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Abstract: This work develops the gradient test for parameter selection in gen-
eralised linear models with random effects. Asymptotically, the test statistic has
a x? distribution and the statistic has a compelling feature: it does not require
computation of the Fisher information matrix. Performance of the test is verified
through Monte Carlo simulations of size and power, and also compared to the
likelihood ratio, Wald and Rao tests. The gradient test provides the best results
overall when compared to the traditional tests, especially for smaller sample sizes.
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1 Generalised linear models with random effects

Consider a generalised linear model with random effects (GLMwRE) for
a data set containing n independent observations of a response variable,
denoted y = (y1,...,yn) ", which by definition has a distribution in the
exponential family, and corresponding observations on p explanatory vari-
ables, denoted x; = (@1,...,2;)" for i = 1,...,n. The linear predic-
tor for the i-th observation is 1, = x, 8 + 2z; where 8 = (B1,...,8,)" is
the vector of regression parameters and z; is an unobserved random ef-
fect. The relationship between y; and n; is given by the conditional mean
i = Ely;|z;] and the monotonic and differentiable link function, g( - ) such
that p; = g~(n;). The 2; can be considered as sampled from N(0,0?),
where o > 0. An alternative nonparametric approach is to leave the dis-
tribution of z; unspecified. In either case, the distribution of z; may be
approximated by a discrete distribution with finite support. Then the like-
lihood function L*(8) for the GLMwRE and its approximation L(3) can
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be written as (Aitkin et al., 2009)
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where f( - ) is the response density, ¢ is the dispersion parameter, w( - )
is the density of the random effect z;, Z; are mass points and 75 are mass
probabilities. From (1) we have an approximate linear predictor for the k-th
component of the i-th observation as g(uix) = ik = x; B+ Zx where j;, =
Elyi|z; = Zx]. Let Yy =(@",y",...,y") be a vector of nK-dimension of
pseudo-observations and the corresponding stacked linear predictor be

gw)=n=XB+7% (2)

Where IJ'T = (M117...,/$n1,...7M1K,...7ﬂnK)7T]T = (nllv"'vn’rIJa"'van;
cotak), 70 = (B1,..., %1, ..., Bk, ..., Zi) s the n times stacked mass

point vector, and XT = (XT,...,XT")is the nK x p pseudo model matrix,
where X = (x1, -+, X,,). Maximum Likelihood Estimation (MLE) typically
proceeds via the EM algorithm. In the non-parametric approach, 7 and zj,
are estimated adaptively along with 3 in the M step and this is known as
non-parametric maximum likelihood (NPML). Tabulated Gaussian quadra-
ture points are used for 7 and z; in the case of Gaussian random effects
(the latter being scaled by a parameter o which needs estimation).

2 The gradient test

The problem considered is that of testing a composite hypothesis Hy : B, =

,6’50) against a composite alternative H; : B # ﬁgo)’ where 8 = (8] ,85)7,
Br = (B1,...,B,)" is a g—dimensional parameter of interest with ¢ < p,

By = (Bgt1,---,6p) " is a (p—q)—dimensional nuisance parameter and ﬁ(lo)
is a specified vector. This induces the partitioning X = (X1, X2). Let

U(B) = dlog L(B)/08 = {U] (B1,8,), U] (B,,8,)} " ={U],U;}T

be the corresponding partition of the total score function for 3. The unre-
stricted MLE of 8 is B = ([‘5’?, B;)T and the restricted MLE of 3, under
Ho is written 3,. Functions evaluated at the point ,@T = (550”, BQT) will be
distinguished by the addition of a tilde. The gradient statistic {7 for testing
Ho versus H; has the simple form &7 = U (3, — go)) (Terrell, 2002). In

~ e
the context and notation set out earlier, one has U; = X; D(Y — ) and D
is the diagonal matrix with diagonal entries di1,...,dn1,...,d1K, -, dnk
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given by diy, = (dwir/ Vi) (dpsir/dnix) where wiy, = mp fur/ Soie, mifu and
Vik is the variance function applied to u;x. Therefore, the gradient statistic
formula for testing Hg is

&r = (Y - p)'DX.(B, - B). (3)

Based on Terrell’s (2002) results, the distribution of {7 tends under Hy to
the x?(q) distribution as n increases. Theoretically, the &7, likelihood-ratio
(LR) &cr, Wald &y and Rao g statistics are asymptotically equivalent
since they all have the same asymptotic distribution under Hg. Nonethe-
less, for finite samples the size and/or power of the tests may differ. Conse-
quently, we provide numerical simulation results to compare their perfor-
mance.

3 Simulation experiment

We report results of Monte Carlo simulations assessing properties of {7 in
finite samples. For this, we establish a model with linear predictor

n; = Bo + Brx1; + Boi + Baxzi + Bava + 25, fori=1,...,n

where 21, 23 and x4 are samples of size n from U(0,1), F(2,5) and #(3),
respectively. The parameter values are Sp=1, f1=—1, B2; = (¢ mod 3) —1
and ¢ = 1. The random effects z; are samples from A(0,872) for the
Gaussian quadrature fitting and from a discrete distribution which takes K
values from N (0,872) and probabilities from (0, 1) for the NPML fitting.
The simulation results are based on Normal with identity link and Poisson
and Gamma models with log link function. We took samples of 50, 100,
200 and 400 observations and the number of replications was 10,000 and
K = 3. Our aim is to test Ho : (B3,584) " = (0,0)7 versus H; : (B3,84) " #
(0,0)T. Table 1 shows the null rejection rates of each test for two response
distributions. Overall, the gradient statistic has rejection rates closer to
the nominal levels. We set n = 400, K = 3 and o = 5% for the power
simulations where we computed the rejection rates under the alternative
hypothesis 83 = B4 = §, for —4 < § < 4. Figure 1 shows that the power
curves for £,z and &7 are practically identical and that &, and &z have
rather unusual curves, especially for the NPML model.

4 Concluding remarks

The gradient test shows itself as a useful inferential tool in the context
of GLMwRE for several reasons. Firstly, its statistic requires neither the
Fisher information matrix nor its inverse, which is an important simplifi-
cation compared to the Wald and Rao statistics. Secondly according to our
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TABLE 1. Null rejection rates (%).

Gaussian quadrature NPML

n a &R Ew Er &t §cr Ew ér T

50 10 13.36 16.10 10.67 11.94 4597 80.56  3.66 25.00
5 712 952 524 6.06 33.62 7657 191 16.19

1 1.78 297 093 112 1546 68.85 048 5.34

100 10 11.73 12,99 10.51 11.16 2490 60.19 4.64 17.08
5 6.08 711 522 559 1578 538 258 9.83

g 1 125 172 096 1.08 518 4330 0.74 250
5200 10 1145 1224 10.62 1116 1560 3870 6.53 13.23
5 588 649 524 555 858 30.89 375  7.09

1 121 148 1.02 1.08 247 1979 123 172

400 10 1047 10.95 9.98 10.32 1278 2399 9.35 11.96

5 536 586 504 524 666 1720 533 6.19

1 115 129 099 1.09 153 831 170 125

50 10 10.11 11.92 7.90 10.48 9.36 4.89 1650 8.91

5 501 670 386 546 450 224 9.64 4.04

1 113 174 083 140 073 042 282 0.60

100 10 1032 1215 856 1050 9.98 531 16.78  9.57

o 5 520 651 418 543 497 249 10.06 4.75
2 1 115 165 078 134 088 046 3.28 092
£200 10 1045 1177 853 1072 1006 559 17.77  9.88
5 498 620 417 522 505 265 10.80 4.88

1 095 147 074 112 093 052 325 101

400 10 968 11.15 825 9.82 950 506 16.52  9.68

5 486 593 423 497 464 213 989 464

1 097 141 077 1.04 087 046 283 093

50 10 13.81 24.13 1227 15.77 3747 6851 7.06 27.24

5 773 1651  6.79 829 27.98 6220 3.53 17.65

1 207 737 177 189 1362 51.27 093 6.31

100 10 11.98 1852 11.62 13.08 2297 52.04 531 18.65

5 5 639 11.66 645 649 1510 4399 289 10.68
§ 1 154 449 205 139 606 3110 090 284
§200 10 1078 1565 10.23 11.24 1648 3857 514 13.79

5 533 933 537 549 1045 2959 287 759
1 1.18 282 164 1.12 3.60 1698 0.78 1.58
400 10 10.38 13.21  9.80 10.49 14.10 2843 5.72 12.22
5 517 7.8 517 520 8.04 2040 3.02 6.00
1 1.08 199 143 091 263 1004 077 1.28

simulations, the null rejection rates of the gradient test are much closer to
the true nominal levels than the other three tests for the normal response
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FIGURE 1. Power of the four tests: n = 400, k = 3, a = 5%. Left, for Gaussian
quadrature fitting and right, for NPML fitting.

model and both gradient and LR tests have good rates for the Poisson
response. Finally, our power simulations suggest that the gradient and LR
tests have similar power properties. In sum, this indicates that the gradient
tests should be preferred in the context of GLMwRE.
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