
Mesh Alignment Using Grid Based PCA

David Kaye, Ioannis Ivrissimtzis

Keywords:
Mesh alignment; Principal Component Analysis; Grid based methods

Abstract:
An algorithm is presented to align one mesh to another by means of a regular 3D grid upon which
Principal Components Analysis (PCA) is performed. The use of a 3D lattice external to both
inputs increases the robustness of PCA, particularly when dealing with meshes of different and
possibly uneven vertex density. The proposed algorithm was tested on meshes that have undergone
standard mesh processing operations such as smoothing, simplification and remeshing. In several
cases the results indicate an improved robustness compared to performing PCA directly on mesh
vertices.

1 INTRODUCTION

It is often useful to compare two meshes, point
clouds, or a mixture of the two. For example, in
shape recognition one might compare two meshes
or two point clouds asking whether they belong
to the same category.

The comparison of two meshes usually starts
with their alignment. It should be noted that the
exact way in which two meshes are best aligned
is not clearly defined. In fact, the best align-
ment can be application-dependent, and mesh
alignment should be seen as an ill-posed prob-
lem. Nevertheless, a good alignment algorithm is
expected to be able to align a mesh with a version
of it that has undergone common mesh process-
ing operations such as smoothing, simplification
or remeshing.

Alignment is typically done by computing a
translation, a scaling and a rotation, which are
then applied to one of the meshes to align it with
the other. The computation of the translation is
usually done by aligning barycentres, while the
scaling is done by aligning bounding boxes or
bounding spheres (Sfikas et al., 2014). These are
both considered less challenging to compute than
the rotation, which is the focus of this paper.

The simplest and most widely used method of
aligning meshes aligns the principal axes of the
mesh vertex sets. Despite its popularity, it is well
documented that in demanding applications such
as shape recognition the results of this alignment
method may not be satisfactory, especially in the
case when the mesh undergoes processing that

potentially disturbs the distribution of mesh ver-
tices such as simplification and remeshing.

One way around this problem is to voxelise
the mesh and then apply an alignment algorithm
for volumetric data. However, such a method can
be computationally demanding, and the cost of
the voxelisation cannot be fully justified if it is
used for mesh alignment only. A second approach
would be to apply PCA not on the mesh vertex
set but on a more uniform point set produced by a
mesh sampling method. However, such a method
would depend on the quality of the triangulation
and for example, a large number of long thin tri-
angles in the mesh could cause problems.

Here, we propose a solution in between the
above two approaches, that is, a mesh sampling
method which, without being a fully volumetric
method, is based on creating a point sample on
a regular grid and then performing PCA on that
point sample.

1.1 Contribution

This paper presents a novel method for mesh
alignment based on performing PCA on a point
sample on a regular grid. The algorithm is de-
terministic and does not depend on any initial
orientation or any other prior knowledge.

The algorithm can also process point clouds as
inputs, allowing point clouds to be aligned with
meshes, or two point clouds to be aligned.

Connectivity information is used to provide
robustness in the face of poorly meshed objects,
for instance, those with large triangles.



Should large meshes need to be aligned, mem-
ory could be saved by running the algorithm in
a layered, or even striped fashion, as proposed in
(Kaye and Ivrissimtzis, 2011).

1.2 Limitations

The main limitation of the algorithm is that since
PCA is applied to a set of points from a relatively
coarse grid, the method is less accurate than PCA
on mesh vertices when the two meshes are identi-
cal or almost identical. In a sense this larger error
is a trade-off for the increased robustness and our
experiments show that it is in a range that in
most applications would be considered tolerable.

Since the method is underpinned by PCA, it
is not particularly well suited for inputs that have
high levels of rotational symmetry.

Finally, since the algorithm is highly geomet-
ric in nature, it would be challenging to adapt
to incorporate non-geometric primitives such as
colour (Roy et al., 2004).

2 RELATED WORK

Most of the work on mesh alignment focuses on
and enhances the Iterative Closest Point (ICP)
algorithm, which takes a set of points common
to both input meshes and iteratively rotates the
mesh until the common points are aligned as
closely as possible. A variety of modifications and
enhancements to the original ICP algorithm have
been developed and studied; to make it geomet-
rically stable (Gelfand and Rusinkiewicz, 2003),
and to make it work with approximate nearest
neighbouring points or with added noise (Maier-
Hein et al., 2010). Other ICP based methods
require an explicitly defined initial guess, which
prevents the method being used in a completely
automated manner (Besl and McKay, 1992).

Due to the variants of the ICP algorithms re-
quiring subset inputs, and possibly some manual
intervention, they are not directly comparable to
the algorithm presented here. In reality, many
practitioners use PCA directly on the vertices of
the input meshes in order to provide an alignment
that is good enough to work with. PCA is a ro-
bust, statistical method that is used extensively
for non-geometric problems requiring dimension-
ality reduction. It is also efficient, since it is es-
sentially a quadratic optimisation problem based
on variance maximisation. A technique that is
similar in spirit, called Independent Component

Analysis (ICA) (Hyvärinen et al., 2001), is based
on quartic optimisation and has also been used for
3D object recognition (Sahambi and Khorasani,
2003).

Despite its popularity, PCA has been reported
to perform poorly when aligning meshes for 3D
model recognition and this has been cited as moti-
vation for developing rotationally invariant mesh
descriptors (Kazhdan et al., 2003). Neverthe-
less, several important shape descriptors, such as
(Cantoni et al., 2013), shape histograms (Ankerst
et al., 1999) and descriptors based on higher or-
der moments (Elad et al., 2002), are not rotation-
ally invariant and thus require alignment. Exten-
sions to PCA to overcome its shortcomings in-
clude PCA performed on the normals of a surface
(Papadakis et al., 2007), and a continuous version
of PCA applied to whole mesh triangles rather
than just their vertices (Vranic et al., 2001). The
latter is independent from distribution of vertices
within the mesh and thus, overcomes some of the
limitations of PCA the same way our method
does. However, it requires a triangle mesh as in-
put and has no obvious extensions to point clouds.

Finally, we note that PCA on mesh vertices is
equivalent to least square fitting of a plane, and
thus, the method of choice for the local tangent
plane estimation required in applications ranging
from surface reconstruction (Hoppe et al., 1992)
to feature detection (Pauly et al., 2003).

In our implementation, we used the Point
Cloud Library (Rusu and Cousins, 2011) for PCA
and MeshLab (Cignoni et al., 2008) for the var-
ious geometric operations we performed as part
of our testing; smoothing, simplification, adding
noise, and remeshing.

3 ALIGNMENT ALGORITHM

We begin with two meshes (A and B), assuming
that mesh B has been obtained from mesh A af-
ter a rotation by an unknown angle around an
unknown axis and that some mesh processing op-
eration may have been applied to B. Each mesh
is centred on the origin as a preprocessing step.
The translation can be stored and the reverse op-
eration applied at the end of the procedure. The
basic alignment algorithm first creates a regular
grid around each mesh, then computes the subset
of the grid nodes that are near to the mesh, and
finally applies PCA to this subset of nodes.



Figure 1: Left: the black nodes are the smallest sub-
grid that completely contains the red face. Centre:
the smallest subgrid is extended to decrease disconti-
nuities. Right: the nodes highlighted in green are the
imprint of the red face on the lattice.

3.1 The Basic Algorithm

For each mesh M , we first create a regular 3D
lattice, LM , around the mesh M . The dimension
of the grid is given by the user and trades-off the
speed of the algorithm against the accuracy of the
alignment. We then cycle through all the faces
in M , and perform the following for each face
f ∈M :

• Calculate the smallest rectangular subgrid, Pf

in LM that completely contains f in all dimen-
sions.

• To avoid discontinuities, Pf is expanded by
one node in each direction along each axis, so
a 2× 2× 3 subgrid becomes 4× 4× 5.

• For each lattice node, n ∈ Pf , determine the
shortest distance from n to f .

• If the distance from n to f is less than 2 times
the edge of a grid cell, export the node to list
IM (the ‘imprint’ of the mesh M on the lat-
tice).

For each mesh imprint (from Figure 1; the
collection of green nodes from every face in the
mesh), we perform PCA on the nodes’ coordi-
nates and sort the output eigenvectors in decreas-
ing order of eigenvalue magnitude. Note that
a more sophisticated implementation of the al-
gorithm would apply a weighted PCA, with the
weight of each node derived from its distances to
the mesh triangles that pushed it in IM . How-
ever, we have found experimentally that would
not have a significant effect on the results and
thus, we opted for the much simpler unweighted
PCA.

Between the two eigenbases (one for each
mesh) formed by the principal components, pairs
were formed based on them having the largest,
middle, or smallest eigenvalue magnitude (blue,
green, and red correspondingly in Figure 2).
Since PCA does not provide oriented principal
components, we have to ensure that the two

Figure 2: Left, solid: eigenbasis of mesh A. Centre,
dashed: eigenbasis of mesh B. Right, dotted: eigen-
basis of mesh B′.

eigenbases are consistently oriented. Were an in-
consistent orientation was detected, the sign of
the eigenvector with the smallest eigenvalue was
flipped in one of the meshes.

For the actual mesh alignment, we start with
the first pair of principal components, a1, b1,
(those with the largest eigenvalues; blue). The
rotation aligning a1 with b1 (blue) is computed
and applied to mesh B to produce mesh B′. Lat-
tice imprinting and PCA is then performed on
B′. The rotation around a1 (or, equivalently at
this point, b1) aligning a2 with b′2 (green) is then
computed and applied to B′ to produce a mesh
B′′ which is in alignment with A.

Note that it would have been possible to work
out both rotations (or even, a single rotation)
from the initial PCA, however this is likely to
be less accurate, as the imprint could be different
after the first rotation. Re-running the analysis
ensures that PCA is run on a dataset that is closer
to the original.

3.2 Iterative Algorithm

The basic algorithm can be repeated on mesh A
and the mesh B′′ (which has been aligned with
A). The procedure usually leads to a closer align-
ment, but the decrease is not monotonic, and in
some cases it could even lead to poorer alignment.

We believe that the reason for the non-
monotonic decrease is the discrete nature of the
grid relative to the mesh itself, as relatively small
rotations will result in more significant changes
to the distribution of grid nodes marked for pro-
cessing.

3.3 Eigenvector Orientation

In order for the method to work, the principal
components of meshes A and B must be consis-
tently oriented. However, PCA does not define a



Table 1: Mean errors (in degrees) when recovering
angles from a set of known rotations.

Mesh Mesh Imprint Vertex PCA
Bunny 0.45407 0.00648

Armadillo 0.18480 0.01150
Fandisk 1.11274 0.00075
Blade 0.93554 0.00650

Statuette 5.62708 0.01968

consistent orientation. In order to align the two
principal components ai and bi consistently we
evaluated a sum of distances function on the two
extreme mesh vertex projections on the principal
axis. For each of these points, the distance to
every data point was summed. Then the princi-
pal axis was oriented in the direction of the point
with the largest associated sum.

3.4 Input Types

The algorithm can, with minimal alteration, be
used to align a mesh with a point cloud, or even
to align two point clouds. Each point in the cloud
is simply interpreted as a face with zero area.
Here, the benefit of using the lattice instead of
performing PCA directly on the point cloud is
the increased robustness of the calculations due
to the external reference. Which allows, for ex-
ample, the alignment of a point cloud and a sim-
plified version thereof.

When working with a point cloud, the same
procedure would be followed, but treating each
point as a face with no area, so the initial con-
taining subgrid (Pf above) would always be a sin-
gle cube, which would become a 3×3×3 subgrid
after expansion.

4 RESULTS

In the first experiment, each mesh had its prin-
cipal components computed by mesh imprinting
and was rotated by a known angle around the
largest principle component. The proposed al-
gorithm was then used to recover the angle by
which the mesh had been rotated. This was then
repeated using vertex PCA and the results were
compared. The results are summarised in Ta-
ble 1.

Since mesh alignment is an ill-posed problem,
in a second experiment we evaluated the visual
relevance of the reported errors, by rotating the
test meshes by an unknown angle around an un-
known axis. The algorithm was used to bring

Figure 3: Standard Bunny results. Left: initial ro-
tation, middle: original, unrotated mesh, right: four
iterations.

Figure 4: Standard Blade results. Left: initial ro-
tation, middle: original, unrotated mesh, right: four
iterations.

them back into alignment. The results are shown
in Figures 3 - 6.

4.1 Robustness against mesh
processing operations

In the first experiment, three iterations of Lapla-
cian smoothing were applied to each model and
the process of random rotation repeated. The re-
sults are shown in Figures 7 - 10.

In the second experiment, the test meshes
were simplified using clustering decimation with
a cell size of 1% of the diagonal of the bounding
box. The decimation results are shown in Table

Figure 5: Standard Armadillo results. Left: initial ro-
tation, middle: original, unrotated mesh, right: four
iterations.



Figure 6: Standard Statuette results. Left: initial ro-
tation, middle: original, unrotated mesh, right: four
iterations.

Figure 7: Smoothed and rotated Bunny results. Left:
initial rotation, middle: original, unrotated mesh,
right: four iterations.

Figure 8: Smoothed and rotated Blade results. Left:
initial rotation, middle: original, unrotated mesh,
right: four iterations.

Figure 9: Smoothed and rotated Armadillo results.
Left: initial rotation, middle: original, unrotated
mesh, right: four iterations.

Figure 10: Smoothed and rotated Statuette results.
Left: initial rotation, middle: original, unrotated
mesh, right: four iterations.

Table 2: Number of faces in the original and deci-
mated meshes.

Mesh Original faces Decimated faces
Bunny 35,947 9,588

Armadillo 172,974 7,540
Blade 1,765,388 16,088

Statuette 10,000,000 18,330

2 and the alignment in Figures 11 - 14.
In the third experiment, the proposed method

and vertex PCA were run on the Bunny, Ar-
madillo, Fandisk, Blade and Statuette models and
principal components were computed. The algo-
rithms were then run against remeshed, simpli-
fied, noisy, and smoothed variants of those same
meshes. For each method, the angular deviation
between corresponding principal components of
the original and the processed mesh were com-
puted. The results are summarised in Tables 3 -
6.

For the noisy meshes, vertices were randomly
displaced by 1% of the bounding diagonal. For
the remeshed models, surfaces were reconstructed
using the Poisson method (Kazhdan et al., 2006)
with 10 octree subdivisions.

The proposed algorithm performed well on the

Figure 11: Simplified and rotated Bunny results.
Left: initial rotation, middle: original, unrotated
mesh, right: four iterations.



Figure 12: Simplified and rotated Blade results. Left:
initial rotation, middle: original, unrotated mesh,
right: four iterations.

Figure 13: Simplified and rotated Armadillo results.
Left: initial rotation, middle: original, unrotated
mesh, right: four iterations.

Figure 14: Simplified and rotated Statuette results.
Left: initial rotation, middle: original, unrotated
mesh, right: four iterations.

Table 3: Average deviation of principal components
(in radians) when models were remeshed.

Remeshed Mesh Imprint Vertex PCA
Bunny 0.020450 0.044197
Fandisk 0.008237 0.008643

Armadillo 0.003517 0.014637
Blade 0.001020 0.018607

Statuette 0.063070 0.264650

Table 4: Average deviation of principal components
(in radians) when models were simplified.

Simplified Mesh Imprint Vertex PCA
Bunny 0.008457 0.031510
Fandisk 0.024567 0.116733

Armadillo 0.002427 0.007957
Blade 0.005060 0.008093

Statuette 0.017803 0.300917

Table 5: Average deviation of principal components
(in radians) when mesh vertices had noise added.

Noisy Mesh Imprint Vertex PCA
Bunny 0.001363 0.000333
Fandisk 0.000047 0.000240

Armadillo 0.000563 0.000757
Blade 0.000753 0.000357

Statuette 0.004997 0.000267

remeshed and simplified variants, but the noisy
and smoothed variants were better served by ver-
tex PCA. This is in line with our expectations
as remeshing and simplification are likely to have
a larger impact on vertex distribution than uni-
formly applied noise and smoothing.

4.2 Iterative Algorithm

The performance of the iterative algorithm is
shown in Figures 15 and 16. We notice that gen-
erally, the iterative algorithm has improved accu-
racy in each successive iteration and that most of
the improvement materialises in the first three or
four iterations.

Of particular note are the simplified Fandisk
results in Figure 15. Whilst Vertex PCA appears
to instantly converge to a highly accurate result,
in reality this was a very poor alignment - the
simplified Fandisk had many large, thin trian-
gles. This significantly altered the distribution
of vertices in the mesh and makes the compari-
son of the two sets of principal components in-
valid. The Mesh Imprint results on the simplified
mesh are a true representation of the alignment,
as are the Vertex PCA results for the standard
and smoothed Fandisk.

Table 6: Average deviation of principal components
(in radians) when meshes were simplified.

Smoothed Mesh Imprint Vertex PCA
Bunny 0.012873 0.000170
Fandisk 0.006650 0.000080

Armadillo 0.003757 0.000800
Blade 0.000270 0.000107

Statuette 0.001483 0.000000



Figure 15: Mean angular deviation plotted against
number of iterations for the Bunny, Armadillo and
Fandisk.

4.3 CAD Meshes

The proposed method is particularly well suited
for CAD meshes that have undergone mesh pro-
cessing operations.

The Room 215 model shown in Figure 17 is a
hand-made replica of an office created using CAD
software, it has 171,711 faces and significant dif-
ferences in vertex density. For instance, large ar-
eas of walls are represented by huge triangles, but
tiny triangles are used to pick out the detail and
high-curvature of the radiator grills and chairs.
The simplified form has 16,080 faces.

When the principal components of each
were computed and compared, Mesh Imprinting
proved very effective, with a maximum deviation
of 0.0086 radians across all principal components,

Figure 16: Mean angular deviation plotted against
number of iterations for the Blade and Statuette.

Figure 17: Wireframe view of the Room 215 model.
Areas of high curvature have more triangles and ap-
pear as solid colours.

compared to a minimum deviation of 0.11 radians
for vertex PCA.

The same test was run against a simple house
model and a remeshed form thereof shown in
Figure 18. The original mesh had 1,396 faces,
the remeshed model had 98,818. The maximum
deviation between the standard house and the
remeshed form thereof was 0.075 radians. Ver-
tex PCA however, had a minimum deviation of
0.12.

The model/dressed models in Figure 19 are a
pair of models that both depict a human figure.
This figure is nude in the regular model, but has
long hair and is wearing bulky/baggy clothes in



Figure 18: Wireframe view of the original House
model and its (much higher vertex density) remeshed
form.

Figure 19: Model/dressed model.

the second.

Both were analysed and had their principal
components compared. The computation was
reasonably stable for both models, showing only
small deviations between the two meshes, but
with smaller deviations being produced by the
mesh imprint. The maximum deviation between
principal components computed by imprinting
was 0.0022 radians, and the minimum computed
by vertex PCA was 0.012.

This is not too surprising, as the two figures
have the same pose and the changes from the reg-
ular model to the dressed model are relatively ro-
tationally symmetric between the two minor prin-
cipal components. The largest principal compo-
nent is along the height of the model, and the
proportions do not change sufficiently to make
much difference to this.

Table 7: Mean angular deviations (in radians) be-
tween the simplified and standard Room215, stan-
dard and remeshed House, and standard and dressed
Model.

Mesh Mesh Imprint Vertex PCA
Room 215 0.00647 0.11853

House 0.06064 0.20983
Model 0.00331 0.01230

Table 8: Initial scale of the meshes.

Mesh Volume
Bunny 78× 77× 60

Armadillo 127× 151× 115
Fandisk 121× 131× 67
Blade 352× 598× 274

Statuette 235× 396× 203
Sphere 105× 108× 105
Vase 55× 101× 55

Figure 20: Top left: Fandisk, top right: Sphere, bot-
tom: Vase.

4.4 Effect of Resolution

We experimented on the meshes at 10%, 50%,
100%, and 150% of their original scale. The initial
size (100%) of each mesh is shown in table 8. In
addition to the meshes used earlier, the Sphere
and Vase models were also used, and can be seen
in Figure 20.

Predictably, lower-resolution analyses usually
produced alignments that were not so accurate
as higher-resolution analyses. However for the
Bunny and Armadillo models the 150% resolu-
tion alignments were actually slightly less accu-
rate than the 100% resolution analyses.

The Vase, Sphere and Statuette all high-
lighted a limitation of the eigenvector orienta-
tion method; they produced inaccurate results as
one principal component was incorrectly aligned.
This occurs when the input meshes have high lev-
els of rotational symmetry. When run at an ap-
propriate resolution the algorithm is able to orient
correctly the principal components, leading to a
successful alignment. However, there appears to
be no universally optimal resolution for the lattice
in this regard.



5 DISCUSSION

The implementation of each algorithm was not
optimised due to the wide variety of different
techniques and circumstances under which each is
possible and appropriate. For instance, an imple-
mentation could be multithreaded, or run on the
GPU, or increase its memory footprint in order to
save on disk reads/writes. Our implementations
took the simple approach of reading the full file
from the hard drive, processing the data entirely
in memory, and writing the output back to the
hard drive in a single execution threaded.

Processing large meshes can require large
amounts of memory due to the sheer number of
points that must be processed. Our method (by
virtue of performing PCA on fewer points) will
naturally have a smaller memory footprint. This
would depend on the density of the mesh relative
to the density of the grid, though the there are
likely to be fewer circumstances when two very
sparse meshes must be aligned at high resolution
than the converse. In such situations however, the
sparseness increases the likelihood of small differ-
ences in vertex distribution causing problems for
Vertex PCA. Since our method is underpinned by
PCA, this provides a lower bound for the compu-
tational complexity.

In our experiments, the method used to con-
sistently orient the principal components was not
always successful. If the method fails then it
prompts a large (approximately π radians) rota-
tion to bring the principal component into what
it interprets as a correct alignment. This could be
solved in a practical scenario by adding metadata
to the mesh.

We note that the ICP algorithm is not directly
comparable to the proposed algorithm, as it re-
quires that one of the inputs be a subset of the
other, that is, that they share points.

Our results show that presented algorithm
works well for those inputs that have low ro-
tational symmetry. Since the alignment is per-
formed on a relatively coarse regular grid, the ex-
pected loss of accuracy compared to direct vertex
PCA is noticeable, but the error is inside a range
that would be considered tolerable in most appli-
cations.

Mesh Imprinting shows its strengths when
original inputs are poorly meshed, for instance,
if they have many long, thin triangles, or an un-
even distribution thereof. Note that while long
thin triangles are very rare in meshes that are
acquired through physical optical devices such as

laser scanners, they often dominate meshes pro-
duced by CAD software. In such cases, simplifi-
cation and remeshing significantly affect the dis-
tribution of the vertices, causing Vertex PCA to
produce highly inaccurate alignments.

In the future we plan a systematic analysis of
the error of the standard PCA caused by vertex
quantisation. Indeed, the small alignment error
produced by our method is essentially a vertex
coordinate quantisation error, which anyway may
be present in the vertex coordinates, if for exam-
ple the mesh had undergone lossy compression.
By showing, as we conjecture, that the align-
ment error of our method and the vertex PCA er-
ror caused by vertex coordinate quantisation are
comparable, we will further justify our approach.

6 ACKNOWLEDGEMENTS

The Room215 model is from the Max
Planck Institute. The House mesh was cre-
ated by user “pabong” and downloaded from
www.tf3dm.com. The model and dressed model
were created using the MakeHuman software from
www.makehuman.org. The Vase, Sphere, Stat-
uette, and Blade models were taken from the
AIM@SHAPE repository.

REFERENCES

Ankerst, M., Kastenmüller, G., Kriegel, H.-P.,
and Seidl, T. (1999). 3d shape histograms for
similarity search and classification in spatial
databases. In Advances in Spatial Databases,
pages 207–226. Springer.

Besl, P. J. and McKay, N. D. (1992). A method
for registration of 3-d shapes. IEEE Trans.
Pattern Anal. Mach. Intell., 14(2):239–256.

Cantoni, V., Gaggia, A., and Lombardi, L.
(2013). Extended gaussian image. In Ency-
clopedia of Systems Biology, pages 724–725.
Springer.

Cignoni, P., Callieri, M., Corsini, M., Dellepi-
ane, M., Ganovelli, F., and Ranzuglia, G.
(2008). Meshlab: an open-source mesh pro-
cessing tool. In Sixth Eurographics Italian
Chapter Conference, pages 129–136.

Elad, M., Tal, A., and Ar, S. (2002). Content
based retrieval of vrml objects: an iterative
and interactive approach. In Proceedings of



the sixth Eurographics workshop on Multime-
dia 2001, pages 107–118. Springer-Verlag.

Gelfand, N. and Rusinkiewicz, S. (2003). Ge-
ometrically stable sampling for the icp al-
gorithm. In Proc. International Conference
on 3D Digital Imaging and Modeling, pages
260–267.

Hoppe, H., DeRose, T., Duchamp, T., McDon-
ald, J., and Stuetzle, W. (1992). Surface re-
construction from unorganized points. SIG-
GRAPH ’92, pages 71–78.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001).
Independent Component Analysis. Wiley-
Interscience.

Kaye, D. P. and Ivrissimtzis, I. (2011). Mem-
ory Efficient Surface Reconstruction Based
on Self Organising Maps. In Grimstead, I.
and Carr, H., editors, Theory and Practice of
Computer Graphics, pages 25–32, Warwick,
United Kingdom. Eurographics Association.

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006).
Poisson surface reconstruction. In SGP ’06:
Proceedings of the fourth Eurographics sym-
posium on Geometry processing, pages 61–
70, Aire-la-Ville, Switzerland, Switzerland.
Eurographics Association.

Kazhdan, M., Funkhouser, T., and Rusinkiewicz,
S. (2003). Rotation invariant spherical har-
monic representation of 3D shape descrip-
tors. In Symposium on Geometry Processing.

Maier-Hein, L., Santos, T. R. D., Franz, A. M.,
and Meinzer, H.-P. (2010). Iterative closest
point algorithm in the presence of anisotropic
noise.

Papadakis, P., Pratikakis, I., Perantonis, S., and
Theoharis, T. (2007). Efficient 3d shape
matching and retrieval using a concrete ra-
dialized spherical projection representation.
Pattern Recogn., 40(9):2437–2452.

Pauly, M., Keiser, R., and Gross, M. (2003).
Multi-scale feature extraction on point-
sampled surfaces. In Computer Graphics Fo-
rum, volume 22, pages 281–289.

Roy, M., Foufou, S., and Truchetet, F. (2004).
Mesh comparison using attribute deviation
metric. Journal of Image and Graphics, 4:1–
14.

Rusu, R. B. and Cousins, S. (2011). 3D is here:
Point Cloud Library (PCL). In IEEE In-
ternational Conference on Robotics and Au-
tomation (ICRA), Shanghai, China.

Sahambi, H. S. and Khorasani, K. (2003). A
neural-network appearance-based 3-d ob-

ject recognition using independent compo-
nent analysis. IEEE Trans. Neur. Netw.,
14(1):138–149.

Sfikas, K., Theoharis, T., and Pratikakis, I.
(2014). Pose normalization of 3d models via
reflective symmetry on panoramic views. The
Visual Computer, pages 1–14.

Vranic, D., Saupe, D., and Richter, J. (2001).
Tools for 3d-object retrieval: Karhunen-
loeve transform and spherical harmonics. In
Workshop on Multimedia Signal Processing.


