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ABSTRACT
The problem of how to compare empirical graphs is an area
of great interest within the field of network science. The
ability to accurately but efficiently compare graphs has a
significant impact in such areas as temporal graph evolu-
tion, anomaly detection and protein comparison. The com-
parison problem is compounded when working with graphs
containing millions of anonymous, i.e. unlabelled, vertices
and edges.

Comparison of two or more graphs is highly computation-
ally expensive. Thus reducing a graph to a much smaller
feature set – called a fingerprint, which accurately captures
the essence of the graph would be highly desirable. Such an
approach would have potential applications outside of graph
comparisons, especially in the area of machine learning.

This paper introduces a feature extraction based approach
for the efficient comparison of large topologically similar,
but order varying, unlabelled graph datasets. The approach
acts by producing a ‘Graph Fingerprint’ which represents
both vertex level and global level topological features from
a graph. The approach is shown to be efficient when com-
paring graphs which are highly topologically similar but or-
der varying. The approach scales linearly with the size and
complexity of the graphs being fingerprinted.

CCS Concepts
•Mathematics of computing → Graph algorithms;
•Computing methodologies → Feature selection;
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1. INTRODUCTION
Network science is an interdisciplinary field for the study

of detailed real-world phenomena by viewing them as a graph.
In many domains, being able to compute the similarity be-
tween two graphs is extremely valuable. Such domains in-
clude: anomaly detection [2], protein comparisons [31] [24]
and the study of temporal graph evolution and link predi-
cation [1]. As such, graph comparison and specifically simi-
larity measurement is an area of increasing research interest
within the field of network science.

The terms graph and network are often used interchange-
ably within the literature, however, in this work we shall
use the term graph without loss of generality. We define
a graph G = (V,E) as a finite set of vertices (sometimes
referred to as nodes) – V – and a finite set of edges – E.
The elements of E are an unordered tuple {u, v} of vertices
u, v ∈ V . Two vertices are said be incident if there is an edge
between them. The number of vertices Nv = |V | and edges
Ne = |E| are often called the order and size of the graph.
A directed graph G, where each edge has an associated di-
rection, implying that u, v ∈ E is distinct from v, u ∈ E.
It is possible for a graph to have a set of labels associated
with vertices, edges or both. In such cases we can define a
graph G = (V,E, L), where L is a set of labels. Such labels
contain additional information about an edge, vertex or the
graph itself, for example a person’s name or age on a vertex
within a social network.

There are many definitions of similarity between graphs
[5] [14] [22], however, they can be broadly split into two
categories – those which can be applied to labelled graphs
and those which can be applied to graphs irrespective of la-
belling. When labels are available, similarity can be based
on such metrics as the number or content of labels appear-
ing in both graphs, however, when labels are not present
similarity is based around comparison of graph topology. In



this paper we are concerned with computation of the sim-
ilarity between unlabelled graphs and thus we focus upon
comparing graph topologies.

There are a number of considerations which need to be ad-
dressed when computing the topological similarity between
graphs to ensure the most accurate comparison. For exam-
ple, two graphs might appear very similar when considering
the micro-level linking between vertices, yet be of completely
different scales with regards to total graph sizes. A counter
example being two graphs which are of comparable sizes, yet
have vastly different degree distributions (The distribution
of edges between the vertices within a graph). A further
consideration is how sensitive should the comparison be be-
tween a graph and a new graph formed as a perturbation of
that graph (vertices and edges). Likewise, any comparison
approach should be able to scale to ‘high volume’ (vertices
and edges) graphs. Graph processing techniques are be-
ing applied to a broader range of data driven fields, where
data volumes are large and constantly increasing, resulting
in more graphs of larger sizes [20]. The current Facebook
social network, for example, is said to contain over one bil-
lion vertices and is still growing [9]. This dramatic increase
in the quantity of data means that larger and larger graphs
need comparing against one another. This has a compound
effect upon graph similarity measures, as any such algorithm
needs to be both accurate and computationally efficient.

In this paper we present a approach entitled Graph Fin-
gerPrint Comparison (GFPC) to compare the similarity of
large graphs by extracting micro and global level features.
We introduce the graph fingerprint as a compact but rep-
resentative abstraction of a graph, with numerous poten-
tial applications within the field of machine learning. We
demonstrate an application of the fingerprint approach for
the comparison of graphs that is label and attribute inde-
pendent as it exploits only the topology of a given graph in
order to compare similarity. The contributions of this paper
are as follows; Firstly, due to the nature of the features cho-
sen for extraction, the generation of the feature vector is less
computationally complex then other approaches [5] and thus
can be completed in near linear time with respect to dataset
size. Secondly, owing to the inclusion of the global features
within the similarity score, the GFPC method is sensitive
to both graph size and low-level vertex interconnectivity.

In Section 2 we discuss related work, Section 3 details the
motivation for the work, Section 4 details the generation
of graph fingerprints, Section 5 details the comparison of
fingerprints, Section 6 presents empirical results and Section
7 draws conclusions and explores possible future research.

2. PREVIOUS WORK
It has been argued [5] [14] that the various label depen-

dant and independent methods for graph comparisons can
be further categorised into three major cross cutting classes:
graph-isomorphism based methods, iterative methods and
feature extraction based methods.

Graph-Isomorphism - Two graphs are said to be similar
if they are isomorphic or if they contain isomorphic sub-
graphs [23]. Unfortunately computing sub-graph isomor-
phism is known to be an NP-Hard and thus not applica-
ble to even moderately sized graphs [7] [19]. The graph
isomorphism has been generalised by the Graph Edit Dis-
tance (GED) concept. The GED for two graphs is the num-
ber of operations needed to transform one graph into an-

other [32], with the permitted operations being the addi-
tion/subtraction/rewiring of vertices and edges, along with
the reversing of edge directionality. As with graph isomor-
phism, the GED between two graphs has been proven to
be NP-Hard [32]. Linked to the isomorphism approaches is
the GRAAL family of algthioms [15] which are designed to
align two graphs and have been used to align small protein
interaction graphs, but with an exponential runtime.

Iterative Methods - In iterative methods for comparing
graphs, a vertex generates a local score, capturing some
key information about itself which is then exchanged among
other vertices within a graph. Perhaps the most widely know
of the iterative methods is the SimRank algorithm, designed
to measure how similar vertices are within a single graph by
comparing the structure of a vertex’s local neighbourhood
[13]. Each vertex generates a score capturing information
about its neighbourhood, the algorithm then exchanges this
information among the vertices to look for similar scores.
This work is concerned with self-similarity within a graph,
not similarity to other graphs so is not suitable for the work
in this paper. A more modern iterative method for graph
comparison utilises belief propagation [30] as a way of finding
possible correspondences between vertices in two graphs [4].
However the approach requires possible correspondences to
be provided, as such the approach is not label independent.

Feature Extraction - Such methods extract a range of fea-
tures from a given graph and use them to compare with
other graphs, with the idea that the more similar two graphs,
the more similar their features. Feature extraction based
method have advantages over other approaches as they can
be highly scalable and thus have more efficient runtimes [14].
However, which features need to be extracted to give the
best, yet most compact, representation of a graph, is still
an area of active research [22]. One such feature extraction
method presented by Roy extracts a variety of centrality
measures (used to rank the importance of a vertex with a
graph [27]) for a graph and uses them to compare with other
graphs [25]. This approach requires that the graph data be
annotated with labels and the presented results only consid-
ered small graphs. An alternative feature extraction method
presented by Papadimitriou has been explored to measure
the similarity between snapshots of a graph of links between
webpages [22]. In this approach several similarity measures
are tested on time-series of graph data with the goal of de-
tecting anomalies between time-steps. However many of the
methods tested rely on labeled data to compute similarity.

The NetSimile algorithm [5], considered to be the most
state of the art approach, relies upon extracting details about
the ‘EgoNet’ (A vertex’s EgoNet is every other vertex which
is connected to it in it’s local neighbourhood) for each vertex
within a graph which is then compared, via a distance met-
ric, with results from other graphs. In the presented results,
NetSimile is shown to be independent of graph size when
making the comparison and only considers the similarity of
the underlying linking model, meaning that two graphs of
vastly different scales could be identified as similar.

Feature extraction has been explored outside of similar-
ity measurement as a way of classifying graphs based on
comparisons between global features and labels [18]. Addi-
tionally feature extraction has been explored by the anomaly
detection community as a way of detecting unusual elements
or events within static and temporal graphs [2].



3. GRAPH COMPARISONS

3.1 Motivation and Requirements
The research behind the GFPC approach is part of a larger

body of work investigating new machine learning techniques
to study and predict the evolution of graphs. As such, an
accurate way of comparing an empirical data source to a syn-
thetically generated one, as predicated by the machine learn-
ing algorithm, was needed. Any difference between the em-
pirical and generated datasets could be used to validate the
generation method. Thus it was crucial that it was highly
accurate and sensitive to small changes in graph structure.
The development of the GFPC approach was required when
we found existing methods for graph comparison to be insen-
sitive to highly similar graphs, ignored a graph’s size when
making comparisons or had an unacceptably long runtime
when processing large datasets. In this context, we define
two graphs to be similar if they share similar global and mi-
cro level topological features. As such, the development of
our approach was driven by the following requirements:

1. Scalability - The new approach should be highly scal-
able, to graphs of millions of vertices/edges, and capa-
ble of computing the similarity in a finite time. Ide-
ally the approach should be portable to a many-core
or distributed graph processing system to help with
scalability.

2. Sensitivity To Graph Size - The similarity score
should take the size and order of the graphs into con-
sideration.

3. Sensitivity To Similar Topologies - It should be
able to detect the difference between graphs which are
highly structurally and topologically similar.

4. Label Free - Finally, it should be able to perform
comparisons without the need for labeled datasets.

3.2 Approach Overview
Our approach is comprised of two distinct stages: The

generation of a graph’s fingerprint (the GFP approach) and
the comparison of these fingerprints (the GFPC approach).
The Graph FingerPrint (GFP) generation takes the high
dimensional graph object and reduces the complexity down
to two fixed length vectors. The GFP approach achieves
this by extracting micro and global features from the given
graph, allowing it to capture both the macro and microscopic
topological features. The decision to extract both vertex
level and global level features was driven by the desire to
make the comparison between graphs more sensitive to small
variations in the underlying graph topology and the overall
size of the graph than the current state of the art methods
[5]. The aim was to create a feature set which comprises of
a wide spectrum of similarity scores when compared with
other graph comparison techniques.

The GFP approach is broken down into three stages re-
quired to generate a feature set:

1) Vertex Level Feature Extraction 2) Vertex Level Fea-
ture Creation 3) Global Level Feature Extraction

These stages are executed for each graph to generate their
fingerprint which can be used to compare graphs and can be
stored for later use. After the vertex features have been
extracted from the graph, they are then aggregated during

the vertex feature creation stage. In addition global features
are also extracted from each graph. It is worth noting that
the GFP approach can be extended to include any vertex or
global level feature, not just those detailed in this paper.

The GPFC approach then computes the similarity be-
tween any two graphs using the following stages:

1) Vertex Level Comparison 2) Global Level Comparison
3) Final Similarity Score Generation.

Once both the vertex and global level features have been
prepared for each graph, a vector distance metric âĂŤ we
use the Canberra distance metric [16] in this paper. This
results in two separate similarity scores, one comparing the
vertex level topology and one the global level similarity. The
last stage is to combine these two scores to produce the
final similarity score between two graphs. In the next two
sections, both the GFP and GFPC approaches are described
in greater depth.

4. GENERATING GRAPH FINGERPRINTS

4.1 Vertex Features
The GFP approach extracts features from each vertex

within a graph. Although a wide selection of vertex fea-
ture metrics exist each exhibits different characteristics in
terms of topological sensitivity and runtime. Through ex-
perimentation we have determined that the following six fea-
ture metrics gives the best balance between topological sen-
sitivity and runtime. However, other metrics could also be
used if other characteristics of a graph are important. For
each of the six vertex features listed below, a value is ex-
tracted for each vertex v ∈ V .

Eigenvector Centrality Value (Ax) - The Eigenvector
centrality, as with all centrality measures, is used to calcu-
late the importance of each vertex within a graph [6]. Eigen-
vector centrality calculates the importance of a vertex based
upon the number of connections it has originating from other
important vertices. Formally the Eigenvector centrality can
be written as the following eigenvector equation, where λ is
the largest eigenvalue, A is the graph in adjacency matrix
from and x is the eigenvector centrality:

Ax = λx.

PageRank Score (PR(v)) - The PageRank centrality
method was originally developed by Google as a way of rank-
ing web pages [21], however it is now commonly used to
measure the local influence of a vertex within a graph [11].
The PageRank score for a given vertex v is:

PR(v) =
1− d
N

+ d
∑

u∈Γ−(v)

PR(u)

d+(u)
,

where Γ−(v) is the set of incoming neighbours of v, d+(u) is
the out-degree of u and d is a constant damping factor (0.85
for this work).

Total Degree (tdv) - This is the sum of both the in and
out degree for the vertex v:

tdv = Γ−(v) + d+(v).

Two-Hop Away Neighbours (thv) - The number of
two-hop away neighbours from the current vertex v gives
an indication of how connected, and thus how important, a
vertex’s neighbourhood is within the graph:



thv =
1

|N(v)|
∑

∀j∈N(v)

d+(j),

where N(v) is every vertex incident on the current vertex v.
Local Clustering Score (cv) - The local clustering score

for vertex v represents the probability of two neighbours of
v also being neighbours of each other [28]:

cv =
2Φ

d+(v)(d+(v)− 1)
,

where Φ is the number of pairs of v′s neighbours which are
themselves connected.

Average Clustering of Neighbourhood (ncv) - The
average clustering score of the neighbourhood is taken for
each vertex by taking the mean of all the local clustering
scores for the vertex’s neighbourhood:

ncv =
1

|N(v)|
∑

∀j∈N(v)

cj ,

where cj is the local clustering score computing in the pre-
vious feature extraction step.

4.2 Global Features
In order to make the GFP approach sensitive to the overall

features of a given graph, a selection of global features are
extracted in addition to previously defined vertex features.
GFP extracts a total of six global features from each graph.
The global features, chosen to represent each graph, were
selected due to their ability to capture key elements of global
graph topology, whilst also being efficient to compute. A
vector is used to represent these six global features:

Graph Order - Defined as: |V |.
Number of Edges - Defined as: |E|.
Number of Triangles - The number of triangles, α, for a

given graph is the number of vertices which form a triangle,
with a triangle being a set of three vertices with an edge
between every member.

Global Clustering Coefficient - This feature is a repre-
sentation of how connected the graph is overall, using the to-
tal number of possible vs complete triangles within a graph:

gc = 3
α

β
,

where β is the number of connected triplets of vertices (three
vertices which are all connected, but not necessarily into a
triangle) within the graph.

Maximum Total Degree Value - This represents the
total number of edges the most connected vertex in the
graph has to other vertices.

Number of Components - This is the total number
of components within the graph, with a component being
a subgraph in which there is a possible path between ev-
ery vertex, whilst vertices in different components have no
possible path between them.

4.3 Feature Creation
The matrix, V Fm,n, where m = |V |, contains all the ver-

tex feature scores as defined in Section 4.1, and n = |F | (F
is the vector of features for each vertex):

V Fm,n =


f1,2 · · · f1,n

f2,2 · · · f2,n

...
. . .

...
fm,2 · · · fm,n


In order to create the graph fingerprint, we need to reduce

the dimensionality of the feature matrix down to a more
compact vector. To perform this transformation, a series
of metrics are taken for each of the feature columns in the
matrix. The metrics chosen are the median, mean, standard
deviation, variance, skewness, kurtosis, minimum value and
maximum value. These are often used and well understood
methods to capture numerical variation.

After this process has been completed, the resulting vertex
feature vector −→vg1 for graph G1 has been created. The ver-
tex feature vector contains the eight aggregation scores for
each column in the feature matrix which are concatenated
together:

−→vg1 = (x̄1,Mo1, σ1, σ
2
1 , Skew[x]1,Kurt[x]1, x(1)1, x(n)1, ...

, x̄n,Mon, σn, σ
2
n, Skew[x]n,Kurt[x]n, x(1)n, x(n)n).

5. COMPARISON OF GFPS
The GFPC approach must compare the fingerprints of two

graphs to compute their similarity. After extensive experi-
mental evaluation and similar to [5], the Canberra distance
was selected to compare the numerical distance between the
fingerprints. Other distance metrics tested including the
Bray, Correlation, Chebyshev, Cosine and Manhattan but
these were found to be insensitive when the feature vectors
were highly similar, or produced unintuitive results such as
a high similarity scores for highly dissimilar graphs.

The Canberra distance between two vectors is:

CD(−→p ,−→q ) =

n∑
i=1

|pi − qi|
|pi|+ |qi|

.

The Canberra distance is able to detect changes close to zero,
which makes it ideal for detecting small variations in graph
topology – one of the key goals for the GFPC approach.
The Canberra distance is used to compare both the distance
between the vertex feature vectors and the global feature
vectors. The two graphs are more ‘similar’ the closer the
result of the Canberra distance is to zero, with a score of
zero indicating that the graphs are ‘fingerprint’ identical.

5.1 Final Similarity Score Generation
The GFPC approach returns two similarity scores, one

for the distance between the vertex feature vectors vfs and
one for the distance between global vectors gfs for the two
graphs being compared. These two scores can be used in-
dependently to compare the topology and size as separate
entities. However, the GFPC approach can produce a final
similarity score between the two graphs, using the following
aggregation - FinalSimScore = vfs(1−γ+gvs ∗γ). Where
γ is a user controllable parameter to adjust the weighting of
the difference between the global feature vectors in the final
similarity score.

5.2 Implementation
The GFP and GFPC approaches are currently implemented

in Python, utilising the Graph-Tool package [8] to perform



Table 1: Graph Datasets Used
Dataset |V | |E| gc α

Ca-HepPh 12008 118521 0.6115 3358499
Cit-HepTh 27770 352807 0.3120 1478735
com-dblp 317080 1049866 0.6324 2224385

Enron-Email 36692 183831 0.4970 727044
p2p-Gnutella04 10876 39994 0.0062 934

soc-Slashdot0811 77350 516575 0.0549 548054

the graph analytic stages of the algorithm. The Python and
Graph-Tool combination was chosen at it offered the possi-
bility for rapid prototyping, whilst also offering good com-
putational performance. The Graph-Tool package is writ-
ten in C++ using the Boost Graph Library [26] and with
support for OpenMP, allowing it to be used on many-core,
shared memory architectures. Graph traversal is known to
be slow for massive graphs [20], therefore, GFPC has been
designed to only traverse through the entire set of vertices
once, collecting all required features for a certain vertex be-
fore proceeding to the next.

The GFP and GFPC frameworks have been open sourced
under a GPLv3 licence and are available on GitHub1. In
addition, the code used to run each experiment and the im-
plementation of NetSimile used for the comparison, also im-
plemented in Graph-Tool, is available in the same repository.

6. RESULTS
In this section, the GFPC approach is assessed against the

four criteria as discussed in section 3.1. In each experiment
GFPC is compared to the current state of the art feature ex-
traction graph comparison method NetSimile. As both the
GFPC and NetSimile approaches generate their final simi-
larity scores using the Canberra distance, their results are
comparable. As such, comparisons between GFPC and NS
are based are based upon any differences between there dis-
tance scores. It is worth noting that other distance metrics
would produce similar differences between the results.

6.1 Experimental Setup
All the experiments presented in this paper were per-

formed on a system with 2 * 10C 2.3GHz Intel Xeon E5-
2650 v3, 64GB RAM, CentOS 7.2, GCC 4.8.5, Boost 1.56,
Python 2.7.5 and Graph-Tool 2.8. For all experiments, γ
has been set to 2. All the random Barabási-Albert and
Erdős-Rényi [8] graphs used for the experiments were gen-
erated from within Graph-Tool’s random graph generation
methods. For the random Barabási-Albert graphs gener-
ated, the out-degree of newly added vertices parameter was
set to two. This means that for the newly created graph,
|E| = |V | ∗ 2. The empirical data used for some of the
experiments was taken from the widely used Stanford Net-
work Analysis Project (SNAP) datasets [17]. A summary of
the datasets used can be seen in Table 1. The datasets are
from a range of domains including citation, collaboration,
communication and social networks.

6.2 Random Rewire Process
To demonstrate that the GFPC approach is highly sensi-

tive to the underlying topology of a given graph, the edges
in a Barabási-Albert preferential attachment graph were re-

1https://github.com/sbonner0/GraphFingerprintComparison

wired in a random fashion. Figure 1 shows how the degree
distribution of the original graph was altered by the random
rewiring process, with the numbers representing the num-
ber of rewired edges within the graph. This Figures shows
the probability of a vertex having a certain number of con-
nections. This process alters a given source graph’s degree
distribution by randomly altering the source and target of a
set number of edges according to the Erdős-Rényi random
model. During this re-wire process, it is not guaranteed
that the source or target of the edge will be altered, indeed
it is not always possible due to the graphs topology. The
rewiring process does not change the total number of edges
or vertices within the graph.

6.3 Sensitivity to Variations in Topology
For this experiment the graph rewiring process (section

6.2) was used to transform an input Barabási-Albert graph
with 200,000 vertices by rewiring a varying percentage of the
edges. The degree distributions of the graph after varying
the amount of rewiring can be seen in Figure 1.

For the results, the original graph was compared to each
of the rewired graphs to measure similarity. Figure 2 shows
that GFPC is sensitive to the changes in the topology of
the graph, with an increase in the percentage of the graph
rewiring always being detected as more dissimilar to the
source graph.

6.4 Sensitivity to Variations in Size
The GFPC approach was tested for its sensitively to varia-

tions in the global graph size. For this experiment, a random
Barabási-Albert graph Go was generated with |V | = 10, 000
and |E| = 20, 000. To compare with the source graph,
six new graphs were generated again using the Barabási-
Albert method each with increasing numbers of vertices and
edges. As we are utilising the Barabási-Albert method all
the graphs will be highly structurally similar. The results
comparing the GFPC and NetSimile method for sensitivity
to variations in graph size are displayed in Figure 3. In the
figure, graphs of varying sizes were compared to the original
graph Go to generate the similarity score.

Figure 3 shows that the GFPC is more sensitive to vari-
ations in graph size than the NetSimile method, with an
increase in the size of the graph always detected as more
dissimilar to the source graph.

6.5 Runtime Analysis
The final criteria upon which GFPC was evaluated was the

the runtime of the feature extraction algorithm when gener-
ating a fingerprint across a range of empirical data sources,
as well as comparing it to the NetSimile implementation.
Figure 4 shows the runtime of the feature extraction stages
for both GFP and NetSimile, across the datasets detailed in
Table 1, with all experiments being repeated five times and
the error bars being one unit of standard deviation. The
figure shows that GFPC is constantly faster then NetSim-
ile, often substantially. GFPC is able to process the largest
graph, com-dblp, in under 90 seconds, with all other graph
datasets being processed in less time.

In addition to testing on empirical datasets, the run time
of GFP approach was evaluated across a range of synthetic
Barabási-Albert graphs. These experiments were performed
to assess the relationship between number of vertices / edges
within a graph and the runtime of GFP. Again, all exper-
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Figure 1: Change In Degree Distribution After Rewiring Process.
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Figure 2: Sensitivity To Graph Topology

iments were repeated five times and the error bars being
presented as one unit of standard deviation.

Figure 5 shows how the runtime of the GFP approach
responds to increases in the number of vertices. This fig-
ure shows that GFP responds in an almost linear fashion
to increases in the number of vertices within a graph. The
anomalous result at the start of the graph can be attributed
to the constant time Python requires to create the data
structures and perform other setup tasks.

Figure 6 shows how the GFP approach responds to in-
creases in the number of edges within a graph. For this
experiment, the number of vertices was kept constant at
10,000. This figure shows that the GFP approach also re-
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Figure 3: Sensitivity To Graph Size

sponds in a near linear fashion to increases in the total num-
ber of edges within a graph. However, the runtime appears
to decrease when processing a graph with 100 millions edges.
It is possible that when processing graphs of this scale, both
of the sockets within the server are fully utilised.

6.6 Discussion
The evaluation stage for the GFPC approach has been

positive and it has achieved all of the goals as laid out in
section without the need for labeled datasets 3.1. The GFPC
approach also outperforms the current state of the art fea-
ture based extraction methods on all metrics. The GFPC
approach is sensitive to detecting small variations in graph
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topology and overall graph size. Due to the nature of the
features extracted, the GFP approach requires no labels.
However, perhaps the most promising result to arise is the
near linear runtime of the approach when increasing dataset
size. This has the potential to improve machine learning
approaches of temporal graph analysis as there is now an
efficient way to validate models against empirical data.

In addition, the results from this research have shown the
GFP approach to be an accurate but compact representa-
tion of a graph. The GFP approach is effectively able to take
the high-dimensional complexity inherent in graph datasets,
and reduce it to a single fingerprint vector. There are numer-
ous other applications, outside of similarity measures, that
could massively benefit from a compact representation of a
graph. The application of modern machine and deep learn-
ing techniques upon graph datasets is largely unexplored
[12]. The compact representation of graphs offered by graph
fingerprints could be a key aspect in unlocking the use of an
extended range of these techniques. An example of a poten-
tial additional use for graph fingerprints is the classification
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of unknown datasets by comparing their fingerprint vectors
to labeled ground-truth datasets. For example, do datasets
from a certain domain have fingerprints unique enough that
they can be used to identify the domain? Previous work
has suggested that social networks, for example, have many
unique characteristics [3]. A graph fingerprint, taken from
a dataset with an unknown domain class, could potentially
be used to assign one based upon past training examples.

7. CONCLUSION AND FURTHER WORK
In this paper the Graph FingerPrint Comparison approach

for assessing the similarity of two unlabelled graphs, based
upon their global and micro features, has been presented.
The GFPC approach is shown to be sensitive to small vari-
ations in graph topology, graph size, function without the
use of labeled datasets and scale near linearly with dataset
size. Thus the GFPC approach completes all of the goals
established for it in section 3.1. The approach demonstrates
some promising results and the concept of a compact but
accurate representation of a graph has numerous potential
additional applications in fields such as machine learning.

There is large scope for future research based upon the
work presented in this paper. Currently the Python Graph-
Tool implementation of the approach can only run upon
a single compute node which limits the maximum size of
graphs which can be compared. Further research is ongo-
ing to port the feature extraction methods onto a graph-
parallel framework which would improve speed and scalabil-
ity. Currently the use of one of the Pregel [20] variants such
as GraphX [29], or one of the emerging Graph GPU graph
processing systems [10] are being explored. In addition to
this the application of the extracted graph fingerprints to
other use cases within network science will be explored. For
example, could a graph’s fingerprint be used to classify, via
the use of machine learning, the graph as being a member
of a certain domain class or to display properties consis-
tent with one of the graph generation methods? Or could
the variations in a graph’s fingerprint over time be used to
study and model it’s temporal evolution? Hopefully the po-
tentially useful applications of studying a graph’s fingerprint
will be numerous.
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