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ABSTRACT
The performance of joins in parallel database management
systems is critical for data intensive operations such as query-
ing. Since data skew is common in many applications, poorly
engineered join operations result in load imbalance and per-
formance bottlenecks. State-of-the-art methods designed
to handle this problem offer significant improvements over
naive implementations. However, performance could be fur-
ther improved by removing the dependency on global skew
knowledge and broadcasting. In this paper, we propose
PRPQ (partial redistribution & partial query), an efficient
and robust join algorithm for processing large-scale joins
over distributed systems. We present the detailed imple-
mentation and a quantitative evaluation of our method. The
experimental results demonstrate that the proposed PRPQ
algorithm is indeed robust and scalable under a wide range
of skew conditions. Specifically, compared to the state-of-
art PRPD method, we achieve 16% − 167% performance
improvement and 24% − 54% less network communication
under different join workloads.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems

General Terms
Algorithm, Performance

1. INTRODUCTION
In data-intensive environments such as data warehouses

and the Web, efficient execution of query operations is cru-
cial for the overall performance of the system. An essential
component of query operations is the join, which is widely
used in various database management systems (DBMSs). A
join facilitates the combination of two relations based on a
common key. For example, the join between a relation R
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with attribute a and another relation S with attribute b, is
evaluated by the pattern R 1 S where R.a = S.b. Joins can
incur significant costs and hence improving efficiency of this
operation can have a significant impact on the performance
of database queries [17].

Various parallel join algorithms over distributed architec-
tures have been proposed [22, 10, 24], all of which can be
considered variations of two fundamental distributed frame-
works: hash-based and duplication-based joins. Such ap-
proaches can be broadly decomposed into an initial distri-
bution stage followed by a local join process. This latter
process is well studied and techniques such as the sort-merge
join and the hash join are commonly used. We have selected
the hash-join as the local join process for our analysis. To
capture the core performance of queries, we focus on exploit-
ing the parallelism within a single join operation between
two input relations R and S over an n-node system, assum-
ing both R and S are in the form of <key, value> pairs and
|R| < |S| in the following.

In the hash-based framework, the basic parallel join algo-
rithm contains four phases, as illustrated in Figure 1: par-
tition, distribution, build and probe. In the first phase, the
initially partitioned relation Ri and Si at each node are par-
titioned into distinct sets Rik and Sik respectively, according
to the hash values of their join key attributes. Each of these
sets is then distributed to a corresponding remote node in
the second phase. These two phases can be considered as
a redistribution process, after which, the sequential join of
local fragments commence. In the build phase, the relation
Rk composed from the redistribution at each node (namely
Rk =

⋃n
i=1Rik) will be scanned, and an in-memory hash

table will be created with the join key attribute. The final
probe phase scans each tuple in Sk (Sk =

⋃n
i=1 Sik) to check

whether the join key is in the hash table, and the output will
be created in the case of a match.

The duplication-based distributed join framework is shown
in Figure 2. The join implementation includes three phases:
duplication, build and probe. The first phase just simply
duplicates (broadcasts) the tuples of Ri at each node to all
other nodes. This means that, after the broadcast, the com-
posed relation Rk at each node will be equal to the full input
R, namely, Rk =

⋃n
i=1Ri = R. The following two phases

are very similar to the final two phases of the hash-based im-
plementation, i.e. that local lookups for Sk will commerce
once the in-memory hash table of Rk is created.

Since each phase can be parallelized across nodes, both
the schemes above offer the potential for scalability. How-



ever there are significant performance issues with both ap-
proaches. For the hash-based scheme, while a near linear
speedup has been demonstrated under ideal balancing condi-
tions [10] the presence of significant data skew dramatically
impacts performance [11] due to node hot spots. Although
duplication-based methods can handle skew, the broadcasts
of each Ri to all the nodes incurs a heavy time-cost and
building a large hash table based on

⋃n
i=1Ri at each node

has detrimental impact on performance due to the associ-
ated memory and lookup cost [12].

As data skew occurs naturally in various applications [20],
it is important for practical data processing systems to per-
form efficiently in such contexts. In this paper, we intro-
duce the semijoin-alike joins, a novel parallel join approach
for handling data skew in distributed architectures. Using
this design as a basis, we propose an efficient and robust
join algorithm referred to as PRPQ (partial redistribution &
partial query) which is capable of higher performance than
current techniques. We implement our algorithm using the
parallel programming language X10 [6] and evaluate its per-
formance on an experimental configuration consisting of 192
cores (16 nodes) and datasets of 1 billion tuples. Moreover,
we present a quantitative performance comparison with the
standard hash-based algorithm as well as the state-of-the-art
technique, PRPD, presented in [24].

Our results demonstrate that the proposed PRPQ algo-
rithm is: (a) robust against data skew, exhibiting excellent
load balancing in the presence of different skew conditions,
(b) scalable, with speedup increasing with the number of
nodes (threads), (c) highly efficient, since we can process the
join 64M 1 1B with high skew in only 10.8 seconds, faster
than all methods in the literature, (d) simple, since we do
not need global operations such as dataset-wide statistical
measures to quantify skew and, in fact, algorithm progres-
sion on each node is full determined by its local skew, (e)
robust against parameter tuning, since, unlike the state of
the art, it is not overly sensitive to thresholds for skew de-
tection and (f) novel, since the algorithm does away with
the need for a duplication strategy, an approach which has
underpinned nearly all other skew-aware technique to date.
Finally, our method is shown to consistently outperform the
PRPD algorithm with 16% − 167% runtime improvement
and 24%− 54% less network communication, depending on
the parameters used.

The rest of this paper is organized as follows: In Section 2,
we report on related work and details on the state-of-art
method. In Section 3, we introduce our PRPQ approach
and its differences with existing approaches. The detailed
implementation of our algorithm is presented in Section 4.
Section 5 provides a quantitative evaluation of our algorithm
while Section 6 concludes the paper outlining plans for fu-
ture work.

2. RELATED WORK
Related work on joins. Data skew is a significant prob-
lem for multiple communities, such as databases [17], data
management [3], data engineering [5] and Web data pro-
cessing [20]. Joins with extreme skew can be found in the
Semantic Web field. For example, in [20], the most frequent
item in a real-world dataset appeared in 55% of the entries.

Research in parallel joins on shared memory systems [17,
2, 5] and GPUs [14, 16] has already achieved significant per-
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Figure 1: Hash-based distributed join framework.
The dashed rectangle refers to the remote compu-
tation nodes and objects.
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Figure 2: Duplication-based distributed join frame-
work.

formance speedups through improvements in architecture
at the hardware-level of modern processors. Nevertheless,
as applications grow in scale, their associated scalability is
limited by either the number of threads available or the sys-
tem memory and I/O. Efficient parallelisation of joins on
distributed memory machines can provide gains in an or-
thogonal manner to such approaches.

The duplication-based approach is seldom adopted, except
for some work on its variants [12, 13], which heavily rely on
underlying high-speed networks. The hash-based method is
widely used and various algorithms have been proposed to
handle the join skew and achieve load balancing [23, 19, 15],
but all so far rely on the conventional frameworks already
described and are suboptimal in terms of computational and
communication overhead owing to the inherent performance
limitations of the aforementioned frameworks.

Different techniques, such dynamic scheduling [21] and
statistics based methods [1], have been applied in the im-
plementation of joins to handle skew. These techniques are
based on high-level coordination, bringing associated over-
head. For example, to balance the workload, [1] builds his-
tograms through the pre-joins of distributed join keys, which
incurs a significant time cost. In this work, we focus on cap-
turing the essence performance of a parallel join operation
without any additional heavy operations.

Distributed semijoins have been extensively studied, pri-
marily in two domains: (1) joins in peer-to-peer systems for
reducing network communication based on the high selec-
tivity of a join [19], such as approaches described in [18]; (2)
pre-joins with full parallelism in distributed systems which
seek to avoid sending tuples which will not participate in
a join, such as the method described in [1], for a common
implementation, and in [4], using the MapReduce frame-
work. Compared to these, in our previous work [7, 8, 9], we
have employed the semijoin-alike pattern with full paral-



lelism as a new distributed geography (namely not just
a simple join operation) for handling data skew and apply
it for parallel inner joins and outer joins directly. In this
work, we focus on the inner joins (namely joins). We intro-
duce the semijoin-based joins and the query-based joins [7]
and analyse their differences. Moreover, we have refined the
methods to achieve better robustness and performance on
parallel joins.

State-of-the-art PRPD. Xu et al. [24] proposed an al-
gorithm named partial redistribution & partial duplication
(PRPD), which can be considered as a hybrid method com-
bining both the hash-based and duplication-based join scheme.

For the two input relations1, they partition S into two
parts: (1) locally kept part Sloc, the high skew part are kept
locally and do not join the redistribution phase, and (2) the
redistributed part Sredis, the tuples with low frequency key
are redistributed as in a common hash-based implementa-
tion. The relation R is divided into two parts as well: (1)
the duplicated part Rdup, the tuples in which contain the
keys in Sloc, which will be broadcast to all other nodes, and
(2) the redistributed part Rredis, the remaining part of R
that is to be redistributed to a single node as normal. After
the duplication and the redistribution operations, the final
join can be composed by Rredis 1 Sredis and Rdup 1 Sloc at
each node. This method efficiently processes the high skew
tuples (keys are highly repetitive). All these tuples of S are
not redistributed at all; instead, they just broadcast a small
number of tuples contains the same keys from R.

Their experimental results show that PRPD can achieve
significant performance when compared with the basic hash
approach, in the presence of data skew. Even so, PRPD may
still suffer from two major problems. (1) Global skew, global
operations like statistical calculations or broadcasts for the
skew keys at each node are required a priori. As the split
of R and S fully relies on the skew keys in S, the final join
will fail if any node does not have global knowledge of such
keys. (2) Broadcasting, the duplicated part from R will lead
to significant network communication as the number of such
tuples as well as the number of nodes increases, especially if
the system is not well tuned.

In comparison, our proposed PRPQ approach only needs
to quantify the local skew and does not duplicate data. As
a result it is faster and more robust than PRPD in our eval-
uation presented in Section 5.

3. OUR APPROACHES
In this section, we first introduce two efficient skew-resistant

join methods: the semijoin-based joins and its variant query-
based joins [7]. From that basis, we propose a refined method
so as to further improve the join performance and robustness
in the presence of data skew.

3.1 Basic Approaches
Semijoin-based joins. The approach of semijoin-based
distributed joins is shown in Figure 3, where the two com-
munication patterns (redistribution and retrieval) with full
parallelism makes it different from the conventional join ap-
proaches and the commonly-used semijoins.

For the join between R and S on their join attributes a
and b, the detailed processing can be divided into four steps:

1For simplicity, we assume R is uniformly distributed and S
is skewed for all of our examples, unless otherwise specified.
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Figure 3: The semijoin-based join approach.

1. tuples in each Ri is hash-redistributed to all the com-
putation nodes according to their join attributes. This
process is shown as 1© in the figure.

2. the unique keys2 πb(Si) of Si at each node are ex-
tracted and transferred to the remote nodes according
to their hash values. The process is shown as 2© in the
figure.

3. each received key fragment πb(Sik) at each node k joins
with the received tuples Rk =

⋃n
i=1Rik from the first

step. Then the matched tuples are sent back to each
node i (namely the requester). This process is shown
as 3© in the figure.

4. retrieved tuples are joined with the local fragment Si

to formulate the final output.

With the projection operation, any given key of S can pos-
sibly move to a remote node just once per current node irre-
spective of its popularity (remember that, in our case, only
S presents skew). Therefore, the semijoin-based method will
be very efficient on handling data skew. In the meantime,
similarly as the semijoins used in peer-to-peer systems, we
only transfer the unique keys of S and their corresponding
matched tuples, rather than the large number of tuples in
S. Therefore the network communication can be potentially
reduced during the join processing.

Query-based joins. For a join with a very high selectivity
factor, using the semijoin-based method as described, the
overlap between the keys in the retrieved tuples of the third
step and the transferred keys in the second step will be large,
bringing redundancy in terms of network communication.
For example, if the factor is 100%, the transferred keys and
the keys in retrieved tuples will be exactly the same (both
in size and content). To further improve the performance in
such a case, we refine the step 3 and step 4 of semijoin-based
joins as below:

3’. the received keys πb(Sik) are joined with the received
Rk at each node k and the retrieved values are sent
back. If there is no matching keys, the value is set to
null.

4’. the transferred keys and their respective retrieved val-
ues are joined with the locally kept Si for the final
output.

2Here, we use the operator πb for presenting the duplicate-
removing projection on the join attribute b of the relation
S.



In this process, we only retrieve values (instead of tuples).
The reason is that we can always keep the transferred keys
and retrieved values in the same sequence (e.g. by array
indexes) so that the <key, value> pair can be easily iden-
tified to compute the final join as described in the fourth
step. We call this variant as query-based joins because the
process of transferring keys to remote nodes and retrieving
the corresponding values looks like a query. We also name
the distributed pattern used by the two basic algorithms as
semijoin-alike approach, as it is derived from the conven-
tional semijoin method.

Obviously, the query-based joins can outperform the semijoin-
based method when processing joins with high selectivity
factors as it removes part of the redundant key transferring.
In contrast, it will be slower when the selectivity factor is
small, because it needs to fill the unmatched values as null
and move such useless values to the requester(s) to keep the
sequence of the <key, value> pairs for the final joins. In
fact, using a simple counter to record the ratio of the nulls
appearing in step 3 of the query-based method can easily
guide us to choose a suitable method dynamically during
join processing. Namely, when the ratio is high, we can use
the query method. Otherwise, we use the basic semijoin ap-
proach. In such scenarios, the semijoin-based approach is
a sub-instance of the query-based implementation, but sac-
rificing part of the available system memory (as the trans-
ferred keys in the second step need to be kept in memory
during join processing when using the query method).

Performance issue. We are more interested in computing
joins directly in distributed memory rather than frameworks
such as MapReduce [4], which is optimized for on-disk pro-
cessing. Therefore, the network communication will be crit-
ical for performance. In such a case, the above two methods
will meet performance issues in the face of data with little
skew: Since the number of transferred keys and retrieved
tuples (or values) will be huge when processing large joins,
and the communication overhead will become unacceptable
consequently. To address this issue and achieve robustness
and higher performance in the presence of skew, we propose
our optimized method in the following.

3.2 The PRPQ Approach
As we focus on join performance over different distributed

join patterns, and both the two basic methods above use
the same semijoin-alike geography, for simplification, we
only choose the more capable query-based joins as a study
case in the following3. More specially, we only choose the
basic query method without any counters to record the ratio
of nulls, since the time difference between the semijoin-based
and query-based method will be very small using our new
method, regardless of different selectivity factors (which we
explain later).

3.2.1 PRPQ Algorithm
Similar to the PRPD algorithm, we divide the skewed in-

put relation into two parts: (1) the low skew part, which
is processed by the conventional hash-based method, and
(2) the high skew part, using the basic query algorithm
as described. In this context, the implementation can be
considered as a hybrid approach based on both the hash-
based and query-based implementation and thus we call it

3As we do not consider memory consumption in this work.
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Figure 4: The PRPQ join approach. Only the high
skew part of S implements the query operations, and
the rest is processed as the basic hash method.

as PRPQ (partial redistribution & partial query). Under
such a scheme, for the example using previously, the join
process is demonstrated in Figure 4, which can be outlined
in the following four steps.

R distribution: Tuples in Ri at each node i are redis-
tributed to remote nodes based on the hash values of their
attributes a. This process is shown as 1© in the figure.

Push query keys: Tuples in S are firstly partitioned into
two parts, the high skewed part h (with tuples whose keys
appear in the local fragment more times than threshold t)
and the remaining part S′. Then, both the S′

i and the unique
keys πb(hi) of hi at each node i are hash redistributed to the
respective computation nodes. The process is shown as 2©
in the figure, where we refer to the unique keys as Query
keys.

Return queried values: A local hash table at each node k
is built based on the received tuples

⋃n
i=1Rik from the first

step. Then the received tuples
⋃n

i=1 S
′
ik are looked up in the

local hash table and we output the matched results. Each
key fragment πb(hik) is also looked up in the hash table and
we formulate the matched values. If there are no matching
keys, the value will be set to null. All the values are called
returned values, as all of them are kept in the same order
as the received keys and sent back to each requester node i.
This process is shown as 3© in the figure.

Result lookup: After receiving sets of returned values from
remote nodes, each node i scans these values so as to join
with the local kept tuples hi, based on the sequentially kept
keys πb(hi). In details, we first check whether the value is
null. If it is null, we continue scanning the next value. If
not, it means that there is a match between R and h. The
reason is that each query key is extracted from h, and a
non-null returned value means that this key exists in R as
well. The final join results are composed by the output of
the third step and the matched ones in current step.

3.2.2 Compared to the Query-based Algorithm
We apply the query scheme only for the high skew tuples

and all the low skew tuples are just simply redistributed.
When we have large numbers of low skewed tuples, the num-
ber of query keys and returned values will still be small. In
case of no skew, the method essentially devolves to a hash-
based join. Therefore, the PRPQ can efficiently remedy the
shortcoming of the basic query algorithm and improve its
robustness.

Moreover, inheriting the advantages of the basic query
algorithm, PRPQ can also highly reduce the network com-
munication when processing skewed data. The reason is



that none of the highly skewed tuples are distributed, but
only their unique keys as well as the corresponding returned
values, which are always small. Furthermore, as PRPQ
adopts the complementary advantages of both hash-based
and query-based implementations, the method should, for
any kind of inputs, outperform both algorithms for a suitable
threshold t. We will exam this conjecture through our eval-
uation. In addition, PRPQ has an extra operation, namely
quantifying the skew so as to partition the tuples. However,
we only need to quantify the local skew (namely for each
Si) at each node, which has low computation cost.

Looking back to the semijoin-based joins, if we apply
the hybrid idea to that scheme to organize the algorithm
PRPS (partial redistribution & partial semijoin), the same
as PRPQ, its robustness will be highly improved compared
to the basic semijoin-based method. Meanwhile, its join per-
formance will be nearly the same as PRPQ. The reason is
that the number of transferred keys is relatively small, which
brings little difference to the number of retrieved tuples or
values in the case of different selectivity factors. Conse-
quently, this will bring little different in terms of time cost
on a common cluster with Gigabit Ethernet. That is also
why we focus on the performance of PRPQ, when we com-
pared with the state-of-the-art PRPD algorithm [24], in our
later evaluation.

3.2.3 Comparison with PRPD

Taking a higher level comparison with the PRPD [24]
method, there are two main advantages to our approach:
(1) we do not need any global knowledge of the relations
in the presence of skew, because the skew quantification at
each node is totally independent from each other, while [24]
requires a global operation to quantify or exchange skew
information; and (2) our approach does not involve any re-
dundant join (or lookup) operations because each node in
our method is either distributing or query what it needs,
while [24] is broadcasting, so that some nodes may receive
tuples that they do not need.

In fact, the first advantage leads to our method being more
flexible or more efficient in the face of different join work-
loads, especially for the unevenly distributed ones. Taking
an extreme condition for example, for a 106-node system,
if a key in S follows the linear distribution over the com-
putation nodes (e.g. appearing 106 times on the first node,
106 − 1 on the second node etc. and only 1 time on the
final node), then how can we define the global skew using
PRPD? [24] proposes a solution that redistributes the skew
tuples evenly to all the nodes before the join. However, this
pre-redistribution will generate extra communication costs,
while more complex and careful global statistical operations
for all tuples of S are required. The authors in [24] do not
provide any detailed implementation or experimental details
regarding this pre-procesing. Therefore, for PRPD in the
following, we do not consider any rebalancing operations
for the uneven skew of S but just adopt a general method,
namely each node just broadcasts its local skew keys so as to
organize the global skew. In contrast to these, simply using
a threshold such as 106/2, PRPQ will know that the key is
skewed in the first half million nodes and not-skewed for the
rest of nodes.

Moreover, in the condition with many mid-skewed tuples,
for instance, the relation Si at some node i contains 1 mil-
lion unique keys (assuming uniformly distributed) with each

key appearing 40000 (or any other numbers) times, should
we consider these keys as skew? If so, each node under
the PRPD scheme has to broadcast the responsible 1 mil-
lion tuples of Ri to all nodes, which means that each node
will receive 106 · 106 = 1012 tuples over the 106-node sys-
tem. In comparison, using PRPQ, each node just receives
106/106 ·106 = 106 keys and the responsible 106 values. This
indicates that PRPQ can further highly reduce the network
communication in some cases and potentially improve the
join performance over PRPD. We will investigate these de-
tailed performance differences using different workloads in
our evaluation in Section 5.

Additionally, the main difference between the PRPQ and
PRPD algorithm is in processing skewed tuples, namely us-
ing query, a duplication-free approach, to replace the con-
ventional duplication method. Thus, the extension or the-
oretical analysis from PRPD [24] can be applied to our
approach directly. For example, regarding to the skewed-
skewed joins4, similar to the approach taken in PRPD, if R
is skewed, the skewed part of R can be used to query the
corresponding non-skewed part of S, the skewed part of S
can be used to query the corresponding non-skewed part of
R, and others would be hash-redistributed, for our PRPQ
method.

4. IMPLEMENTATION
We compare our PRPQ algorithm with the hash-based,

the basic query [7] and the state-of-art PRPD algorithm [24].
Since the work in [24] does not provide any code-level infor-
mation, in the interest of a fair comparison, we have also
implemented all these methods using the parallel language
X10 [6].

As extracting skew tuples at each node is based on local
skew quantification, we add in the parameter threshold in
our implementations, namely the number of occurrences of
a key after which the corresponding tuples are considered as
skew tuples. We first discuss how we deal with this param-
eter and then describe the PRPQ implementation.

4.1 Local Skew
There are various ways to measure local skew quickly, such

as sampling, scanning etc. However efficient skew measure-
ment does not concern us here and so we just count key oc-
currences and store them in descending order at each node in
a flat file. In each test with parameter t, each node will pre-
read the responsible keys (keys appear more then t times)
in an ArrayList and consider them as the required skew
keys (and tuple partitioning is based on these keys). These
pre-processes make the performance comparison more fair
and meaningful because: (1) The total join performance is
very sensitive to the chosen skew keys and operations like
sampling cannot guarantee the same set of keys are selected
in different implementations, and (2) the extra time cost for
skew extraction is removed, so that the focus is on analyzing
runtime performance only.

4.2 Parallel Processing
We are interested in high performance distributed mem-

ory join algorithms, therefore, we only report the detailed

4Recall that uniform-skewed joins are the core part of a join,
similar as current approches [24, 17, 3, 5], we will focus on
such joins in the following implementation and evaluation.



Algorithm 1 R Distribution

1: Initialize R c:array[array[tuple]](n)
2: for tuple ∈ list of R do
3: des← hash(tuple.key)
4: R c(des).add(tuple)
5: end for
6: for i← 0..(n− 1) do
7: Push R c(i) to r R c(i)(here) at node i
8: end for

Algorithm 2 Push Query Keys

1: Initialize T:array[hashmap[key,ArrayList(value)]](n),
S’ c:array[array[tuple]](n) and skew:hashset[key]()

2: Read the skew keys in skew based on t
3: for tuple ∈ list of S do
4: des← hash(tuple.key)
5: if tuple.key ∈ skew then
6: Add tuple in T(des)
7: else
8: Add tuple in S’ c(des)
9: end if

10: end for
11: for i← 0..(n− 1) do
12: Extract keys in T(i) to key c(here)(i)
13: Push key c(here)(i) to remote key(i)(here),

S’ c(i) to r S’ c(i)(here) at the node i
14: end for

implementation on memory following the four phases as de-
scribed previously.

p1: We first read all the tuples in an ArrayList at each
node, and then commence distribution of the relation R.
The detailed process is given in Algorithm 1. The array R c
is used to collect the grouped tuples, and its size is initialized
to the number of computing nodes n. Then, each thread
reads the ArrayList of R and groups the tuples according
to the hash values of their keys. Next, the grouped items
are sent to the corresponding remote nodes. Note that the
term here means the id of current computing node (core).

p2: The implementation of the second step is given in
Algorithm 2. The skew keys are first read into a hashset

based on the parameter t. Next all the tuples in S will be
checked for skew such that hashmap collects the skew tuples
while the arrays S′ c collects the non-skew tuples. After
processing all the tuples, the keys in each hash table will
be extracted by an iteration on its keyset. These keys will
be kept in key c, the same as S′ c, both are pushed to the
assigned remote nodes for further processing.

Both the T and key c are kept in memory for the sub-
sequent lookup results, as mentioned in Section 3.2. We
synchronize the operation here to guarantee the completion
of the data transfer at each node before the next phase com-
mences.

p3: The implementation of this phase at each comput-
ing node is similar to a sequential hash join. The received
tuples and key arrays, representing the distributed R, S′

and grouped query keys respectively. For the tuples, all the
<key,value> pairs of R are placed in the local hash table
T ′, and S′ looks up the match in T ′ to output the join re-
sults for the non-skew tuples. Meanwhile, the query keys
access T ′ sequentially to get their values. In this process, if
the mapping of a key already exists, its value is retrieved,
otherwise, the value is considered as null. In both cases, the
value of the query key is added into a temporary array so

Algorithm 3 Return Queried Values

1: Initialize T’:hashmap, value c:array[value]
2: for i← 0..(n− 1) do
3: Put received tuples of r R c(here)(i) into T’
4: end for
5: for i← 0..(n− 1) do
6: Lookup received r S’ c(i) in T’
7: Output join results of non-skew part
8: end for
9: for i← 0..(n− 1) do

10: for key ∈ remote key c(here)(i) do
11: if key ∈ T’ then
12: value c.add(T’.get(key).value)
13: else
14: value c.add(null)
15: end if
16: end for
17: Push value c(i) to r value c(i)(here) at node i
18: end for

Algorithm 4 Result Lookup

1: for i← 0..(n− 1) do
2: for value ∈ r value c(here)(i) do
3: if value 6= null then
4: Look corresponding key in T (i)
5: Output join results of the skew part
6: end if
7: end for
8: end for

that it can be sent back to the requester(s). The details of
the algorithm are given in Algorithm 3.

p4: The join results for the skewed tuples can be looked
up after all the values of the query keys have been pushed
back. Since the query keys and their respective values are
held in order inside arrays, we can easily look up the keys
in the corresponding hash tables to organize the join results
as shown in Algorithm 4. The entire join process terminates
when all individual computation nodes terminate.

5. EXPERIMENTAL EVALUATION
This section presents a comparative quantitative analysis

of the proposed algorithm.

5.1 Platform
Our experiments were executed on the High-performance

Systems Research Cluster in IBM Research Ireland. Each
computation unit of this cluster is an iDataPlex node with
two 6-core Intel Xeon X5679 processors running at 2.93 GHz,
resulting in a total of 12 cores per physical node. Each node
has 128GB of RAM and a single 1TB SATA hard-drive and
nodes are connected by a Gigabit Ethernet. The operating
system is Linux kernel version 2.6.32-220 and the software
stack consists of X10 version 2.3 compiling to C++ and gcc
version 4.4.6.

5.2 Datasets
The datasets used as benchmarks were chosen to mimic

joins in decision support environments. We mainly focus
on the most expensive operation in such scenarios: the join
between the intermediate relation R (the outcome of various
operations on the dimension relations) with a much larger
fact relation S [3]. We fix the default cardinality of R to 64M



tuples5 and S to 1B tuples. Because data in warehouses is
commonly stored following a column-oriented model, we set
the data format to <key, value> pairs, where both the key
and value are 8-byte integers.

We use similar workloads as used in recently studies on
parallel joins [17, 3, 5]. Keys of two input relations R and S
follow the foreign key relationship, and we keep the primary
keys in R as unique while adding skew to the correspond-
ing foreign keys in S. Meanwhile, when S is uniform, the
tuples are created in such a way that each of them matches
the tuples in the relation R with the same probability. For
the skewed ones, the unique keys of tuples are uniformly
distributed and each of them has a match in R6. We list
the input of S in the Table 1 in bold font indicating default
values.

For the Zipf distribution, the skew factor is set to 0 for
uniform, 1 for low skew (top ten popular keys appear 14%
of the time) and 1.4 for high skew (top ten popular keys
appear 68% of the time). For the linear distribution case,
we use the function f(r) to describe the key distribution,
where r is the rank of a key, according to its popularity. For
example, f(r) = 46341−r means that the most popular key
appears 46341 times, the second one appears 46340 times
etc. This data set can be considered as low-skewed. Mean-
while, f(r) = 23170 is a dataset, in which keys are uniformly
distributed but highly repetitive. Both these two datasets
contain 1B tuples with 46341 unique keys.

Moreover, to conduct more complete performance com-
parison in the presence of different workloads, we distribute
all the tuples in R evenly to all computing nodes while we
use both evenly and sort-range methods for S. The former
method guarantees that the number of skewed tuples will be
the same on each computation node. In the latter method,
all tuples are first sorted according to key popularity, and
then partitioned in equal-sized chunks and assigned to each
node sequentially. This means that the number of skewed
tuples can have great variation between computing nodes.

5.3 Setup
In all experiments, we only count the number of matches,

but do not actually output join results. Moreover, for PRPD
and PRPQ, we implemented a test series with different t for
each data set, as shown in Figure 6. When we present the
results in other figures or tables, we always choose the point
t with the best achieved run time from Figure 6.

5.4 Runtime
We consider the runtime of the four algorithms7 the hash-

based algorithm (referred to as Hash), PRPD [24], PRPQ

5Throughout the paper, when referring to tuples, M=220

and B=230.
6The join selectivity factor would be relatively high follow-
ing the literature, and the query-based part of our PRPQ
could get very small profits from this kind of setting (we
do not consider output materialization). Regardless, for low
selectivity, as mentioned, our PRPQ can be transferred to
PRPS if needed. Thus, we do not conduct additional test
results for datasets with different selectivity factors in the
following.
7Recall again that we focus on performance issues over dif-
ferent join patterns. The semijoin-based method will have
the same characterization as the query-based method, and
the detailed comparisons of such method will be beyond the
scope of this paper.

Table 1: Details of the test datasets

S Key distribution Partition Size

Zipf skew = 0, 1, 1.4 evenly, 512M,
Linear f(r) = 46341− r, 23170 sort-range 1B, 2B

3 4 . 8 3 4 . 7 3 4 . 2

9 7 . 7

4 9 . 9
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Figure 5: Runtime of the four algorithms.

and the basic query approach [7] (referred to as Query). We
implement these tests using 16 nodes (192 hardware cores)
of the cluster on the default datasets.

5.4.1 Performance
The results in Figure 5 illustrate that: (1) when S is

uniform, the Hash, PRPD and PRPQ algorithms perform
nearly the same and much better than the Query imple-
mentation; (2) with low skew, PRPD and PRPQ is compar-
atively faster that the other two approaches; and (3) with
high skew, Hash is the worst while the other three perform
much better, demonstrating their capacity to handle skew.

It can be also seen that with increasing data skew, the time
cost of Hash increases sharply while that of Query decreases.
This demonstrates that Query is more suitable for process-
ing highly skewed datasets. Moreover, PRPD and the PRPQ
algorithm change much more smoothly compared to the two
basic approaches and their time cost decreases with increas-
ing skew, demonstrating their robustness against skew. Fur-
thermore, for the high skew case, we note that PRPQ out-
performs Query with threshold t = 32, which implies that
those tuples with keys appearing less than 32 times perform
better in Hash than in Query.

5.4.2 PRPQ vs PRPD

Figure 5 also shows that the best performance achieved by
PRPQ is better than PRPD under different skew scenarios.
To conduct a more detailed comparison, we implemented a
series of tests on different datasets and with different par-
titioning strategies. The threshold t ranges between values
that enable us to always capture the skew keys8 and present
the results in Figure 6 where: (1) evenly refers to S being
evenly distributed to all the nodes; (2) range refers to the
sort-range partitioning; (3) Linear 0 means that S follows

8We evaluate all possible configurations for replicating the
skewed part. Figure 6 shows all meaningful values for the
threshold : the maximum frequency in the dataset for 6(e) is
240, so, for a threshold of 241, both approaches degrade to
a simple hash-join. It is similar for other settings.



Table 2: Speedup achived by PRPQ over PRPD
with varying the size of inputs (using 192 cores)

Skew 1 1.4

Scale 0.5 1 2 0.5 1 2

Speedup 1.42 1.16 1.20 1.44 1.22 1.48

Table 3: Detailed number of received tuples at each core

(millions)

Skew/ 0 1 1.4
Algo. Max. Avg. Max. Avg. Max. Avg.

Hash 5.94 5.94 62.40 5.93 347.76 5.94
PRPD 5.94 5.94 3.53 3.51 1.16 1.13
PRPQ 5.94 5.94 2.65 2.64 0.53 0.52
Query 5.94 5.94 2.12 2.12 0.43 0.43

the linear distribution f(r) = 23170 while Linear 1 refers
to f(r) = 46341− r; (4) the first two numbers in the paren-
thesis indicate the value of t for which the best performance
achieved by PRPD and PRPQ respectively while the third
one demonstrates the relative speedups of PRPQ over PRPD
based on their best runtime.

We can see that, for any given t, PRPQ always performs
better than PRPD. Looking at the detailed figures, PRPQ
can achieve 16% - 176% performance improvement over PRPD.
The maximum achieved speedup of 2.67× happens in the
case of Linear 0 evenly dataset. This is due to the fact
that the number of picked skew keys is always large and
this case, the key distribution at each node follows f(r) =
23170/192 = 121, namely each key appears 121 times. Thus,
when t < 121, all the 46341 keys at each node will always
be processed as skew keys, which makes the time difference
between PRPQ and PRPD large. This also appears in the
cases (a),(b) and (e): with a small t at the beginning, a large
number of skewed keys leads to a large difference. With in-
creasing t, the difference decreases to almost 0, as the num-
ber of picked skew keys becomes smaller and smaller.

Finally, the variations of the results achieved for differ-
ent t values are only minor for the PRPQ algorithm while
those in PRPD change more sharply, demonstrating that our
algorithm is less affected by the input parameters (i.e. tun-
ing). Defining the t in a range that achieves better perfor-
mance would require additional, more complex or costly op-
erations, therefore, we can expect that our algorithm could
profit more on performance than PRPD in real applications.

5.4.3 Cardinality experiments
We also examine the speedup by varying the cardinalities

of the two input relations. For the Zipf distribution, we
create data sets in which both relations are half the default
size (scale 0.5, namely 32M 1 512M) and double the size
(scale 2, namely 128M 1 2B). We vary the threshold and
record the best achieved runtime. Table 2 shows the results,
which demonstrate that our algorithm can achieve higher
performance irrespective of the input size.

5.5 Network Communication
Communication costs are evaluated through measuring

the number of received tuples at each core. The average
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(b) Zipf 1.4 evenly (4096, 32, 1.22)
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(c) Zipf 1.4 range (1024, 512, 1.27)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0

1 0

2 0

3 0

4 0

5 0

 

 

Tim
e (

s)

T h r e s h o l d

 P R P D
 P R P Q

(d) Linear 0 evenly (90, 30, 2.67)

0 4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0
0

1 0

2 0

3 0

4 0

5 0

 

 

Tim
e (

s)

T h r e s h o l d

 P R P D
 P R P Q

(e) Linear 1 evenly (180, 40, 1.98)

2 0 2 2 2 4 2 6 2 8 2 1 0 2 1 2 2 1 4 2 1 6
0

5

1 0

1 5

2 0

2 5

 

 

Tim
e (

s)

T h r e s h o l d

 P R P D
 P R P Q

(f) Linear 1 range (4, 16, 1.16)

Figure 6: Runtime of PRPD and PRPQ with in-
creasing threshold t (within meaningful range) over
different datasets (64M 1 1B with 192 cores).

number of received tuples is presented in Table 3. We can
see that all the four algorithms receive the same number of
tuples when the dataset is uniform. This is reasonable, since
there is no skew and all the tuples of PRPD and PRPQ are
only processed by the partial redistribution while the num-
ber of Query keys and returned values (both considered 1/2
tuple) is equal to the number of total tuples in Query. With
increasing the skew, the number of the received tuples in
Hash does not change, as all tuples still need to be redis-
tributed. In contrast, the other three methods show a sig-
nificant decrease, as a large number of skewed tuples are
not transferred in PRPD and PRPQ while Query groups
the skewed tuples and only transfers the unique keys (also
responsible values).

For PRPD and PRPQ, we also track the number of re-
ceived tuples for different threshold t values and present the
results in Figure 7. It can be seen that in PRPD that num-
ber first decreases and then increases, showing a trade-off
between the number of duplicated and redistributed tuples.
For PRPQ, the number of received tuples is always increas-



2 0 2 2 2 4 2 6 2 8 2 1 0 2 1 2 2 1 4 2 1 62 - 2

2 - 1

2 0

2 1

2 2

2 3

2 4

2 5
 

 

Av
g. 

 re
v. 

tup
les

 pe
r p

lac
e (

m)

T h r e s h o l d

 P R P D  s k e w  1
 P R P Q  s k e w  1
 P R P D  s k e w  1 . 4
 P R P Q  s k e w  1 . 4

Figure 7: Average number of received tuples at each
core by varying the threshold (64M 1 1B with 192
cores).

ing. However, is is less than PRPD for each given t, showing
the advantage of Query in such a aspect. Combining this
with the value where best performance is achieved, t is set
to 27 and 214 for PRPD, values that are greater than the
values of 24 and 25 for PRPQ respectively. This is the rea-
son why PRPQ clearly transfers less data than PRPD in
Table 3, notably 24%− 54% less under the skews.

5.6 Load-balancing
We also analyze the load balancing properties of each al-

gorithm based on the number of received tuples. The values
for the maximum and average number of received tuples at
each core are shown in Table 3 as well. We can see that
all four algorithms achieve perfect load balancing when the
data set is uniform. With increasing skew, the difference be-
tween the value of the maximum and the average for Hash
increases, indicating poor load balancing in the presence of
skew. In comparison, PRPD and PRPQ have more toler-
ance, showing their ability for handling the skew. In the
meantime, the basic Query algorithm is always balanced,
showing its special characteristic on this metric.

5.7 Scalability
We evaluate the scalability of our PRPQ implementation

by varying the number of processing cores on the three de-
fault datasets, from 24 cores (2 nodes) up to 192. Results
are presented in Figure 8, and each phase there is consistent
with the implementation explained in Section 4.2.

It can be seen that PRPQ generally scales well under dif-
ferent skews. Notably, the relative speedup achieved be-
tween 48 and 96 cores is close to the ideal 2x, which is obvi-
ously greater than that between other settings. This could
be attributed to the network overhead, in that inter-machine
communication is more quickly extended at the beginning.
For 192 cores, the data set becomes comparably small for
the underlying system and coordination overhead becomes
more significant.

Examining the details for each phase, under low skew,
phase 2 and 3 scale well and are the dominating factor for
the runtime. In the case of high skew, the third phase be-
comes comparably much smaller and the second phase start
to dominate the performance, which decreases with increas-
ing the number of cores. As the second phase mainly focuses
on data transfer and the third, on join operations, the net-
work load has a higher impact on the join performance than
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Figure 9: Speedup ratio over the hash algorithm un-
der different skews by varying the number of nodes
(64M 1 1B).

on the computation workload. For example, in the case of
192 nodes and high skew, the second phase takes 8.812 secs
while the third takes only 0.739 secs (note that this includes
the time to push back the returned values). Finally, we note
that the cost of the fourth phase is extremely small and
can therefore be ignored. The reason is that both the size
of hash tables in T and the number of looked up elements
(returned values) at each core relies only on the number of
picked skew tuples, which is small in our tests, resulting in
a final lookup cost in the order of tens of milliseconds.

5.8 Comparison with Hash-based Joins
We conclude our analysis with the presentation of speedup

using the very popular Hash algorithm as a baseline9, by
analyzing the performance improvement achieved for joins
in each algorithm for different numbers of nodes.

Figure 9 presents the speedup ratio of PRPD, PRPQ and
the Query algorithm over the basic hash method with in-
creasing number of nodes from 2 (24 cores) to 16 and for
skew values 1 and 1.4 respectively. Since results are nor-
malized to the value for the hash method, we present only
a single line for it. All three algorithms consistently achieve
speedups, demonstrating their ability to handle skew on dis-
tributed architectures. Furthermore, their speedup gener-
ally increase with increasing the number of nodes as well

9Recall again that we do not compare with the duplication-
based method here, as it is seldom adopted.



as with increasing the degree of skew for a fixed number of
nodes. Furthermore, for high skewed data, PRPQ achieves
nearly linear speedup while PRPD and Query do not. This
can be attributed to the following reasons: (1) For Query,
the frequency of each element at each core decreases with
increasing cores, namely the ratio of low frequency elements
increases. This in turn has a negative effect on speedup, as
Query is not good at processing such low frequent data. (2)
In comparison, via the variable t, PRPQ always processes
high-frequency elements using Query and low-frequency ele-
ments using Hash. This presents an optimal way to process
the data and achieves better speedups. (3) The broadcast
cost increases with increasing the number of nodes, which
results in scalability loss in PRPD.

6. CONCLUSIONS
In this paper, we have introduced a new approach for

parallel joins, called PRPQ (partial redistribution & par-
tial query). The approach has been devised specifically to
target joins with skew in shared-nothing architectures. Our
experimental results demonstrate the scalability and robust-
ness of PRPQ joins against skew. PRPQ achieves significant
speedups over the conventional hash approach in the pres-
ence of skew and outperforms the state-of-art PRPD algo-
rithm [24].

Data duplication is widely used in data engineering to re-
duce data movement and load imbalance. As our algorithm
is duplication-free, we anticipate that our proposed method
will not only be a supplement to existing schemes on parallel
joins to minimize runtime but also for other domains. We
intend to apply our approach in the semantic web domain,
where workloads present very high skew [20].
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