
   

 

Abstract 

In this paper, an analytical solution for the response of a rigid cylinder embedded in a full-space 

poroelastic medium subjected to a dynamic lateral load is derived. The problem is idealised as a two-

dimensional problem. The solution is obtained using Biot’s theory for acoustic waves. In this solution, 

the displacements of the solid skeleton and the pore pressure are expressed in terms of three scalar 

potentials. These potential correspond to the wave velocities of the slow and fast compressional wave 

and to the shear wave.  The governing equation for the dynamic motion is expressed in the frequency 

domain using Fourier transformation and the potentials are shown to be given by Holmholtz 

equations.  

 

Keywords: Biot’s consolidation, dynamic response, poroelasticity. 

1 Introduction 

The dynamic behaviour of rigid inclusions embedded in an elastic saturated porous media provides a 

useful model for the examination of the dynamic behaviour of structures and foundations embedded 

in soil media. Models based on poroelasticity theory can be regarded as a first approximation for the 

investigation of the dynamic soil-structure interaction despite the fact that soil has complicated 

nonlinear stress-strain characteristics.  

 

The study of the dynamic response of porous medium is often attributed to the two papers by 

Biot in 1956 (Biot 1956a, 1956b). Since then, several modifications and developments have been 

introduced. A list of the major contributions in this field can be found in Schanz (2009).  

 

This paper produces a poroelastodynamic analysis of a rigid cylinder deeply embedded in an 

isotropic elastic medium of infinite extent and subjected to a lateral load. This problem is relevant to a 

wide range of engineering applications ranging from consolidation around a shaft of a pile foundation 

to anchor regions that are used to resist uplift loads to in-situ testing of soil using a T-bar full-flow 

penetrometer.  In this paper, a plane-strain section of the cylinder-porous medium system is 

considered and the problem is analysed in two dimensions. The reference stresses and the pore fluid 

pressure before loading the cylinder are taken to be zero. The classical sign convention in 

poroelasticity is adopted where tensile stresses and strains are taken to be positive and a pore pressure, 

p, corresponds to an isotropic stress level of ijp, where ij is the Kronecker delta. 
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2 Governing equation for dynamic poroelasticity 

In polar coordinates (r,), the displacements and the pore pressure in the frequency-domain are 

governed by: 
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 is the Laplacian operator in polar coordinates, λ and   are Lamé’s 

constants for the porous elastic skeleton, p is the pore fluid pressure and s

r
u  and su


 are the radial and 

the circumferential displacements of the solid skeleton; respectively,
f

 is the fluid density and 
b

 is 

the bulk density given by 
fsb

  )1( where 
s

 is the density of the solid,   is the porosity, R 

is a parameter calculated from the bulk moduli of the constituents and characterises the coupling 

between the fluid and the solid, )( s

i

f

ii
uuw  is the seepage displacement, where f

i
u and s

i
u are the 

fluid and the solid displacement respectively,  is the frequency and ^ donates Fourier transformation 

with respect to time defined as:  
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and the parameter  is given by: 
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where  denotes the permeability and 
a

 is the apparent density describing the dynamic interaction 

between the fluid and the skeleton. 

 

The boundary value problem can be formulated by treating the displacement components and pore 

pressure as dependent variables. However, the use of special displacement and stress functions 

representations can result in a reduction in the number of dependent variables as demonstrated by 

Norris (1985), Zimmerman and Stern (1993) and Lu and Jeng (2007). Using Helmholtz 

decomposition technique, the radial and the circumference displacements can be derived from three 

displacement functions, 
1
χ ,

2
χ and ψ corresponding to fast and slow compression waves and shear 

wave, respectively: 
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Following  Lu and Jeng (2007), the pore fluid pressure can be related to displacement functions by: 
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where A1 and A2 are frequency-dependent constants 

 By substituting equations 6 , 7 and 8 into equations 1,2 and 3 it could be shown that 
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3 Solution of the governing equation for dynamic poroelasticity 

Pore fluid pressure, stresses and displacements should be finite and reduce to zero as r . If a 

cylinder of radius r0 is taken to be fully-bonded to the surrounding elastic medium, then the relation 

between the radial and the circumferential components of the displacements at the interface between 

the rigid cylinder and the elastic medium is governed by: 
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The component of tractions acting on any circumference which encloses the rigid cylinder and 

centred about its origin in the direction of the applied force F (Fig. 1) is governed by: 
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where  is the stress, 
r

 is the density of the rigid cylinder 

For impermeable cylinder: 
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The translation of a circular rigid disk can be expressed in polar coordinates as: 
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From equation 9, it can be shown that:  
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 Kv(x) is modified Bessel function of second kind of order v.  

The coefficients B C and D are determined from the boundary conditions (equations 12,13 and 14). 

 

Figure 1 Nomenclature for a rigid cylinder under lateral load 

4 Results and discussion 

Any analytical solution for a laterally loaded cylinder must be applied over a wide range of 

geometries and material properties. It is helpful to form dimensionless groups of relevant parameters, 

rather than investigate how the solution is affected by the variation of each individual material 

parameter. Following the technique of dimensional analysis, the stress, displacement and the pore 

fluid pressure at any fixed location can be expressed as: 
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Figure 2 shows the response of a cylinder subjected to a harmonic load of the form: 
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The analysis was carried out using Wolfram MATHEMATICA 7.0 software. The analysis was carried 

out with the parameters shown in Table 1. The results are shown for two cylinder/fluid density of 0 

and 10. These values were selected to represent extreme cases. The results are plotted for a point 

adjacent to the cylinder (r = r0) located in the direction of the load ). These results show 

that in the case of r/f=10, the total stress and the pore fluid pressure had a peak value at a 

normalised frequency of about 0.42.   

 

 

Figure 3 shows the response for two material properties (= 4 and  = 2/3, corresponding to 

Poisson’s ratio  = 0.4 and 0.2). The rigid cylinder is taken to be weightless r/f=0. This figure 

shows that the magnitude of the total radial stress is not affected by ratio, while the pore fluid 

pressure and the radial displacement increases with the decrease of . Figure 4 shows that the 

permeability has a significant effect on the pore fluid pressure in low frequencies. However, it is 

effect is less significant in high frequencies. The displacement and the total radial stress are not 

affected by the permeability of the porous medium.  

 

5 Conclusions 

An analytical solution for the response of a laterally loaded rigid cylinder has been derived 

using poroelastodynamic formulation. The solution is based on a two-dimensional plane-

strain idealisation. Exact analytical solutions for pore fluid pressure, stresses and 

displacements in the frequency domain are obtained using the stress function technique.  
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Table 1 Parameters used in the analysis 

      

Figure 1 Effect of the density of the rigid cylinder 

   

Figure 2 Effect of Poisson’s ratio 

 

Figure 3 Effect of permeability 


