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Abstract: This work develops the gradient test for parameter selection in gen-
eralised linear models with random effects. Asymptotically, the test statistic has
a χ2 distribution and the statistic has a compelling feature: it does not require
computation of the Fisher information matrix. Performance of the test is verified
through Monte Carlo simulations of size and power, and also compared to the
likelihood ratio, Wald and Rao tests. The gradient test provides the best results
overall when compared to the traditional tests, especially for smaller sample sizes.
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1 Generalised linear models with random effects

Consider a generalised linear model with random effects (GLMwRE) for
a data set containing n independent observations of a response variable,
denoted y = (y1, . . . , yn)>, which by definition has a distribution in the
exponential family, and corresponding observations on p explanatory vari-
ables, denoted x>i = (xi1, . . . , xip)> for i = 1, . . . , n. The linear predic-
tor for the i-th observation is ηi = x>i β + zi where β = (β1, . . . , βp)> is
the vector of regression parameters and zi is an unobserved random ef-
fect. The relationship between yi and ηi is given by the conditional mean
µi = E[yi|zi] and the monotonic and differentiable link function, g( · ) such
that µi = g−1(ηi). The zi can be considered as sampled from N (0, σ2),
where σ > 0. An alternative nonparametric approach is to leave the dis-
tribution of zi unspecified. In either case, the distribution of zi may be
approximated by a discrete distribution with finite support. Then the like-
lihood function L∗(β) for the GLMwRE and its approximation L(β) can

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).



2 Gradient test for GLM with random effects

be written as (Aitkin et al., 2009)

L∗(β) =

n∏
i=1

∫
f(yi|β, φ, zi)$(zi)dzi

≈
n∏

i=1

K∑
k=1

πkf(yi|β, φ, z̃k) =

n∏
i=1

K∑
k=1

πkfik = L(β),

(1)

where f( · ) is the response density, φ is the dispersion parameter, $( · )
is the density of the random effect zi, z̃k are mass points and πk are mass
probabilities. From (1) we have an approximate linear predictor for the k-th
component of the i-th observation as g(µik) = ηik = x>i β+ z̃k where µik =

E[yi|zi = z̃k]. Let
...
y> = (y>,y>, . . . ,y>) be a vector of nK-dimension of

pseudo-observations and the corresponding stacked linear predictor be

g(µ) = η =
...
Xβ +

...
z (2)

where µ> = (µ11, . . . , µn1, . . . , µ1K , . . . , µnK), η> = (η11, . . . , ηn1, . . . , η1K ,
. . . , ηnK),

...
z> = (z̃1, . . . , z̃1, . . . , z̃K , . . . , z̃K) is the n times stacked mass

point vector, and
...
X
>

= (X>, . . . ,X>) is the nK×p pseudo model matrix,
where X = (x1, · · · ,xn). Maximum Likelihood Estimation (MLE) typically
proceeds via the EM algorithm. In the non-parametric approach, πk and zk
are estimated adaptively along with β in the M step and this is known as
non-parametric maximum likelihood (NPML). Tabulated Gaussian quadra-
ture points are used for πk and zk in the case of Gaussian random effects
(the latter being scaled by a parameter σ which needs estimation).

2 The gradient test

The problem considered is that of testing a composite hypothesisH0 : β1 =

β
(0)
1 against a composite alternative H1 : β1 6= β

(0)
1 , where β = (β>1 ,β

>
2 )>,

β1 = (β1, . . . , βq)> is a q−dimensional parameter of interest with q 6 p,

β2 = (βq+1, . . . , βp)> is a (p−q)−dimensional nuisance parameter and β
(0)
1

is a specified vector. This induces the partitioning
...
X = (

...
X1,

...
X2). Let

U(β) = ∂ logL(β)/∂β = {U>1 (β1,β2),U>2 (β1,β2)}> = {U>1 ,U>2 }>

be the corresponding partition of the total score function for β. The unre-

stricted MLE of β is β̂ = (β̂
>
1 , β̂

>
2 )> and the restricted MLE of β2 under

H0 is written β̃2. Functions evaluated at the point β̃
>

= (β
(0)>
1 , β̃

>
2 ) will be

distinguished by the addition of a tilde. The gradient statistic ξT for testing

H0 versus H1 has the simple form ξT = Ũ>1 (β̂1 − β
(0)
1 ) (Terrell, 2002). In

the context and notation set out earlier, one has Ũ1 =
...
X
>
1 D̃(

...
y−µ̃) and D

is the diagonal matrix with diagonal entries d11, . . . , dn1, . . . , d1K , . . . , dnK
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given by dik = (φωik/Vik)(dµik/dηik) where ωik = πkfik/
∑K

l=1 πlfil and
Vik is the variance function applied to µik. Therefore, the gradient statistic
formula for testing H0 is

ξT = (
...
y − µ̃)>D̃

...
X1(β̂1 − β

(0)
1 ). (3)

Based on Terrell’s (2002) results, the distribution of ξT tends under H0 to
the χ2(q) distribution as n increases. Theoretically, the ξT , likelihood-ratio
(LR) ξLR, Wald ξW and Rao ξR statistics are asymptotically equivalent
since they all have the same asymptotic distribution under H0. Nonethe-
less, for finite samples the size and/or power of the tests may differ. Conse-
quently, we provide numerical simulation results to compare their perfor-
mance.

3 Simulation experiment

We report results of Monte Carlo simulations assessing properties of ξT in
finite samples. For this, we establish a model with linear predictor

ηi = β0 + β1x1i + β2i + β3x3i + β4x4i + zi, for i = 1, . . . , n

where x1, x3 and x4 are samples of size n from U(0, 1), F(2, 5) and t(3),
respectively. The parameter values are β0=1, β1=−1, β2i = (i mod 3)− 1
and φ = 1. The random effects zi are samples from N (0, 8−2) for the
Gaussian quadrature fitting and from a discrete distribution which takes K
values from N (0, 8−2) and probabilities from U(0, 1) for the NPML fitting.
The simulation results are based on Normal with identity link and Poisson
and Gamma models with log link function. We took samples of 50, 100,
200 and 400 observations and the number of replications was 10,000 and
K = 3. Our aim is to test H0 : (β3, β4)> = (0, 0)> versus H1 : (β3, β4)> 6=
(0, 0)>. Table 1 shows the null rejection rates of each test for two response
distributions. Overall, the gradient statistic has rejection rates closer to
the nominal levels. We set n = 400, K = 3 and α = 5% for the power
simulations where we computed the rejection rates under the alternative
hypothesis β3 = β4 = δ, for −4 ≤ δ ≤ 4. Figure 1 shows that the power
curves for ξLR and ξT are practically identical and that ξW and ξR have
rather unusual curves, especially for the NPML model.

4 Concluding remarks

The gradient test shows itself as a useful inferential tool in the context
of GLMwRE for several reasons. Firstly, its statistic requires neither the
Fisher information matrix nor its inverse, which is an important simplifi-
cation compared to the Wald and Rao statistics. Secondly according to our
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TABLE 1. Null rejection rates (%).

Gaussian quadrature NPML

n α ξLR ξW ξR ξT ξLR ξW ξR ξT

50 10 13.36 16.10 10.67 11.94 45.97 80.56 3.66 25.00
5 7.12 9.52 5.24 6.06 33.62 76.57 1.91 16.19
1 1.78 2.97 0.93 1.12 15.46 68.85 0.48 5.34

100 10 11.73 12.99 10.51 11.16 24.90 60.19 4.64 17.08
5 6.08 7.11 5.22 5.59 15.78 53.86 2.58 9.83
1 1.25 1.72 0.96 1.08 5.18 43.30 0.74 2.50

N
or

m
al

200 10 11.45 12.24 10.62 11.16 15.60 38.70 6.53 13.23
5 5.88 6.49 5.24 5.55 8.58 30.89 3.75 7.09
1 1.21 1.48 1.02 1.08 2.47 19.79 1.23 1.72

400 10 10.47 10.95 9.98 10.32 12.78 23.99 9.35 11.96
5 5.36 5.86 5.04 5.24 6.66 17.20 5.33 6.19
1 1.15 1.29 0.99 1.09 1.53 8.31 1.70 1.25

50 10 10.11 11.92 7.90 10.48 9.36 4.89 16.50 8.91
5 5.01 6.70 3.86 5.46 4.50 2.24 9.64 4.04
1 1.13 1.74 0.83 1.40 0.73 0.42 2.82 0.60

100 10 10.32 12.15 8.56 10.50 9.98 5.31 16.78 9.57
5 5.20 6.51 4.18 5.43 4.97 2.49 10.06 4.75
1 1.15 1.65 0.78 1.34 0.88 0.46 3.28 0.92

P
oi

ss
on

200 10 10.45 11.77 8.53 10.72 10.06 5.59 17.77 9.88
5 4.98 6.20 4.17 5.22 5.05 2.65 10.80 4.88
1 0.95 1.47 0.74 1.12 0.93 0.52 3.25 1.01

400 10 9.68 11.15 8.25 9.82 9.50 5.06 16.52 9.68
5 4.86 5.93 4.23 4.97 4.64 2.13 9.89 4.64
1 0.97 1.41 0.77 1.04 0.87 0.46 2.83 0.93

50 10 13.81 24.13 12.27 15.77 37.47 68.51 7.06 27.24
5 7.73 16.51 6.79 8.29 27.98 62.20 3.53 17.65
1 2.07 7.37 1.77 1.89 13.62 51.27 0.93 6.31

100 10 11.98 18.52 11.62 13.08 22.97 52.04 5.31 18.65
5 6.39 11.66 6.45 6.49 15.10 43.99 2.89 10.68
1 1.54 4.49 2.05 1.39 6.06 31.10 0.90 2.84

G
am

m
a

200 10 10.78 15.65 10.23 11.24 16.48 38.57 5.14 13.79
5 5.33 9.33 5.37 5.49 10.45 29.59 2.87 7.59
1 1.18 2.82 1.64 1.12 3.60 16.98 0.78 1.58

400 10 10.38 13.21 9.80 10.49 14.10 28.43 5.72 12.22
5 5.17 7.85 5.17 5.20 8.04 20.40 3.02 6.00
1 1.08 1.99 1.43 0.91 2.63 10.04 0.77 1.28

simulations, the null rejection rates of the gradient test are much closer to
the true nominal levels than the other three tests for the normal response
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FIGURE 1. Power of the four tests: n = 400, k = 3, α = 5%. Left, for Gaussian
quadrature fitting and right, for NPML fitting.

model and both gradient and LR tests have good rates for the Poisson
response. Finally, our power simulations suggest that the gradient and LR
tests have similar power properties. In sum, this indicates that the gradient
tests should be preferred in the context of GLMwRE.
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