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ABSTRACT 

A practical control chart is introduce, called multivariate Set-Up Process Algorithm (m-SUPA), which 
can be used to signal when a process is statistically off-target. This control chart uses a traffic light 
system to provide simple information to an operator about how close a measured part is to its global 
target. The chart works with a simple rule set resulting in  process adjustments at a calculated point, 
rather than relying on rule-of-thumb methods. A final consideration is calculating the size of process 
adjustment, when one control adjustment has multiple effects on different design features. Simple 
feedback controllers are suggested for calculating process adjustments, providing consistency to an 
action taken. Simulation results suggest that m-SUPA with adjustments based on this kind of 
controllers is able to steer the process to a desired performance region.  

Keywords: Multivariate, Process Control, Feedback Controllers. 

1 INTRODUCTION 

This paper provides a framework to control multivariate manufacturing processes, which are set-up 
dominant in nature. A multivariate process, produces parts which have two or more correlated design 
features. A set-up dominant process, is a one whose dominant source of variation is between batches 
(Juran & Gryna 1988) and is linked to adjusting the process to the design tolerance’s target during set-
up. These low-volume manufacturing processes are increasingly prevalent (Julien & Holmshaw 
2012). 

The advancement of manufacturing technology (Shipp et al. 2012), has seen machining processes 
that produce parts of increasing complexity. An example from the aerospace industry is a highly 
complex aerofoil for a jet engine, with an excess of 25 design features produced in a single CNC 
machining centre. Often, in such environments a single cutting path has an effect to more than one of 
these design features. If a process is producing parts that are off-target in one design feature, an 
adjustment to a single control parameter can correct this, but it also moves other correlated design 
features off-target. Therefore, determining a suitable set of control adjustments that does not drive 
design features off-target is a critical step. 

These machining centres typically make small batches of multiple part variants. With low-volume 
batches as small as 5-10 parts, timing of a control adjustment is, also, of critical importance. Using a 
rule of thumb procedure, such as measuring the first part produced then applying control parameter 
adjustments, has little statistical validity. Applying traditional Statistical Process Control (SPC), can 
lead to a batch ending production before a subgroup of parts of sufficient size for estimating the 
process mean position is collected. A statistically valid tool must be incorporated into the framework 
that can deal with both the multivariate and small batch nature of these set-up dominant processes. 
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Keeping design features not only within tolerance but on-target is key to ensuring that parts 
produced their in-service function. To measure the performance of a process for a single design 
feature, the capability metric pkC  is used. pkC  is defined for a process with mean (µ), standard 

deviation (σ) as 
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min LUCpk and is used to estimate the performance against the upper 

(U) and lower (L) tolerances. This measure helps defining the limits of the univariate SUPA chart, 
(Cox et al. 2013). 

The following section describes the process control cycle. Section 3 then outlines a solution to 
multi feature control problems by introducing a method called multivariate Set-Up Process Algorithm 
(m-SUPA). This is used with a simple feedback controller to provide control adjustments. The paper 
concludes with some indicative simulation results. 

2 PROCESS CONTROL FRAMEWORK  

A control framework supporting a machine operator’s actions with respect to process adjustments is 
outlined in this section. At the centre of the framework are processes used to convert a blank part into 
a finished and measured part. This includes the use of equipment such as CNC Machine tools and Co-
ordinate Measurement Machines The part’s measured design features are then recorded as a response. 
If the system is set-up in the same way each time a batch of the same parts is required, the response 
should be identical for each part. However, external noise factors can affect the response of each part 
not only between batches but within a batch. Some of these noise factors are present irrespective of 
operator action and are seen in the process output as constant variation, i.e. as common cause 
variation. The operator must compensate for the remaining noise factors using the processes control 
parameters. It is the adjustment of these control parameters that is critically important to an effective 
control framework. In order for this to happen, the following steps are typically executed: 

• Detecting a state of error, i.e. producing parts that are significantly off-target.
• Recommending control factor adjustments when an error state is detected. 
• Implementation of adjustments by the operator. 

For univariate processes, that have uncorrelated design factors with independent control 
parameters, which are set-up dominant, the univariate SUPA has been introduced by (Cox et al. 
2013). This method provides a machine operator with a simple chart and rule set to statistically 
diagnose when a process is off-target. The chart is based around the tolerance of the monitored design 
feature and a traffic light scheme where central region around the design target is designated as the 
Green Zone. The regions which are between the Green Zone and the tolerance limits are the Yellow 
Zones. The regions outside the tolerance limits are the Red Zones. The size of the Green Zone is 
determined by the minimum pkC  required from the process, see (Cox et al. 2013) for more details. 

Consecutive parts are sampled and their measured design features are categorized as Green, 
Yellow or Red. If a sampled part is Red it signals that the process is off-target. Two consecutive parts 
in the same Yellow Zone signal an off-target process. Five consecutive Green parts demonstrate the 
process is capable and is allowed to continue without further checks. These rules are summarised in 
Table 1. See also (San Matias et al. 2004) for calculating the probabilities of qualifying a capable 
process. 

Table 1 Outline of SUPA rules for process validation and intervention. 

Sampled Units Observation Action 
1 Red Unit Stop and Adjust 
1 2 Two Consecutive Yellow Units Same Side of Target Stop and Adjust 
1 2 3 4 5 Five Consecutive Green Units Continue Process 

3 MULTIVARIATE SUPA 

To detect if a process is off-target, the design features of parts produced are measured and recorded. 
These design features are organised into the design vector, x . If a single component of the design 
vector is outside the design tolerance, the part is scrapped. 
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Consider a simplified case of a part with two design features, i.e. Txxx ],[ 21= . If 1x  and 2x  
have the same specified design tolerances of 250=UTL  and 50=LTL , this tolerance boundary 
can be represented as a box, as in Figure 1(a). Let two measured parts  collected with design vectors 
of Tkx ]100,200[)1( ==  and Tkx ]200,40[)2( == ; these points are plotted on Figure 1(a). This 
shows that )1( =kx  is within the design tolerance and )2( =kx  is outside the design tolerance. 
Although this information tells a user if a part is in or out of tolerance, it does not give any indication 
of how close a part is to the design target. However, to formulate a Green zone, and therefore an m-
SUPA chart, a target pkC  value for each design feature needs to be defined. 

Figure 1: Plots showing: (a) tolerance boundary of x ; (b) Green zone based on univariate minimum 

pkC ; (c) Green zone based on multivariate minimum pkC . 

If univariate SUPA is applied to a multi-featured part, a rectangular Green zone can be formed as 
in Figure 1(b). This rectangle is a percentage of each design feature tolerance boundary around its 
target. If the rules in Table 1 are followed with this chart, a need for process adjustment is signalled 
when a single dimension in the process is not conforming to the minimum required pkC . However, 
considering the design vector in a global sense, this defines a Green zone such that the probability of 
an on-target process producing a Green part being greater than 94%. Therefore, if the rules of Table 1 
are applied to this chart, it is less sensitive to changes in the mean position of the design vector. 

A truly multivariate chart, as in Figure 1(c), is refined by determining the maximum variance for 
each design feature, 2

iis , using the minimum required pkC . This allows the definition of a covariance 
matrix, S , with only diagonal elements. This covariance matrix is used with the measured design 
vector, x , and the process target, T , to calculate a statistical distance, known as the Mahalanobis 
distance (Mahalanobis 1936), as follows: 

21 )()( HTxSTx T <−− − .  (1) 
A multidimensional Green zone is defined which is the set whose points  have a Mahalanobis 

distance less than 2H  from the target T. The left hand side of (1) has the property of following a 
2
,αχn  distribution, where n  is the degrees of freedom, which is equal to number of design features, 

and α  is the probability of a sample from a population that is on-target falling outside the Green 
zone.  
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In the case of univariate SUPA the Green zone is defined so that an on-target process has a 
minimum 0.94 probability of falling in the Green zone. Hence, extending this to the multivariate case 
will result in 06.0=α . This results in a hypersphere as in Figure 1(c). Using this chart, a decision 
about whether a process is off-target or not, is still made by following the SUPA rules of Table 1.  

Using the Mahalanobis distance in multivariate control is not a new concept. Hotelling’s T2 charts 
have been used to provide a multivariate version of Shewhart’s classic statistical process control and a 
multivariate version of stop-light control have been proposed (Pan 2007; Hubele 1989). However, 
these methods do not connect a control zone to a tangible process boundary. 

4 FEEDBACK CONTROLLERS 

In order to model the relationship between the changes in control parameters and the resulting effect 
on the process output, data needs to be recorded regarding the time and size of current changes to 
control parameters settings. Doing this enables the calculation of a control coefficient represented by a 
matrix A  which links the change in a control parameter, c∆ , to its effect on the mean output of the 
process for each design feature. The relationship between the current process mean when produced 
part k has been measured, )(kx , and the next process mean, )1( +kx , after a control adjustment is 
made, is described as a linear dynamic system of the form: 

cAkxkx ∆⋅+=+ )()1(          (2) 
This assumption enables the use of a feedback controller, if the multivariate SUPA chart indicates that 
an adjustment to the control factors is required, to calculate the size of adjustment c∆  (Sachs et al. 
1995). In the simplified example of a part with two design features Equation (3) can be expanded as 
follows: 

21211111 )()1( cacakxkx ∆⋅+∆⋅+=+   (3) 

22212122 )()1( cacakxkx ∆⋅+∆⋅+=+   (4) 
where ija  are individual control coefficients from the matrix A  and 1c∆  and 2c∆  are the 

adjustments of the two features process means. The values of ija  are derived from historical data of 
the effect of control adjustments on process means. In the absence of such data, operator judgement is 
needed until historical data exists. Depending on the properties and the setting of the machining 
centre, the number of independent adjustments may vary. For example, it may be possible for the 
operator to make corrections for each design feature individually, in which case the dimension of the 
control vector c∆  is equal to the dimension of the state vector x . In this case, using a proportional 
feedback controller for 1c∆ and 2c∆  leads to the following calculation of the adjustments  

])([ 1111 TkxGc −=∆ ,  ])([ 2222 TkxGc −=∆  (5) 
where, 1G  and 2G  are gain factors and 1T  and 2T  are design factor target values. 1G  and 2G  can be 
set arbitrarily initially and then adjusted to improve the dynamic response when an adjustment is 
required, i.e. they can be fine tuned based on either on data or on simulation. It is important to note, 
that a change in one control factor, e.g. 1c∆ , has an effect on both design features 1x  and 2x  through 
the elements of matrix A, as modelled in Equations (3) and (4). Also, these feedback control actions 
are only made if consecutive units fall in the Yellow or Red zones of the m-SUPA chart as per control 
rules of Table 1. In the following section the effect of this dynamic feedback approach is 
demonstrated with results from a simulation. In other words, the m-SUPA system is a combination of 
the discrete rules described in Table 1 and the continuous dynamic equation (2), making it a hybrid 
dynamical system. 

5 SIMULATION RESULTS 

In order to test the effectiveness of this framework, a simulation model of existing processes was 
built. In these simulations two cases were considered. In the first one,  there are two correlated design 
factors, and in the second there are three. In each case a process where there are as many control 

212



Cox, Garside and Kotsialos 

parameters as features in the design vector and where there are less are examined, i.e. 02 =∆c in the 
2-dimensional case and 03 =∆c  in the 3-dimensional. In the simulations all design features have the 
same tolerance of 250=UTL  and 50=LTL . Also, the Green zone covariance matrix, S , was 
define to validate processes with a minimum 2≥pkC . 

In the first case four experiment were run with )(kx  from different initial positions of 
T]225,100[ , T]75,250[ , T]225,150[  and T]210,240[ ; [ ]TG 005.0,005.0=  in all cases. The actual

covariance matrix of the process, ∑ , and control coefficient remained constant throughout the 

simulation and are 







=∑

10090
90100

and 






 −
=

9345
2478

A . 

The simulation experiments  run to test the response of m-SUPA under these different conditions. 
Figure 2(a) plots the response when the system has two design features and two control parameter and 
2(b) when it has one. 

Figure 2: (a) Two design features, two control parameters; (b) two design features, two correlated 
control parameters. 

These results show that in both situations the controller settles after a few iterations. However, in 
the under-defined situation shown in Figure 2(b), the process does not settle on the desired design 
vector target. This is due to the controller only being proportional to error of 1x ; therefore, the process 
tends towards settling on the 1x  target of 150 irrespective of  the 2x  position. This is to be expected, 
since there is no feedback from the second design feature. This leads to additional small adjustments 
that are not required as the process has not settled near the centre of the Green zone, indicating that 
the controller is not able to drive the system in the Green zone. Designing more efficient feedback 
controllers for this type of task is currently under research. 

Figure 3: Three design features, three control parameters 

For the second case where there are three design features, the results for the three design features 
and three control parameters situation are plotted in Figure 3 and for the three design features, two 
control parameters situation in Figure 4. The three subfigure in these two figures show the system’s 
projected trajectory on the three planes of the system state space as measurements are taken. In both 
situations )(kx  starts off-target at T]150,60,215[ . Figure 3 shows that all design features hone in on 
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the target. This leads to less iterations or process adjustments. This is achieved despite the fact that a 
single control parameter effects all features. As expected, Figure 4 highlights the same issue that 
occurred in the two feature case that one design feature, 3x , does not hone in on its design target, 
however, the feedback controllers manage to maintain the process in the Green zone. 

Figure 4: Three design features, two control parameters 

More sophisticated control methods are going to be used for designing more efficient methods for 
this type of multi-dimension quality control problems.  

6 CONCLUSIONS 

This paper has presented a new framework for control of set-up dominant multivariate processes. The 
main advancement this method offers is ease of implementation, since the multivariate SUPA scheme 
clearly defines a part as Red, Yellow or Green. The simple definition allows operators to make 
interventions at clear times. Red parts are defined as out-of-tolerance, which provides an intuitive link 
for operators.  

The feedback controller also provides consistent adjustments to operators, maintaining a process 
on target. These controllers respond particularly well when the system is fully-defined, however, in 
practice machine tools are typically under-defined. In this case more work needs to be done to design 
controllers able to make the process stay as close as possible to the target point the specifications 
require. Further research based on sound tools and methods from hybrid control theory is something 
that will take place and is expected to yield controllers that minimise the probability of qualifying off-
target processes or processes that structurally have to yield some design features in the yellow zone. 
This work will also explore the option of re-centring Green zones on optimum positions rather than 
design target. 

REFERENCES 

Cox, S., Garside, J.A. & Kotsialos, A. 2013. Discrete-Event Simulation of Process Control in Low 
Volume High Value Industries. In 11th International Conference on Manufacturing Research. 

Hubele, N., 1989. A multivariate and stochastic framework for statistical process control. In 
Statistical Process Control in Automated .. 129–151.  

Julien, D. & Holmshaw, P. 2012. Six Sigma in a Low Volume and Complex Enviroment. 
International Journal of Lean Six Sigma, 3(1):28–44. 

Juran, J.M. & Gryna, F.M. 1988. Quality Control Handbook, New York: McGraw-Hill Professional. 
Mahalanobis, P., 1936. On the generalized distance in statistics. Proceedings of the National Institute 

of Sciences, 2(1)L:49–55.  
Pan, J., 2007. A study of multivariate pre-control charts. International Journal of Production 

Economics, 105(1):160–170.  
Sachs, E., Hu, A. & Ingolfsson, A., 1995. Run by run process control: combining SPC and feedback 

control. … Manufacturing, IEEE Transactions  8(9407592):26–43. 
San Matias, S., Jabaloyes, J. & Carrion, A., 2004. Some modifications of the classical pre-control 

technique. Quality and Reliability Engineering International 20:47–60. 
Shipp, S.S. et al., 2012. Emerging Global Trends in Advanced Manufacturing. Nayanee Gupta 

Bhavya Lal. 

214



 
 
    
   HistoryItem_V1
   PageSizes
        
     Action: Make all pages the same size
     Scale: Scale width and height equally
     Rotate: Clockwise if needed
     Size: 6.142 x 8.976 inches / 156.0 x 228.0 mm
      

        
     0
            
       D:20140801134221
       646.2992
       ICMR
       Blank
       442.2047
          

     Tall
     1
     1
     747
     269
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     CCW
     Uniform
            
                
         AllDoc
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0h
     Quite Imposing Plus 3
     1
      

        
     276
     275
     276
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all pages
     Font: Times-Roman 7.0 point
     Origin: bottom centre
     Offset: horizontal 0.00 points, vertical 19.84 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     1
     1
     
     BC
     
     1
     1
     TR
     1
     0
     771
     277
    
     0
     1
     7.0000
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     [Doc:NumPages]
     0.0000
     19.8425
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0h
     Quite Imposing Plus 3
     1
      

        
     0
     276
     275
     276
      

   1
  

 HistoryList_V1
 qi2base





