({e}) (e ∈ E).
To simplify the discussion, we also assume the number

of whole events (Eall) and reprocessing events (Ere) is con-
stant even if scenarios are changed. Then, the sum of events
processing time is represented as following.

n
∑

tsim(Eall,re) = n · |Eall,re| · tev

n
∑

tinit local(Eall,re) = n · |Eall,re| · tinit ev

Figure 1: Reusable Events and Reprocessing Events.

We define speed up as the division of naive way’s execution

time (Tn whole :=
n
∑

twhole) by our proposal one (Tn diff ).

The speed up is represented as follows.

(Speed Up) =
Tn whole

Tn diff

=

n
∑

{tsim(Eall) + tinit local(Eall) + tinit global}
n
∑

{tsim(Ere) + tinit local(Ere)}+ tinit global

=
n{|Eall|tev + |Eall|tinit ev + tinit global}

n{|Ere|tev + |Ere|tinit ev}+ tinit global

=
n{|Eall|tev + |Eall|tinit ev + tinit global}

n{r|Eall|tev + r|Eall|tinit ev}+ tinit global

=
|Eall|tev + |Eall|tinit ev + tinit global

r|Eall|tev + r|Eall|tinit ev + tinit global/n

, where r is redundancy reduction rate defined as r := |Ere|/|Eall|.
In the case that the execution is repeated enough much
times, tinit global/n can be ignored.

(Speed Up) ∼
|Eall|tev + |Eall|tinit ev + tinit global

r|Eall|tev + r|Eall|tinit ev

=
1

r
·

(

1 +
tinit global

|Eall|(tev + tinit ev)

)

(*)

This result means that in the case that the global initial-
ization time is much shorter than the event processing and
initialization time, or in the case that there are many events
to be processed, the speed up is nearly proportional to 1/r.
The more redundancy is reduced, the more speed up it is.
On the other hand, in the case that the global initializa-
tion cannot be ignored compared to the event processing
and initializing time, the speed up depends on the ratio of
the global initialization time by the event processing and
initializing time, and on the number of all events.

2.2.2 Redundancy Reduction Rate

The rest of the section focuses on the redundancy reduc-
tion rate, namely parameter r as stated above. Let lpi be



a logical process and LP be a set of logical processes. We
assume there are l logical processes in simulation. The LP
is represented as following.

LP := {lpi|i = 0, 1, 2, ..., l − 1}

We define a function that makes a causal chain from one
event as f : E → El.

f(e) := {f0(e), f1(e), f2(e), ..., fl−1(e)}

, where fi(e) is a function from an event to the earliest
affecting event in lpi. Also, let Eire be an event after fi(e).

Eire := {e|e ≥ fi(e)}

The parameter r is represented like that (Figure1).

r =
|Ere|

|Eall|
=

l−1
∑

i=0

Eire

|Eall|

3. IMPLEMENTATION
In this section, we show system implementation. For im-

plementation, there are two requirements to be satisfied.
First, our proposal is for actual city-scale or country-scale
traffic simulation. Its implementation needs to be scalable to
large-scale and to be run in parallel. Second, as we showed
in Section 2, our proposal needs to store all processed events
and intermediate states in the initial whole simulation. To
meet these requirements, our system is designed as the ex-
tension of an optimistic parallel traffic simulator.

3.1 Overview
Figure 2 shows the system overview. Our simulator is ex-

ecuted on distributed environment and includes three mod-
ules for traffic simulation and one module for storing events
and states: application, Time Warp layer, communicator
and local storage.
In application, actual simulation logic and algorithms are

constructed. The exact-differential simulation mechanism is
fully independent of the application code such as modeling
of traffic simulation or logic of a vehicles’ behavior. The
application gets an event and simulation state (namely the
state of junction and roads) from Time Warp layer before
processing the event based on the vehicles’ behavior algo-
rithm, and then returns a new event and a changed state
because of the processing event.
The Time Warp layer, which is a core module of our sys-

tem, consists of a LP manager, LPs and a local storage.
Each LP has an event queue, a cancel queue and a state
queue just the same way as optimistic PDES. The LPs are
managed by a thread pool in LP manager because there are
some load imbalances between LPs in the traffic simulation.
For example, such load imbalance is happened when in some
roads there are a lot of vehicles to be process while in other
roads there are few vehicles to be processed. The LP man-
ager also manage the partition of the simulation, that is,
the meta-data of each LP. Also, the LP manager controls
the access to the local storage, where all processing events
and intermediate states are stored in the initial whole exe-
cution.
The communicator controls node to node communication

using MPI as well as inner process communication between
LPs in the same node.

Figure 2: System Overview and Initial Whole Sim-
ulation.

3.2 Initial Whole Execution
Figure 2 also shows the flow of initial execution per node.

In the initial execution, the simulator at first inputs states
and scenarios before simulation. The states data are de-
ployed to each node based on the defined partitioning. After
inputting, the simulation starts and processes events (Fig-
ure 2). In the initial execution, the LP manager allots a free
thread to a LP to process events. The LP passes the ear-
liest unprocessed event to the application before the event
is processed in the application. After that, the LP gets a
new generated event and a changed state from the applica-
tion. The new event is sent to a new destination LP via
communicator according to a partition discussed later. Also
a new cancel event is stored in the cancel queue. If the event
has to be sent to other node, the event is communicated via
MPI. On the other hand, if the new destination LP is in the
same node, the event is sent as inner process communication.
Such new sending event is received in the communicator and
passed to the destination LP.

Unlike usual optimistic PDES system, events with smaller
time stamp than global time are not released after global
synchronization. Instead, such events are stored in the local
storage for later exact-differential execution.

3.3 Exact-Differential Simulation in Repeat-
ing Execution

In repeating exact-differential execution (showed in Fig-
ure 3), the system first inputs a changing query and then
distributes to a destination LP. The query is received in the
LP via communication layer before accessing the local stor-
age to load the changing event and all events affected by the
changing event. These events (the changing event and the
affected events) are inserted to an event queue to process
again. After that, the LP passes the earliest unprocessed
event to the application before gets the new generated event
and changed state by the application. The new generated
event is sent to the destination LP via communicator and
the new state is stored to a state queue. After communica-
tor receives the new event, the new event’s received time is
checked and the affected events are loaded if the time is less
than minimum loaded time as discussed in Section 2.



Figure 3: Exact-Differential Simulation.

4. LARGE-SCALE TRAFFIC SIMULATION
In this section, we describe the modeling of traffic system.

In a first half of this section, we illustrate how to simulate
local vehicles’ behavior, that is, how to decide their route at
junctions and vehicles’ speed on a road. In the other half,
we show the model of the global interaction with each other
on the road map.
There are two requirement in the modeling way like the

system requirement discussed in Section 3. First, the traffic
simulation needs to be scalable to city-scale or country-scale.
Second, the traffic simulation is required to be modeled on
the top of optimistic PDES since the exact-differential sim-
ulation is totally based on the optimistic PDES as we dis-
cussed in Section 2. To meet such requirement, the model
of our traffic simulation is based on IBM Megaffic [13, 14,
17] and SCATTER [15, 18].

4.1 Individual Vehicle’s Behavior
The individual vehicle’s behavior is based on Megaffic,

where it optimises drivers’ decisions by estimating some of
the parameters of the model from probe-car data before
actual simulation execution, differentiating Megaffic from
many other traffic simulators which need to calibrate these
parameters during the simulation. In short, Megaffic pre-
computes some of the simulation data, such as, road seg-
ments and lanes chosen by the drivers on their route, speed
of the vehicles on the road. This is because in large-scale
traffic simulation, the processing time of individual vehicles
becomes the main bottleneck of the simulation and has to
be reduced as much as possible.
In the same way as Megaffic, a vehicle’s track of junctions

from origin to destination is all fixed before execution by
estimation with some defined behavior model, for example,
shortest path or minimum hops of junctions. After that,
in the execution, the vehicle’s speed, traveling time to next
junction and selection of a lane are calculated based on some
defined behavior models. Finally when the vehicle reaches
its destination, it is removed from the simulation.

4.2 Interaction of Vehicles on the Road Map
The global interaction of vehicles around the road map

is based on SCATTER. Thus, we mainly use the optimistic
PDES technique for parallelization including synchroniza-

Figure 4: Road Map and a Logical Process Unit.

tion. As SCATTER, we represent a vehicle’s track as a
sequence of events. One event is represented as vehicle’s
moving from one junction to a next junction. A unit of a
logical process in the optimistic PDES is a set of a junction
and its outgoing roads (Figure 4). The arrival timing to
junctions and synchronization with other junctions are fully
controlled by the optimistic PDES.

Also, the road map is partitioned in advance by the k-ways
graph partitioning algorithm [12] with METIS [11], which is
the software including the k-ways algorithm implementation.

5. EVALUATION
In this section, we describe evaluation of the exact-differential

simulation with Tokyo traffic scenarios.
There are two topics to evaluate: efficiency and perfor-

mance. In the efficiency evaluation, we evaluate how the
exact-differential simulation can reduce the number of re-
dundant events in repeating execution. We experiment with
two types of changing scenarios. The first one is the case
to change vehicle’s scenarios. We change a vehicle’s track in
repeating execution. The second one is the case to change
the road map. We change the parameter of one of LPs
(one junction and its out-going roads) in repeating execu-
tion. The efficiency evaluation shows, in high level, how the
exact-differential simulation ”potentially” can improve the
performance. On the other hand, in performance evalua-
tion, we show the ”actual” performance improvement in our
implementation, where we evaluate the elapsed time com-
pared to the whole simulation as well as the scalability and
parallelization of the simulator.

5.1 Efficiency Evaluation
In this part, we illustrate the efficiency of the exact-differential

simulation with Tokyo traffics in 3 hours. Table 1 shows the
simulation scenario. We simulate the traffic in Tokyo bay
area with 161,364 junctions and 203,363 roads (Figure 5).
Based on the Tokyo’s statistical data collected by the MLIT
(Ministry of Land, Infrastructure, Transport and Tourism)
in 2011, totally 5000 vehicles depart from their origin in 3
hours. Each vehicle has a trip pattern which has randomly
generated origin/destination. In total, this scenario gener-
ates 798,177 events to be outputted, where we use the term
”outputted event” as a processed event which is fixed and



never canceled in Time Warp layer. Thus, actually in Time
Warp layer, over 798,177 events are handled and canceled.
In this experiment, we use Hamilton4 supercomputer (10

MPI processes) in Durham University but the result of ef-
ficiency here is independent of the cluster environment. A
result influenced by the environment (thus, elapsed time) is
discussed in the performance evaluation.

Road Map Tokyo Bay Area (Figure 5)
– # of Junctions 161,364
– # of Roads 203,363
Scenario of Tokyo’s Traffic
– Sum of Departing Vehicles 5,000 (3 hours)
– Trips Origin/Destination Random
Result of Whole Simulation
– Total Outputted Events 798,177

Table 1: Traffic Scenario.

Figure 5: Road Map of Tokyo Bay Area.

5.1.1 Evaluation with Changing a Vehicle’s Track

Here, we study the impact of changing vehicles on repeat-
ing execution. In this evaluation, we change one of the 5000
vehicles’ track paths and then execute the exact-differential
simulation. The new track path is generated randomly so
that the number of hops is unchanged. We totally change all
5000 vehicles’ track path respectively and count the number
of events affected by the change, which need to be outputted
in the exact-differential simulation.
Figure 8 shows the number of outputted events in the

changes. We plot the results in departing time order, but as
you can see, we cannot find the impact of departing time in
the exact-differential simulation. In Figure 6, we compare
the worst case and average case to the whole simulation.
In average, the number of outputted events in the exact-
differential simulation is 44,261, which is only 5.5 % of the
whole simulation. Even in the worst case, the number of
outputted events is 233,749, which is 29.2 % of the outputted
events in the whole simulation.

5.1.2 Evaluation with Changing a Road Parameter

In this evaluation, we show the efficiency of the exact-
differential simulation with changing a speed limit parame-
ter of the road map. We change the speed limit of one LP

Figure 6: Number of Differential Outputted Events
in a Vehicle Change.

and execute the exact-differential simulation from the begin-
ning, where we randomly pick up about 1 % of all 161,364
LPs (1,600 LPs).

Figure 9 shows the number of outputted events in each LP
ordered by junction ID, where close numbers are roughly lo-
cated near points in the actual road map. As you can see,
the number of outputted events in the differential simula-
tion has a big gap, that is, some junctions affect the large
number of events while the others bring about few events.
This is because in Tokyo there are two types of junctions;
the first one is the hub, where a lot of vehicles cross over
and the other one is a junction, where only few vehicles en-
ter. In Figure 7, we compare the worst case and average
case to the whole simulation. In average, the number of
outputted event is 61,206. Thus, the events to be outputted
are only 7.6 % of whole simulation. Even in the worst case,
the number of outputted events in the differential simula-
tion is 297,181, which are 37.2 % of the outputted events in
whole simulation.

Figure 7: Number of Differential Outputted Events
in a Road Change.

To sum up the efficiency evaluation, the exact-differential
can reduce over 90% of whole events in average (94.5% in
vehicle changes, 92.4% in road changes), and even in the
worst case it can reduce over 60% of whole events (70.8 %
in a vehicle change, 62.8% in a road change).



Figure 8: Number of Differential Outputted Events in a Vehicle Change.

Figure 9: Number of Differential Outputted Events in a Road Change.

5.2 Performance Evaluation
In this part, we show the actual performance of the exact-

differential simulation with our simulator. We use the worst
and average cases of road changing scenarios as we evaluated
above.
Table 2 shows a summary of the evaluation environment.

Our simulator is implemented by C++ and MPI with a hy-
brid parallel architecture, where each MPI process includes
multiple threads. We run the simulator with TSUBAME
2.5 Supercomputer in Tokyo Institute of Technology, where
there are 12 processors per node with 54GB memory and
connected by QDR InfiniBand.

Service TSUBAME 2.5 in Tokyo Tech.
CPU Intel Xeon X5670/2.93GHz × 2
Memory 54GB per Node
Network QDR InfiniBand Interconnect
OS SLES 11 SP3
MPI Open MPI 1.6.5

Table 2: Cluster’s Configurations.

We change the number of processors according to the ta-
ble 3. In the simulator, it needs 2 processors per node at

minimum because MPI thread and event processing thread
are separated in our simulator. Also, it needs 2 MPI process
at minimum because of the implementation. Thus, we start
from 4 processors and increase the number of cores to 192
(including 16 nodes with 12 threads per node).

Nodes Threads per Node Processors

1 4 (2 MPI threads) 4
1 6 (2 MPI threads) 12
2 12 (2 MPI threads) 24
4 12 (4 MPI threads) 48
8 12 (8 MPI threads) 96
16 12 (16 MPI threads) 192

Table 3: Number of Nodes, Threads and Processors.

According to the efficiency result, we pick up the worst
case of a road changing scenario needed to be outputted
297,181 events and the average case needed to be outputted
61,530 events, and then evaluate the elapsed time respec-
tively.

Figure 10 shows a strong scaling of the simulator. From
12 processors to 24 processors, the performance becomes
once worse because from 24 processors, node to node com-
munication occurs, which is higher cost than a inner node



communication. From 24 processors, the performance be-
comes better according to the number of processors. In the
whole simulation, the elapsed time is improved to be 21.7 %
of 4 processors elapsed time. In the exact-differential simu-
lation of the worst case scenario (297,181 outputted events),
the elapsed time is improved to be 33.6 % of 4 processors
elapsed time. Also, in the exact-differential simulation of the
average case scenario (61,530 outputted events), the elapsed
time is improved to be 49.7 % of 4 processors elapsed time.

Figure 10: Strong Scaling of Simulation.

Figure 11 shows a speed up from the whole simulation,
defined as follows.

(Elapsed T ime in Whole Sim. )

(Elapsed T ime in Exact-Differential Sim.)

The exact-differential simulation achieves at most 7.26
times as much speed up in average case and 2.26 times speed
up in the worst case as the whole simulation (4 processors).
The speed up decreases according to the number of proces-
sors. There are still gaps from ideal cases (showed dotted
line in Figure 11), calculated by (*) in Section 2, where we
assume (Speed Up) = 1/r because |Eall| is enough bigger
than tinit global. This is because the overhead of the process-
ing events increases according to the number of processors
as discussed later.

Figure 11: Speed Up from Whole Simulation.

Figure 12 shows elapsed time per outputted event. The
elapsed time becomes worse if the number of outputted events
decreases in the same number of processors, because the ef-
fect of parallel processing decreases in smaller input size.

Figure 12: Elapsed Time per Outputted Event.

Figure 13: Overhead of Differential Simulation
Compared to Whole Simulation.

Figure 13 shows the overhead of repeating execution com-
pared to the whole simulation. The overhead of a differential
simulation becomes worse according to the number of pro-
cessors, where the overhead is defined as follows.

(T ime per Event in Whole Sim)− (T ime per Event )

(T ime per Event in Whole Simulation)

This is because if the more processors there are, the more
events are needed to be processed for synchronization, namely,
the number of cancel events and the frequency of rollback
increase because of the increasing of processors. Also, the
overhead increases in the fewer events because the ratio of
overhead increases because the elapsed time becomes faster
itself in more processors.

To sum up, our simulator with the exact-differential sim-
ulation achieves a good performance improvement from the
whole simulation. It achieves 7.26 times as much perfor-
mance improvement in average and 2.26 times improvement
even in the worst case as the whole simulation with a road



changing scenario. Also, it achieves a good strong scaling till
48 processors in the worst case. Although the strong scaling
in the average case is still limited and it has much overhead
compared to the whole simulation, the exact-differential sim-
ulation can achieve better elapsed time even with fewer pro-
cessors than the whole simulation.

6. RELATED WORK
Updateable simulation [5] is highly related in our work. In

this research, they propose the technique to simulate a part
of events and states in repeating execution by canceling and
reprocessing events in the similar way as optimistic PDES
technique. In the proposal, they define the reuse function,
which estimate the number of reprocessing events in repeat-
ing simulation and it enables to reprocess part of simulation
efficiently. Not only the target domain of application, there
are also mainly two differences between the proposal and
our approach. First, our approach always achieves the ex-
actly same results as the original whole simulation. This is
possible by assuming the separated state (LP) and storing
all of intermediate states instead of using the reuse function,
which is too general to always ensure the exactly same re-
sults. Second, in our proposal, we evaluate the simulator
on much larger scale than their proposal. This is one of the
main contributions in our research.
Cloning techniques [8, 9, 7, 4, 19] are also ways to reuse

the intermediate simulation states and events for efficient
repeating simulation. In the cloning of simulation, the simu-
lation states in some decided time is copied and from the de-
cided time the simulation is branched with different param-
eters or scenarios. The difference from our proposal is that
such technique does not have ”differential” feature, namely,
the cloning technique cannot simulate a part of whole state
but they can only simulate wholly from intermediate time.
Reducing the scenario patterns or parameter spaces is the

direct and general way to speed up the repeating execution.
There have been previous researches with such techniques,
illustrated in [1, 2, 3]. For example in [2], the all patterns
of scenarios are filtered by random sampling and clustering
algorithm before simulation for getting the optimum sce-
nario pattern. In [3], they use GA (genetic algorithm) to
pick up the appropriate scenario patterns to be simulated in
agent-based simulation.

7. CONCLUSION
In this paper, we proposed the exact-differential simula-

tion for large scale agent-based traffic simulation, which en-
ables to reduce the redundant events in repeating the sim-
ulation. In our evaluation, we illustrated how many events
are required to be processed in the exact-differential simu-
lation and show a big improvement in reducing the number
of processing events. Actually, in the case of vehicles’ path
changes, we can reduce 94.5 % of processing events in av-
erage and even in the worst case, we can reduce 70.8 %
of processing events compared to a naive way. In the case
to change the parameter of one LP, we can reduce 92.4 %
in average and 62.8 % in the worst case. Also with our
traffic simulator, we show 7.26 times as much performance
improvement in average and 2.26 times improvement even
in the worst case as the whole simulation with changing a
road’s speed limit.

For future works, the implementation should be sophis-
ticated. In Time Warp layer, we should adopt some Time
Warp’s optimizations like lazy cancellation to reduce the
overhead of synchronization. Such optimizations are effec-
tive not only to the simulation execution itself but also to
the exact-differential simulation since the exact-differential
simulation uses directly the mechanism of Time Warp. In
local storage layer, to achieve larger traffic simulation, we
should expand the size with secondary storage to store vast
amount of intermediate state and processed events. Also, we
should evaluate various patterns of scenarios with different
traffic characteristics to show comprehensive effects of our
proposal.
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