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Abstract
In order to understand natural languages, we have to be able to determine the relations between
words, in other words we have to be able to ‘parse’ the input text. This is a difficult task,
especially for Arabic, which has a number of properties that make it particularly difficult to
handle.

There are two approaches to parsing natural languages: grammar-driven and data-driven.
Each of these approaches poses its own set of problems, which we discuss in this paper. The
goal of our work is to produce a hybrid parser, which retains the advantages of the data-driven
approach but is guided by grammar rules in order to produce more accurate output. This work
consists of two stages: the first stage is to develop a baseline data-driven parser, which is guided
by a machine learning algorithm for establishing dependency relations between words. The
second stage is to integrate grammar rules into the baseline parser. In this paper, we describe
the first stage of our work, which is now implemented, and a number of experiments that have
been conducted on this parser. We also discuss the result of these experiments and highlight the
different factors that are affecting parsing speed and the correctness of the parser results.

1 Introduction

Processing human languages to determine the structural relations between words is called
parsing in Computational Linguistics (CL) [1, p.63]. Parsing is one of the core components of
many Natural Language Processing applications [2], such as: Machine Translation Systems,
Tutoring and Speech Recognition Systems, Information Retrieval Systems, and Question and
Answering Systems.

Producing a comprehensive parser is a challenging task due to language ambiguities
[13], which is caused by such factors as multiple interpretations of words, flexibility of word
order, and missing items. Hence, adequate parsing systems are often unavailable for natural
languages, especially for languages with complex structures such as Arabic [18, p.82].

It is desirable that parsers have three main features - efficiency, robustness and accuracy.
The efficiency of parsers is concerned with consuming as little time as possible, the robustness
is for enhancing the system’s ability to cope with agrammatical inputs, and the accuracy
is required to ensure that the results produced are accurate. However, it is not possible to
achieve all three features at once [7]. Some parsers have traded off accuracy for efficiency,
while others sacrificed efficiency for robustness [18]. The goal of our work is to optimise
speed and accuracy while maintaining a reasonable level of robustness. We aim to test our
parser on Arabic because Arabic presents a number of challenges which make it hard to
parse, and hence it will act as a rigorous test-bed for our approach.
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2 Parsing natural language approaches

There are two different kinds of approaches to parsing natural languages: grammar-driven
approaches, and data-driven approaches. In grammar-driven approaches, the parser depends
on grammatical rules suitably specified in accordance with some linguistic theory. while in
data-driven approaches, the parser mainly depends patterns extracted from preprocessed
data, such as treebank data. In this section, we describe each of these approaches.

2.1 Grammar-driven approach
Grammar-driven parsing uses a formal grammar G, which defines a formal language L(G)
for an alphabet A. A grammar G is used as a system for generating strings over A; The
language L(G) that is defined by G is the set of all strings x that can be generated by G.

The assumption in grammar-driven parsing is that L(G) is an approximation of the
language L. However, the formal grammars that have been developed to date fail to meet this
assumption [7]. Having said that, the principles behind grammar-driven approaches should
not be neglected because the linguistic theories advancement may subsequently lead to better
approximations, but, in the mean time it creates some practical problems for grammar-driven
parsing.

Robustness in parsing natural languages is the capacity of parsers to analyse as many
input strings as possible. A parser is considered robust if it can analyse a large proportion
of the sentences of the language in question. One of the major problems associated with
grammar-driven parsing is robustness. This problem occurs because some input strings in a
given sentence may not exist in the formal language L(G) that is defined by the grammar G.
Generally, there are two kinds of robustness problem: (i) coverage problem and (ii) robustness
proper.

The coverage problem normally occurs when an input string x is not part of the formal
language L(G) even though it is grammatically a legitimate sentence of L. Hence, at least in
theory, it should exist in L(G), because L(G) is an approximation of L, but the sentence
may not exist in L(G) because it is not covered by G. On the other hand, robustness proper
occurs when an input string x is understandable by the speaker of L but it is not part of the
language L and so it should not exist in L(G) either. Robustness proper actually occurs if a
word is misspelled or if material is omitted or agreement constraints are violated.

The robustness problem can be solved by relaxing grammar constraints in parsers [4].
But, relaxing grammar constraints could result in many analyses becoming available for a
given input text, hence it leads to the problem of disambiguation, which is a major problem
for parsing natural language sentences, because applications that depend on the output of
parsing systems typically require a small number of analyses (preferably just one analysis)
for a given input text x. Having many analyses for a given x means that parsers will have
to consume more time and resources exploring these analyses which create a problem with
efficiency and also may result in selecting an incorrect analyses, which may affect accuracy.

The problem of robustness and disambiguating aggravates the problem of accuracy.
Robustness attempts to produce analyses for input strings x that may not exist in L(G) that
is defined by G, while disambiguation insists on removing extra analyses that are assigned
to x by G. These moves by any parsers may reduce the chance that an x that is part of a
text is given the correct analysis by parsers. Hence, a joint optimisation between robustness,
disambiguating and accuracy is necessary, or at least they are prioritised and the trade off
between them is carefully chosen based on the nature of the parsing system.

Joint optimisation between robustness, disambiguating and accuracy triggers the problem
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of efficiency. The problems with efficiency in grammar-driven approach depend mainly on
the expressivity and the complexity of the formal language that is used for parser [7]. The
most commonly used algorithms are at least N3 in the length of the input text, which is
daunting in situations where sentences may contain tens or even hundreds of words.

2.2 Data-driven parsing
In data-driven approaches, an inductive mechanism is used for mapping from input strings
to output analyses. This mechanism, that is applied to a text sample Tt = (x1,...,xn) from
the language L to be analysed, makes the abstract problem of data-driven approach that is
used to approximate text parsing a problem of inductive inference.

According to [7], data-driven parsers consist of three main components: (i) permissible
analyses for sentences in the language L as defined by a formal model M. (ii) a sample of text
Tt = (x1,...,xn) from L with or without the correct analyses At = (y1,...,yn), and (iii) actual
analyses for the sentences T = (x1,...,xn) in L is defined by an inductive inference scheme I,
which is relative to model M and Tt and possibly At. Based on these components, a model
M could represent a formal grammar G for restricting string representations to strings of the
language L.

Training data, that is used in this approach, is a sample of text Tt. This could be raw data
or an annotated treebank of the language L, where treebanks may or may not be annotated
with representations satisfying the constraints of M. If the sample data is a treebank then a
form of supervised machine learning is used for inductive learning because, according to the
treebank annotation, the correct analyses of an input string xi is in the sequence of analyses
At = (y1,...,yn). While unsupervised machine learning is used if the sample data is raw text
because no sequence of analyses will exist in T.

Similarly to grammar-driven approaches, data-driven approaches are also based on the
approximation that the formal language L is an approximation of the language L, but, this
approximation is different in data-driven parsing because it is based on inductive inference
from a finite sample Tt = (x1,...,xn) to the infinite language L

The problem of robustness also exists in data-driven approach, robustness here depends
on the formal model M properties as well as the inference scheme I which are used for
processing new sentences. According to [7], in most existing data-driven parsers any input
strings x are assigned at least one analysis, which means that data-driven parsers are highly
robust. However, the extreme robustness of data-driven parsers means that they will assign
analyses that are probably not in the language L.

Furthermore, the problem of disambiguation can be even more severe in data-driven
parsers because the improved robustness is the result of extreme constraints relaxation. but,
this is compensated by the fact that the inductive inference scheme I provides a mechanism for
disambiguation, by associating a score with each analysis intended to reflect some optimality
criterion, or, by implicitly maximising this criterion in a deterministic selection.

Regarding the problem of efficiency, it is argued that data-driven approaches is superior
to grammar-driven approaches [7], but it is often at the expense of less accurate output [8]

3 Arabic

Ambiguity is a central problem in natural language parsing [11, 13]. Arabic contains many
complexities and subtleties [10], which lead to even greater potential for ambiguities than is
present with other languages. In the following sections we briefly highlight some of the main
sources of ambiguities in Arabic.

ICCSW’13
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3.1 Missing diacritics
Arabic diacritics are short strokes placed above or below consonants. There are three sets
of diacritics: (i) Short vowels are symbols placed either above or below letters, such as /a/
sound as

�
@, /u/ sound as

�
@, or /i/ sound as @�. (ii) Double case endings are also vowels and

they suggest indefiniteness and are manifested in the form of case marking or in conjunction
with case marking. these are placed on the final letter of a word, such as a /aN/ sound as
in

�
@, /uN/ sound as in

�
@ or /iN/ sound as in @

�
. (iii) Syllabification marks are placed above

Arabic letters denoting the doubleing of the consonant, they are usually combined with short
vowels. There are two types of syllabifications: (i) is called shadda written as a gemination
marks as ��Q and (ii) is called sukun, which is a small circle as

�
A, and it marks the boundaries

between syllables, end of verbs, or it indicates that the word does not contain vowels.
Arabic texts without diacritics are ambiguous. Many words with different diacritic

patterns appear identical in a diacriticless settings but they may have different syntactic
roles [6]. e.g. the word ÕÎ« alam can have many roles when diacritised, such as: noun as in
�Õ
�
Î«

� ‘ilmuN “knowledge”, transitive verb as in �Õ

��
Î

�
« ‘u-llima “is taught” or intransitive verb as

in �ÕÎ�

�
« ‘ulima “is known”. Written Modern Standard Arabic (MSA) generally omits diacritics,

which leads to widespread lexical ambiguity of the kind shown [17].

3.2 Free word order
Arabic has a high degree of syntactic flexibility [10]. The canonical order of an Arabic
sentence is VSO. But, a range of other word orders such as VOS, SVO and OVS are also
possible [3], which is a source of ambiguities in Arabic [14, p.179]. It is not easy to distinguish
between the nominative and accusative cases when word orders are changed, i.e. it is hard
to identify the subject and object of a sentence, for example, in the sentence ú



Î

�
« ÐQ

��
�
�
m�

�
'

 Y

�
Ôg

�
@

a.hmad ya.hatarm ‘aly “Ahmed respects Aly” it is clear that Ahmed is the subject in the
sentence and Aly is the object. However, reordering the words in the same sentence as

ú


Î

�
« Y

�
Ôg

�

@ ÐQ

��
�m�

�
'

 ya.htarm ’a.hmad ‘aly “respects Ahmed Aly” means that the subject could

be either Ahmed or Aly. This results in structural ambiguity.

3.3 Arabic clitics
Clitics are morphemes 1 that possess the syntactic characteristics of a word, but, they are
morphologically bound to other words [5]. Arabic clitics could be attached to the start or
end of words, this often alters their formation, for example they could alter word types from
noun to verbs, or even changes the verb type from transitive to intransitive [17]. For example,
conjunctions in Arabic can often appear as clitics and modify Arabic verbs. For instance,
the sentence �

éË
�
A��ÜÏ @ ú




	
¯ �ú



Î

�
« Ñ

�
î

��
D
Ë�ð wali-yyahum‘alyuN fy Al mas’Ala “Ali is the leader in their

situation” where �
Ñ

�
î

��
D
Ë�

�
ð walyahum “their leader”, which is a noun, is ambiguous because the

letters ð /w/ and Ë / l/ could be clitics attached to the word Ñ
�
î

��
D
Ë� li-yyahum “take charge”

and can modify these words into verbs, as in the sentence �
éË

�
A��ÜÏ @ ú




	
¯ �ú



Î

�
« Ñ

�
î

��
D
Ë�ð wa li -yyahum

‘alyuN fy Al mas’AlT “and Ali to take charge of the situation”, where the word is a verb.

1 A morpheme is a small grammatical unit of a language.
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3.4 Noun multi-functionality
It is difficult to define Arabic nouns in comparison to its verbs because they encompass
a wide range of categories. One of the reasons that Arabic nouns create ambiguities is
that some nouns are derived from verbs, and they can function as verbs sometimes [14].
e.g., �

Ij
�
J. Ë @ Alba.h_t “search” can function as a noun as in �

é
�
ªÓ� A

�
j. ÊË�

�
I
�

j
�
J. Ë @ ú




	
¯

�	
YJ
ÒÊ

�
J�Ë @

��Q
�
Ò

��
J�@�

istama-rra Altilmy_du fy Alba.h_ti liljAmi‘aT “the student continued in his research for the
university”, and as a verb as in �

é
�
ªÓ� A

�
m.
Ì'@ 	á

�
«

�
I
�

j
�
J. Ë @ ú




	
¯

�	
YJ
ÒÊ

�
J�Ë @

��Q
�
Ò

��
J�@� istama-rra Altilmy_du fy

Alba.h_ti ‘an AljAmi‘aT “the student continued searching for the university”

3.5 Arabic pro-drop
In pro-drop, the subject of a sentence could be omitted if the verb’s agreement features are
rich enough to recover its content [15]. Arabic verbs recover missing subjects by conjugating
themselves to indicate the gender, number and person of the omitted pronoun subject [14].
Arabic pronouns may be omitted if the verb can recover them, as in, �

ék. Ag. YË@
�

IÊ¿ @ Akalat
Al dajAjT “ate the chicken”. The verb �

IÊ¿ @ Akalat “ate” indicates that the missing subject
is a singular, feminine and third person pronoun. In Arabic, verbs can be transitive and
intransitive when a pronoun is dropped. It is not clear from the above sentence that the NP
�
ék. Ag. YË@ Al dajAjT “the chicken” following the verb �

IÊ¿ @ Akalat “ate” is the subject. The
sentence would mean the chicken was eaten and the verb �

IÊ¿ @ Akalat “ate” is intransitive if
the NP is the subject. But, the sentence would mean she ate the chicken and the verb �

IÊ¿ @

Akalat “ate” is transitive if the NP is the object of the verb and the subject is an omitted
pronoun (as “she”). Hence, due to pro-drops, parsers generate different structural analysis.

4 Work to date

We have implemented a dynamic programming version of shift-reduce parsing algorithm [1,
p.368]. The dynamic programming algorithm stores partial parse analyses that are generated
by the shift-reduce parsing algorithm. The shift-reduce parser has two data structures, queue
and stack which contain items with the following features: (i) Part of Speech (POS), (ii)
word form, (iii) word span within the sentence and (iv) words actual position in the sentence.
Three operations are performed on queues and stacks: (i) shift, (ii) left-reduce, and (iii)
right-reduce, where each of these operations results in a new queue and a new stack which
are stored in a database as partial parse analyses. Shift operation moves the first token from
the queue to the top of the stack producing a new queue and a new stack. left-reduce and
right-reduce operations perform two main operations: First, a parent-daughter (dependency)
relation between the first item on the queue and one of the items on the stack is determined.
Second, the daughter (dependent) from the dependency relation is removed and the parent’s
start and end position is modified to create a span covering the position of the daughter
within the parent’s start and end position. Left-reduce operation makes a token from the
stack a dependency parent of the token at the beginning of the queue. Right-reduce operation
makes the token at the beginning of the queue a dependency parent of a token on the stack.
These three operations continue until the queue is empty and a stack with one token is found
in which the token’s start and end position covers the whole sentence length in question, in
which case the parse is considered successful. Otherwise, is unsuccessful.

We integrated an oracle in the parser for determining parser’s action. We ask the oracle
whether we should do a shift, left-reduce or right-reduce operation. If it suggests more than

ICCSW’13
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one operations then we add them onto an agenda. The parser will then work through the
agenda to explore the suggested actions specified in the agenda. The oracle determines the
parser type, the parser becomes a grammar-driven parser if the oracle is a formal grammar,
and it becomes a data-driven parser if the oracle is a set of inferred rules, which are extracted
from a treebank. At this stage, the oracle is a set of inferred rules, which are extracted from
a dependency treebank using a decision tree algorithm. Data-points for the decision tree
algorithm are state:action pairs.

5 Preliminary results

We have conducted some preliminary tests on the the data-driven parser using a combination
of techniques. The parser, by construction, is efficient and robust, because we provide it with
shift, left-reduce or right-reduce action at each parse step, which deterministically lead to
some analysis. However, the efficiency and robustness of the parser comes at the expense
of its accuracy. We identified a number of factors that may potentially affect the accuracy,
the main factors are: (i) the size of the queues and stacks used for parser training (where
the Penn Arabic Treebank is used for training and testing the parser), (ii) the length of
sentences, and (iii) the size of training data. As shown in Table 1, having one item on the
queue affected the accuracy greatly, while variations in the stack size have less effects on
the accuracy. The parser accuracy improved significantly when we trained it with queues
containing more than one item. We also tested the parser on various sentence lengths. We
divided the sentences in the test data into different sets of data size ranging from eight words
to one hundred or more words. The highest accuracy is obtained with sentences that have
less than twenty five words, as shown in Table 2. Using smaller training size than testing size
also affects the accuracy. Larger training data produce better accuracy as can be seen from
Table 3. The current state-of-the-art data-driven parser achieve %85 accuracy by combining
a weighted combination of two state-of-the-art parsers (MaltParser and MSTParser) [12].
Our accuracy is below state-of-the-art because, at this preliminary stage, we included a
limited number of features on that queue and stack which are used for parser training.

Table 1 Parser training with various number of items on queue and stack.

Queue items 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Stack items 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Results (%) 25 25 24 10 57 57 57 57 60 60 60 60 60 61 61 61

Table 2 Parsing with various sentence length.

No. words in Sentences 8 to 25 26 to 50 51 to 75 76 to 100 over 100
Results (%) 66 59 59 58 57

Table 3 Parsing 500 sentences with training data ranging from 125 to 5000 sentences.

Training data 125 250 500 1000 2000 3000 4000 5000
Results (%) 55 57 58 59 61 60 60 60
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5.1 Related work
There is an increasing interest for combining various parsing algorithms. Some work involved
combining state-of-art dependency data-driven parsers, such as MaltParser [7] and MSTParser
[18], while some other works focused on combing data-driven and grammar-driven parsers.
The latter is the type of work that is more relevant to the work we present in this paper.

[16] combined a grammar-driven parser (XLE system), which is based on Lexical Func-
tional Grammar (LFG), with a data-driven parser (MaltParser). In their approach, they
supply a data-driven parser with outputs from a grammar-driven parser. The grammar-driven
parser outputs phrase structured trees containing grammatical features. They convert the
output of their XLE platform to dependency trees in order to have two parallel versions of
the treebank: (i) a gold standard treebank, (ii) and a dependency treebank by converting
the XLE system output which contains additional grammatical features. They extend the
gold standard treebank with additional information from the corresponding LFG analyses.
MaltPaser is then trained on the enhanced gold standard treebank. Their results showed a
small improvement in accuracy when applied to English and German.

A similar work in this area is conducted by [9]. They constrain a Head-driven Phrase
Structure Grammar (HPSG) parser with outputs from a data-driven parser. HPSG parsers
use a small number of schemas for explaining general construction rules, and a large number
of lexical entries for expressing word-specific syntactic and semantic constraints. HPSG parse
trees are converted to Context Free Grammar style (CFG-style) trees and a dependency
treebank is then extracted from the CFG-style trees. the dependency treebank is used for
training a dependency data-driven parser, such as MaltPaser and MSTParser. Outputs from
data-driven parsers are used to constrain the HPSG parser. During HPSG parsing process,
the lexical head of each partial parse tree is stored and in each schema application the head
child is determined. Having such information about the head child and the lexical head,
the dependency produced by the schema application is identified and whether the schema
application violates the dependencies in the dependency treebank is checked. The HPSG
parser is forced to produce parse trees that are consistent with the dependency trees. This
approach is tested on English and some improvements in accuracy was achieved.

5.2 Next stage
The next stage is to implement a hybrid parser by integrating grammatical rules into this
parser. The aim is to constrain our data-drive parser with features from grammar-driven
approaches. In order to produce a hybrid parser, we make the oracle a weighted combination
of grammar W and decision tree D. We fix D to be 1 (or 1 times whatever probability we
can extract from it). If W = 0 then the parser is a data-driven parser. If W = N+1, where
N is the length of sentence, then the parser becomes a grammar-driven parser. Intermediate
values produce combinations. Low value for W will be fairly fast but prone to producing
non-conforming trees, high value for W will be slow but trees will tend to be legal.

6 Conclusion

Problems associated with using grammar-driven approaches and data-driven approaches
are discussed in this paper. The main structural complexities of Arabic are identified and
described in section 3. The first stage of our approach to hybrid parsing is explained and
the next stage for full hybrid parsing implementation is established. Preliminary results for
the parser is included in section 5. The parser is tested on Arabic because it is a complex
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language, compare to some other languages, hence it provides a rigorous test-bed. Finally,
two various related works in hybrid parsing approaches for natural language processing is
identified and briefly described.
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