
Design and Evaluation of Parallel Hashing over Large-scale Data

Long Cheng1,2,3, Spyros Kotoulas2, Tomas E Ward1, Georgios Theodoropoulos4

1 National University of Ireland Maynooth, Ireland
2 IBM Research, Ireland

3 Technische Universität Dresden, Germany
4 Durham University, UK

long.cheng@tu-dresden.de, spyros.kotoulas@ie.ibm.com, tomas.ward@nuim.ie, theogeorgios@gmail.com

Abstract—High-performance analytical data processing sys-
tems often run on servers with large amounts of memory. A
common data structure used in such environment is the hash
tables. This paper focuses on investigating efficient parallel
hash algorithms for processing large-scale data. Currently, hash
tables on distributed architectures are accessed one key at
a time by local or remote threads while shared-memory ap-
proaches focus on accessing a single table with multiple threads.
A relatively straightforward “bulk-operation” approach seems
to have been neglected by researchers. In this work, using such
a method, we propose a high-level parallel hashing framework,
Structured Parallel Hashing, targeting efficiently processing
massive data on distributed memory.

We present a theoretical analysis of the proposed method
and describe the design of our hashing implementations. The
evaluation reveals a very interesting result - the proposed
straightforward method can vastly outperform distributed
hashing methods and can even offer performance comparable
with approaches based on shared memory supercomputers
which use specialized hardware predicates. Moreover, we char-
acterize the performance of our hash implementations through
extensive experiments, thereby allowing system developers to
make a more informed choice for their high-performance
applications.

Keywords-Hash tables; parallel hashing; distributed hash
tables; thread-level parallel; high performance

I. INTRODUCTION

Hash tables are commonly used data structures to imple-
ment associative arrays. The O(1) expected time for most
critical operations puts them at a significant advantage to
competing methods, especially for large problems. Hash
tables are the dominant structure for applications that re-
quire efficient mappings, such as database indexing, object
caching and string interning.

State-of-the-art. As applications grow in scale, parallel
hashing on multiple CPUs and/or machines is becoming
increasingly important. There are two dominant parallel
hashing frameworks that are widely used and studied: dis-
tributed and thread-level parallel hashing.

For the first framework, as shown in Figure 1(a), the
threads at each computation node (either logical or physical)
build their own hash tables firstly, and then process the initial

partitioned data (refer as keys for simplification throughout
this work) through access a local or remote hash table(s).
In general, this access is determined by hash values of the
processed keys. This approach is very popular in distributed
systems. Considering the target for high performance com-
puting, in the following we only discuss the conditions of
full parallelism, rather than the hash tables used in peer-to-
peer systems, for example, the common studied Distributed
Hash Tables (DHTs) [1].

In thread-level hashing, (Figure 1(b)), a single hash table
is constructed on the single underlying platform, and multi-
ple available threads operate with coordination on that table
in parallel. This particular model is widely studied for mul-
tithreaded platforms which range in scale from commodity
servers to supercomputers. As there exists no costly network
communication (though possible NUMA) under this scheme,
it always performs very fast.

The two parallel schemes scale in terms of processing
large numbers of items by employing new nodes or threads.
However, both approaches meet performance issues when
processing massive data. With distributed hashing, the large
number of frequent and irregular remote accesses of hash
operations across computational nodes is costly in terms
of communication. Moreover, when the processed data has
significant skew, the performance of such parallel implemen-
tations will be dramatically decreased because all the popular
keys will flood into a small number of nodes and cause
hot spots. For parallel hashing on multithreaded architecture
platforms, the cooperation between threads can efficiently
balance the workloads, regardless, both for the skewed or
non-skewed data, the associated scalability is bound by the
limit on the number of threads available, the availability
of specialized hardware predicates and possible memory
contention. Furthermore, memory and I/O eventually also
become bottlenecks at very large scale.

Approach. In general terms, the memory hierarchy of mod-
ern clusters consists of a distributed memory level (across
nodes) and a shared memory level (multiple hardware
threads/cores accessing the memory of a single node). We

...

data

computation

node

thread

hash table

(a) Distributed parallel hashing

...

(b) Thread-level parallel hashing

...
...

Item Distributed in Groups Globally

...

(c) Structured parallel hashing

Figure 1. Comparison of different parallel hashing frameworks.

are proposing a structured parallel hashing (SPH) frame-
work (shown in Figure 1(c)) that blends distributed hashing
and shared-memory hashing, divided into two phases: (1)
items are grouped and distributed globally by each thread,
and (2) hash tables are constructed on each node and each
of them is only accessed by a local thread(s).

The primary idea is a straightforward bulk-operation
scheme, however, in so far as the authors are aware such a
kind of hashing approach has not been previously described
in the literature. Intuitively, this method has two advantages:
(a) reduce remote memory access, load imbalancing and the
associated time-cost arising from memory allocation, table
locks and communication in distributed hashing, and (b)
support high scalability compared to thread-level hashing
(there are no hardware limitations as our approach operates
using predicates available on all platforms).

In fact, such bulk operations are widely applicable. For
example, in previous work [2] [3], we have implemented
joins for parallel data processing using a similar approach.
Namely, tuples of an input relation are redistributed to all
the computation nodes. From that basis, local hash tables
are created for lookup conducted by the other relation. In
such application scenarios, the following three questions
arising from the proposed framework are becoming to be
interesting:

• performance: will the responsible implementations be
scalable and can they achieve comparable performance
or even outperform the other two approaches?

• parallelism: how will the performance change with
varying the number of threads over each hash table,
if the whole available threads are fixed for a given
system?

• impact factors: how will the high-level data distribution
as well as the underlying hash table designs impact on
the performance?

The responsible answers will give us an insight of the
underlying hash implementation as well as an option to
further improve the performance of applications using hash
tables over distributed memory.

Contribution. Motivated by our application domain as
mentioned above, we propose a simple high-level parallel
hashing framework, structured parallel hashing, targeting

efficient processing of massive data on distributed memory.
We conduct a theoretical analysis of this scheme and present
an efficient parallel hashing algorithm based on it. We
evaluate on an experimental configuration consisting of up
to 192 cores (16 nodes) and large datasets of up to 16
billion items. The experimental results demonstrate that our
approach is efficient and scalable. It is orders of magnitude
faster than the conventional distributed hashing methods,
and also achieves comparable performance with a shared
memory supercomputer-based approach, on a socket-for-
socket basis. Additionally, for the underlying hash tables, the
proposed range lock-free strategy tailored for our framework
is demonstrated to be faster than the conventional compare-
and-swap operations.

The rest of this paper is organized as follows: In Sec-
tion II, we conduct a theoretical analysis of different hash-
ing frameworks. We present an efficient parallel hashing
algorithm in Section III. In Section IV, we experimentally
evaluate our work, followed by a comparison to the literature
in Section V and our conclusions in Section VI.

II. THEORETICAL ANALYSIS OF HASHING FRAMEWORKS

In our theoretical analysis, we make four assumptions:
(1) our hash function produces a uniform distribution, (2)
slot accesses after a hash collision follow a uniform random
distribution, (3) each node can communicate with multiple
remote nodes at the same time, and (4) the memory access
and data transfer inside a physical node is zero (compared
to the network-based operations). The first two assumptions
are popular in currently theoretical studies [4] and the latter
two are natural for an ideal distributed system. In addition
to this, we refer to the distributed and thread-level hashing
frameworks as HF1 and HF2 respectively, and our structured
parallel hashing framework as HF3.

In general, the total time cost T to insert N items in
a framework can be divided into three parts: distribution
time for item transfers across memory resident in different
nodes tm, time for probing tp and time costs due to
memory contention tc . As threads work in parallel in each
framework, T would be the same as the time t by a single
thread (assuming equal load). Specifically, we have tm = 0
for HF2 as there is only a single shared memory location.

A. Distribution
We assume that the time cost of moving an item to the

node itself is 0, and the time t(s) to transfer s items to a
remote node is t(s) = δ0+δ1 ·s, where δ0 is a constant that
represents the latency for each data transfer1 while δ1 is the
time for transferring a single item.

In a cluster with n physical nodes in which each has a
constant number of threads e, there will be ne hash tables in
HF1 and n in HF3, and each thread will process N/ne items.
Since the items are processed one by one in HF1, the number
of item transfers will be N/ne. In HF3, items are grouped
into n chunks by each thread (namely total ne · n chunks
with N/n2e items each) and moved to the corresponding n
nodes. Since the ratio of moved items to a remote node is
(n− 1)/n, the item transfer time in HF1 and HF3 is:

tm1 =
n− 1

n
· N
ne
· (δ0 + δ1) (1)

tm3 =
n− 1

n
· n · (δ0 + δ1 ·

N

n2e
) (2)

This indicates that: (1) if n is a constant, t will be O(N),
and (2) for a given N , t will be O(n). Additionally, if n
is fixed, the time difference (tm1 − tm3) between HF1 and
HF3 will be O(N). It means that with the increment of N ,
HF3 will spend less time on item transfers than HF1.

B. Slot Probing

In each framework, threads insert items using a pseudo-
random probe sequence. For a successful insertion, the last
probed slot is empty, while the slot accessed before (if any)
is an occupied. For a hash table with c slots and v elements
(load factor at end of execution α = v/c ≤ 1), according to
the theorem for standard hashing presented in [4], we have
the function between the average number of probes l in a
successful search and v:

l(v) =
1

α

c∑
i=c−v+1

1

i
(3)

HF1 and HF3 implement insertion on individual partitions
of distributed memory. Therefore, we have v1 = N/ne and
v3 = N/n. Moreover, for the single node with e′ threads
in HF2, there exists v2 = N and each thread processes
N/e′ items. Normally, we have l(v1) = l(v2) = l(v3) =
l0 ≈ (−1/α) · ln (1− α), because N is a great number
(for example 16 billions in our experiments) and there is
N >> ne. If the time for a single probing operation is η0,
equal in each framework, then with the same load factor α,
the probing time for a single thread would be:

tp1 = tp3 = η0l0 ·
N

ne
(4)

1Note that connections for data transfer could be retained, regardless,
extra time cost for remote accesses still exist, such as memory allocation
etc.

tp2 = η0l0 ·
N

e′
(5)

This implies that for a given underlying platform, the
probing time of each framework will be O(N). And for
a fixed input, HF1 and HF3 can reduce the probing time by
increasing the number of nodes n.

C. Memory Contention

We define a conflict as the situation where more than one
thread try to access the same hash table slot at the same time.
The probability that a thread accesses a specified slot of a
hash table (c slots and v elements) is 1/c. With w threads,
the probability that i (1 ≤ i ≤ w) threads access the same
slot would be:

p(v, i) =

(
w

i

)(
1

c

)i (
1− 1

c

)w−i

(6)

There will be i − 1 thread conflicts when i threads access
a same slot. Under the condition that w << v, the average
number of conflicts for probe operations for a thread would
be:

c(v, w) =
w∑
i=1

(i− 1)p(v, i)

=p(v, 2) +

w∑
i=3

(i− 1)p(v, i)

≈p(v, 2) ≈ w(w − 1)α2

2v2

(7)

For uniformly expressing the cost of the three approaches,
here we refer to the number of items processed by each
thread as hkvk, where the subscript k means the identify of
each framework, namely k = 1, 2, 3. Then, we have h1 =
1, h2 = 1/e′ and h3 = 1/e, which are all constant. If
we assume that the waiting time λ0 resulting from a single
conflict in each framework is the same and there are w̄k

threads accessing a hash table, then, with the average number
of probings described previously, we have:

tck = λ0 ·l0hkvk ·c(vk, w̄k) =
λ0l0α

2hk

2
· w̄k(w̄k − 1)

vk
(8)

With a limited2 n, e and e′, λ0l0α
2hkw̄k(w̄k − 1)/2 will

be a limited constant. Because vk is O(N), the time tck
will be o(1/N). It means that when processing very large-
scale data, the time cost for memory contention can even be
neglected in all frameworks.

2For example, for the cluster we use in our experiments, there is n = 16
and e = 12. For a supercomputer, the e′ could be hundreds or thousands.

D. Performance Comparison

When processing large data (tck = 0), the time difference
∆Tij = ∆Ti −∆Tj between HF3, HF2 and HF1 is:

∆T13 = δ0 · (n− 1) · (N

n2e
− 1) (9)

∆T23 = η0l0 · (
N

e′
− N

ne
)− (n− 1) · (δ0 + δ1 ·

N

n2e
) (10)

With a limited n, e and e′ ≥ 2e, if we set N →∞, then we
have: (1) there is always ∆T13 > 0 and (2) let k1 = η0l0/e
and k2 = k21 + (δ1/e)

2 + (2− 4e/e′) · k1δ1/e, there will be
∆T23 > 0 when

n ≥ e′

2k1e
· (k1 +

δ1
e

+
√
k2) (11)

This implies that when processing a very large data set,
(i) our hash framework is always faster than HF1, and (ii) it
can perform better than HF3 with increasing the number of
computation nodes, at least based on a high-level theoretical
analysis and on a simplified model. This assertion will be
tested in the experimental evaluation.

III. PARALLEL HASHING

In this section, we present an efficient parallel hashing
algorithm based on our framework. We focus on techniques
to (1) maintain consistency in the distribution phase, and
(2) avoid hash collisions and memory contention during
hash operations. Additionally, motivated by the performance
of data storage and information lookups in our applica-
tions [2] [3] [5] [6] [7], we just focus on the hash operations
of insertion and searching.

A. Distribution

For an n-node system and t threads per node, all the
threads read and distribute items in parallel. We introduce an
integer parameter i to subdivide items based on a common
(n × t)-based hash partitioning, namely set h(key) =
key mod |n× t× i| to group and distribute items, based on
the hash values of their key. Then, groups with hash values
in the range [k · (t · i), (k + 1) · (t · i)], are sent to the k-th
node (k ∈ [0, n− 1]).

After the distribution, each computation node (rather than
thread) has total t×n×(t×i) chunks of data to be processed
locally. We treat all of them as a data cuboid where each
chunk is indexed by (t,m, n), which represents that the
chunk comes from the t-th thread with the hash value m
at the n-th node. The detailed implementation at each node
is given in Algorithm 1. The array item c is used to collect
the grouped items, and its size is initialized by the number of
thread t and the modulo value m. Since each thread manages
its own items, the reading and distribution operations can be
performed in parallel across threads.

It is obvious that, for a given input dataset, the size of
the cuboid (which is proportional to the number of received

Algorithm 1 Item Distribution at each node
1: Initialize items c:array[array[array[item](m)]](t)
2: for i ∈ threads async do
3: Read in item file f
4: for item ∈ f do
5: des← hash(item.key)
6: items c(i)(des).add(item)
7: end for
8: for j ← 0..(m− 1) do
9: Push items c(i)(j) to r items c(i, j, k) at node

k, where k = m/n
10: end for
11: end for

items for even data distributions) at each node will be con-
stant, no matter how large the parameter i is. Nevertheless,
with a larger i, the chunks of the cuboid would be more
fine-grained. This means that the size of the transferred data
as well as the allocated memory each time will be smaller.
Furthermore, if we process the cuboid data at the unit of a
chunk, the workload of each local thread would also be more
uniform. However, inter-node communication will become
more frequent, negatively affecting performance. We will
examine this trade-off in our evaluation.

B. Processing

Since the number of received items at each node can
be easily recorded in the distribution phase, we can di-
rectly allocate the required size hash table and initialize
it. In the meantime, during key insertion, there exist var-
ious hashing strategies to minimize hash collisions and
different mechanisms like the lock-based and non-blocking
approaches are proposed to address the problem of memory
contention [4] [8] [9]. As we focus on the parallelism over
hash tables, we adopt linear probing for hash collisions
and CAS (compare-and-swap) for memory contention in
our implementations, which is very popular in recently
studies [10] [11] [9] [12] [13] [14]. In addition, we propose
a new range-based algorithm, aimed at removing memory
contention.

1) CAS: Compare-and-swap ensures the slot for the key
that it is about to insert does not have another key inserted
during its operation [12]. As shown in Figure 2, the hash
table is initialized by two arrays. One array is used to hold
the items, and other one is a status array using CAS to
indicate whether the corresponding slot in the former array
is filled or not. In the operation of insertion, the slot of an
item is located by its hash value. The thread first checks
whether that slot in the item array is filled or not. If not, the
thread would atomically check and set the slot at the same
index of the status array. If the slot is already set, the thread
will continue to the next slot.

Computation Node

to be processed items

hash collision

memory contention

Figure 2. CAS-based Implementation.

Algorithm 2 CAS-based Implementation at each node
1: Allocate buffers for hash table ht:array[item],

stat:array[atomicBoolean](true),
2: for each r items c(i, j, k) async do
3: for item ∈ r items c(i, j, k) do
4: e← h1(item.key)
5: Search an empty slot start from the eth position
6: if ht(e).null ∧ stat(e).CAS(true,false) then
7: ht(e)← item
8: else
9: e++, Continue searching

10: end if
11: end for
12: end for

The details of our implementation is shown in Algo-
rithm 2. We use the array ht to store the items while the
array stat is used to indicate occupancy. Each slot in the
stat array is initialized with the element atomicBoolean
to support the CAS operations. After that, the received data
chunks will be scheduled as a task queue and assigned to all
the available threads. For each item, the initial location of the
slot will be calculated by a hash function h1(k). The empty
slot searching process will start with the position h1(k) of
ht. If a slot is not occupied and the CAS operation over stat
also returns the value of true, then the item will be inserted,
otherwise, the next slot will be probed. We use a modular
arithmetic to cycle the location of an array from the bottom
to the top and the searching process will be repeated until
a free slot is found. The insertion progress will be ended
when all the inserting tasks are finished.

There are two possible issues when using CAS: (1) the
ABA problem as described in [9]. Because the key value
of a slot in our implementation only changes from null to
another value and never changes back again, the same as
the scenarios in [12], therefore the ABA problem could not
exist in our implementations; (2) the contention hot spots
problem as presented in [14]. In fact, this problem becomes

Computation Node

to be processed items

Start

Offset

Figure 3. Range-based Implementation.

a performance issue because [14] focuses on the study of
continuously changing the same variable with multi-threads.
In contrast, threads in our method do not work on a specified
slot but over the whole table instead. From the probability as
we analyzed in Section II, it is clear that the performance of
our implementations will be not affected by such an issue,
at least for the massive uniform distributed data.

2) Range: We propose the range-based approach from
the basis of the parallel radix join [15] algorithm, which is
commonly used in recently research with target for efficient
parallel joins [15] [16]. The main idea is that the subdivided
data is assigned to individual threads and then each thread
processes the data independently. Regardless, the method
for joins focuses on workload assignment in hardware-level,
such as that the size of data chunks is set to the cache size
so as to minimize the cache miss etc. Compared to that, our
approach is concentrated on that all the threads can work on
a given hash table without any influence by each other.

In general, as demonstrated in Figure 3, we map chunks
of data in the cuboid to the specified hash table according to
the value of index m as we described previously. Because
we can easily calculate the size of the mapped chunks, the
mapped range on a hash table can be simply presented by
two values: the start point start and the size offset. If threads
at each node process the items in the unit of chunk section
(according to index m), then all of them would work in a
specified range, and no memory contention happens.

The detailed implementation at each node is presented in
Algorithm 3. We first compute the size of each range by
Sk=

∑
i,j item c(i, j, k).size. When inserting an item, three

parameters - the item, the start slot Rk−1 and the end slot Rk

of the range, are transferred to the hash function h2 to locate
the start probing point in the hash table. Similarly, we also
use a modular arithmetic to ensure that the probings work
in the specified range. The program is terminated when all
the places finish item insertion.

The calculation of each range depends on the distribution
of values in the hashtables, which can be easily computed
in our data distribution phase. Therefore, the proposed

Algorithm 3 Range-based Implementation at each node
1: Compute the kth Range:Sr

2: The end slot of the kth Range Rk=
∑

r<k Sr

3: Allocate buffers for hash table: ht:array[item]
4: for each items c(i, j, k) async do
5: for item ∈ items c(i, j, k) do
6: e← h2(item.key,Rk−1, Rk)
7: Searching a empty slot start from the eth slot
8: if ht(e).null then
9: ht(e)← item

10: else
11: e++, Continue searching in [Rk−1, Rk]
12: end if
13: end for
14: end for

range method fits our framework well. We will evaluate its
performance and compare it with the popular CAS method.

3) Searching: Searching is very similar to insertion. Keys
are mapped to locations in the same way as in Section III-A
and threads can independently search on the hash table.
Because no thread synchronization is required in this phase
(assuming no concurrent writes), threads in the CAS-based
implementations can freely access any slot without checking
the status array. For the range-based implementation, an
additional operation is required to read the range.

IV. EVALUATION

Platform. Our evaluation platform is the High-Performance
Systems Research Cluster located at IBM Research Ireland.
Each computation unit of this cluster is an iDataPlex node
with two 6-core Intel Xeon X5679 processors running at
2.93 GHz, resulting in a total of 12 cores per physical node.
Each node has 128GB of RAM and a single 1TB SATA
hard-drive and nodes are connected by Gigabit Ethernet.
We implement our algorithms with the parallel language
X10 [17] over the RHEL with Linux kernel 2.6.32-220.
We use X10 version 2.3 and compiling it to C++ over gcc
version 4.4.6.

Dataset and Metric. Table I shows the input and output
parameters for our experiments, with bold font indicating
default values. We have generated several datasets up to 16
billion integers. Data follows a uniform distribution when
Zipf factor is equal to 0, or a skewed distribution with the
associated α parameter. We mainly measure the runtime
of each test in terms of: distribution time, insertion time,
hashing time and search time as described. In the meantime,
two types of hash tables based on our framework are
examined: (1) Structured Distributed Hash Tables (SDHT),
in which there is a single thread per logical computation
node. Therefore, this kind of hash table does not suffer from
memory contention, but at the cost of reduced flexibility in

Table I
EXPERIMENTAL PARAMETERS.

Input Parameters

Parameter Values

Hash table implementation SDHT, HPHT, CO U, RHH U
Dataset size (billions) 0.5, 1, 2, 4, 8, 16

Zipf factor 0, 0.2, 1, 1.8
Load factor 0.6, 0.75, 0.9

#Threads 12, 24, 48, 72, 96, 120, 144, 168, 192
#Threads/Table 4, 12
#Threads/Core 1

Hash Collision Strategy CAS, Range
i parameter 1, 10, 100
Key length 32 bits, 64 bits

Output Parameters

Parameter Description

Read time Time to read data from disk
Distribution time Time to distribute items

Insertion time Time to insert to hash-table
Hashing time Sum of Distribution and Insertion time

Search time Time to search for all items

terms of load balancing. (2) Hybrid Parallel Hash Tables
(HPHT) have multiple threads per logical node operating
with the CAS or range strategies (referred to as Range in
the following) as described before.

In the following, we first conduct the performance com-
parison of each hash framework on a basic test. Then, we
evaluate the scalability of SDHT and compare the perfor-
mance of HPHT using different lock-free strategies. Finally,
we study the impact factors of our hash tables and compare
our results with current implementations as presented in [18]
and [10]. Because the standard deviation between executions
was very small in our tests, we record the mean value based
on ten measurements.

A. Comparison of Frameworks

We conduct a simple performance comparison of the
three hashing frameworks already described based on the
CAS strategy. We implement the thread-level parallel on
a single machine with 12 node, and other two parallelism
on a distribute system with the same node, but just use 6
cores each machine (namely a small machine). We process
10 million keys and present the result in Figure 4. There, the
configure 2 × 6 indicates a configuration of two machines
using 6 cores each. It can be seen that our framework HF3
performs much better than HF1. However we are slower
than HF2 initially but when using 4 machines (24 cores),
our implementation become faster. All this is consistent with
our theoretical analysis in Section II.

B. Structured Distributed Hash Tables

We test the scalability of our SDHT by varying the
number of processing threads and the size of input data.

189
143

58

1.64

2.95
1.87

1.17
1

2

4

8

16

32

64

128

256

Framework/Configuration
1x

124x
6

2x
6

1x
6

T
im

e
(s

)

 HF1
 HF2
 HF3

4x
6

2x
6

1x
6

Figure 4. Performance comparison of three frameworks.

8 16 32 64 128 256
1

2

4

8

16

32

64

128

T
im

e
(s

)

Number of Threads

 Dis.
 Ins.
 Sear.
 Hash.

Figure 5. Time cost with varying number of threads for SDHT.

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

T
im

e
(s

)

Number of Keys (Billions)

 Dis.
 Ins.
 Sear.
 Hash.

Figure 6. Time cost with varying size of input for SDHT.

The results are shown in Figure 5. We can see that the
time cost for inserting and searching is almost the same
and linear with the number of nodes. For a small number
of threads, distribution time is not linear, since for a single
node there is no network communication and for two nodes
(24 threads), only 50% of the data needs to be transferred
over the network. With more than 72 threads, the distribution
cost decreases linearly with the number of nodes. Overall,
the hashing time follows the same pattern.

To study the scalability of our algorithm with increasing

42 64 128 256
16

32

64

128

256

512

T
im

e
(s

)

Number of Threads

 C 4x3
 C 12x1
 R 4x3
 R 12x1

Figure 7. Time cost with varying the number of threads for HPHT.

input size, we fix the number of threads to 192 (16 nodes),
start our tests with 500 million integers and repeatedly
double the size of the input until 16 billion. The results
are presented in Figure 6. The hashing time is linear with
the size of the input, and nearly matches the ideal speedup
scenario. The same holds for distribution, insertion and
searching. Furthermore, the time spent in the insertion phase
is nearly the same as the searching phase, and both are less
than that of the distribution phase.

From the results above, we can see that hash table con-
struction scales very well both with the number of threads
and the input size. We also notice that, with a 16-node
cluster, the item distribution costs about 60% more than
insertion and searching. We will characterize the possible
factors in Section IV-D.

C. Hybrid Parallel Hash Tables

We elaborate on the performance of HPHT for different
strategies and input parameters. HPHT uses multiple threads
per node (could be logical or physical), and by extension,
multiple hashtables. We choose two typical cases: four
threads and three logical nodes per physical node (4 × 3)
and twelve threads and one logical node per physical node
(12 × 1). We further experiment with regard to scalability
with the number of threads.

Figure 7 presents runtimes to process 1 billion integers.
Similar to SDHT, both the CAS and Range implementations
scale well with the number of threads. With detailed run-
time comparison, we find that the proposed Range method
performs much faster than CAS, both for insertion and
searching. There are three possible reasons: (1) hash table
construction in CAS is more complex (using extra-arrays);
(2) there is extra atomic compare-and-swap operations in
CAS while there is no memory contention in Range; and
(3) regarding search, although there are no compare-and-
swap operations for CAS, Range still benefits from superior
memory locality for individual threads.

Given a fixed number of threads, the implementation
configured with 12 × 1 performs worse than 4 × 3 for

0
0.

2 1
1.

8 0
0.

2 1
1.

8 0
0.

2 1
1.

8 0
0.

2 1
1.

8 0
0.

2 1
1.

80

50

100

150

200

250

300

350

400

450

SDHT C 4x3 C 12x1R 12x1R 4x3

T
im

e
(s

)

Zipf factor / Algorithm

 Dis.
 Ins.

Figure 8. Runtime by varying Zipfian factor in each implementation.

each algorithm, and both of them are slower than SDHT.
Although HPHT is slower than SDHT when processing
uniformly distributed integers, HPHT scales equally well.
Moreover, HPHT features thread coordination, which would
be advantageous in some scenarios, such as against the data
skew.

To validate this claim, we conduct a test on 16 nodes
under dataset skew. Each dataset contains 1 billion integers
following the Zipf distribution (α = 0.2, 1 and 1.8). To
support the thread coordination in Range operations, we
also set the parameter i to 10 in each implementation
(recall that threads in Range operations process data chunks
according to the value of modulo, so there will be no thread
coordination if i = 1). As shown in Figure 8, distribution
time and insertion time increases with the skew of the dataset
for all settings. However, for a ≥ 1, HPHT significantly out-
performs SDHT, indicating superior load balancing, mainly
during insertion. Additionally, the configuration with 12× 1
is still slower than 4×3, which means that hash tables with
moderate parallelism could be a better choice even in the
presence of high skewed data.

D. Impact Factors

We also test factors that with potential performance im-
pact. As the curves with different numbers of threads per
place are nearly the same, both in SDHT and HPHT, we only
present results with the configuration 4 × 3 based on CAS
and Range implementations. The factors we have considered
are (a) the load factors of hash tables, (b) the length of
the processed keys and (c) the parameter i, mentioned in
Section III-A.

Three different values for load factor (0.6, 0.75 and 0.9)
are examined in our tests. Figure 9 shows the hashing time
for 1 billion integers. Once again, we observe that all the
implementations scale well with the number of threads. In
the meantime, as expected, hashing time increases with the
load factor. For both strategies, the runtime with load factor
0.6 and 0.75 is nearly the same. For a load factor of 0.9, in
Range, runtime increases by nearly 20% while for CAS, it

42 64 128 256
24

48

96

192

T
im

e
(s

)

Number of Threads

 C 0.6
 C 0.75
 C 0.9
 R 0.6
 R 0.75
 R 0.9

Figure 9. Time cost with different load factors.

Table II
DETAILED TIME COST OF PROCESSING DIFFERENT INTEGER LENGTHS

Threads
64-bit integer (sec.) 32-bit integer (sec.)

Dis. Ins. Sear. Dis. Ins. Sear.

48 38.63 53.05 55.65 18.26 55.39 56.91
72 29.02 39.28 38.26 15.03 37.44 36.24
96 25.51 28.80 28.77 13.22 27.66 28.94
120 21.23 22.84 22.78 11.34 22.27 24.01
144 19.78 18.46 20.10 10.47 18.61 18.92
168 16.37 16.26 16.74 9.33 16.00 17.01
192 16.40 14.26 14.19 9.98 14.12 15.01

increases only by 3%. This also indicates that hash collisions
have a more significant effect on the performance for the
Range implementation. There is a trade-off between the
memory consumption and the load factor, therefore, in real
implementations, assigning the load factor to 0.75 would be
a better choice for Range and 0.9 if using CAS.

We test the time of processing 1 billion integers rep-
resented with 32 bits or 64 bits. Because the CAS and
Range implementations show the same characteristics, we
only present the execution time for the Range algorithm as
shown in Figure II. The time spent on distributing the 32-bit
integers is about a half of that for the 64-bit objects, while
the insertion and the search time do not change. This is in
contrast with the conclusion in [18] that varying the size of
integers has no effect on time. This difference shows the
essential difference between our implementation and other
general algorithms: we used a high-level structured method
to group items that need to be sent to the remote nodes, while
other methods send many short messages that overwhelm
the network, leading to significant inter-node communication
and coordination overhead. This can also be observed in
our results in that the distribution with 168 threads and 192
threads takes nearly the same time, because the transferred
data chunks become too small.

Finally, we evaluate how the data partitioning in the
distribution phase affects the execution time. The parameter
i is set to 1, 10 and 100 respectively and the results are
present in Figure 10. The runtime in both CAS and Range

42 64 128 256
16

32

64

128

256

T
im

e
(s

)

Number of Threads

 R 1
 R 10
 R 100

 C 1
 C 10
 C 100

Figure 10. Time cost with varying the parameter i.

with i = 10 is slightly greater than that with i = 1, and
is fairly linear with the number of threads. However, when
setting the parameter to 100, the time cost decreases at first
and then increases with the number of threads, leading to bad
scalability. The decrease in the size of transferred data for
each thread at the beginning reduces the distribution time,
but as the number of threads increases, the vastly increased
number of chunks incurs significant coordination overhead.
The above result, together with our experiments regarding
skew, indicate that higher i should be chosen for larger data
sizes and higher skew.

E. Comparison with Current Implementations

The latest evolution with distributed parallel hashing is
reported in [18], using 768 threads on a cluster to process
19.2 million items takes 18.2 secs using UPC and 27.4 secs
using MPI. In comparison, our best performing implemen-
tation can process 1 billion items in just 13 secs with 192
threads, and we also achieve linear scale with the increment
of threads. This is similar as the results presented in Figure 4,
and the great difference evident arises from the different
hashing frameworks utilised.

We also conduct a detailed comparison with the fastest
performing implementation in the literature, presented
in [10]. [10] implements thread-level parallel hashing on
a Cray XMT supercomputer using two techniques: CO and
RHH3. Although the approach in [10] also optimizes hashing
of skewed loads, it is not the focus of this paper. Figure III
shows the file reading and hashing time to process 5 billion
integers. The Cray XMT is a shared-memory architec-
ture using a specialized interconnect and a latency-tolerant
model. Since a direct comparison of processor speeds in
not meaningful, we group the results on a per-socket basis.
We observe that, SDHT is faster than RHH and slower than
CO if we do not consider the reading time. If we consider
reading time, SDHT is faster than all other techniques and
systems. HPHT is slower than all other approaches, but still

3the results presented here were obtained by communication with the
authors

Table III
COMPARISON WITH RESULTS PRESENTED IN [10] (TIME IN SECONDS)

Algorithm
16 Sockets 32 Sockets

Read. Hash. Read. Hash.

Cray CO U 123 90 123 46
Cray RHH U 124 150 123 77

SDHT 57 113 30 59

Range 4× 3 70 257 32 152
Range 12× 1 72 570 36 301

CAS 4× 3 68 331 32 192
CAS 12× 1 72 842 37 466

remains within an order of magnitude of the best performing
system. Overall, although our system relies exclusively on
low-cost commodity hardware, we observe that it achieves
comparable performance to a shared-memory system using
a specialized interconnect and processor architecture. With
increasing nodes, it is expected that we can even outperform
[10] on the hash operation on the basis of the theoretical
analysis in Section II.

V. RELATED WORK

The study of distributed parallel hashing main focuses
on (1) low-level communication schemes such as the use
of the IBM LAPI [19], and (2) parallel programming
paradigms/languages, such as the use of Java, MPI and
UPC [20] [21] [18]. In these implementations, hash oper-
ations are always accompanied with frequent and irregular
remote memory access with a concomitant increase in low-
level communication overhead and the associated perfor-
mance hit. Therefore, they are more suitable for processing
small data, but not for massive data.

There is long history of theoretical studies [22] [23] in
terms of the thread-level parallel approaches. By employing
different hashing strategies, implementations on various plat-
forms have achieved excellent performance [12] [11] [10].
Our implementation performs comparably or slightly worse
than the fastest one [10], however our approach relies on
low cost commodity hardware, adding to its flexibility.

GPU computing has become a well-accepted parallel
computing paradigm and there are many reports on im-
plementations of parallel hashing based on that [24] [25].
Implementations of these hash tables exhibit strong perfor-
mance. However, GPU memory is limited so therefore such
methods cannot work with excessively hash tables of the
sizes shown in this paper. In addition, reading data into
GPUs takes a considerable time, adding significant overhead
for a simple task, from the perspective of computation.

Although parallel hash joins are widely studied in modern
parallel database management systems [15] [16] [26], there
is little research focuses on the parallelism of underlying
hash tables. With the increase in size of process datasets in

this domain [26], we expect that the hash strategies used in
our hash tables can further improve join performance here.

The idea behind our method is straightforward, yet not
trivial, and does not appear in the literature. Consequently
we believe that the evaluations conducted here and the
results described are of value to the community as a basis
for understanding the merits of the approach. Moreover, our
theoretical analysis in Section II confirm that our structured
method is faster for large datasets - a result verified through
our experiments. Finally we also contribute a range-based
strategy for our hashing implementation, which is shown to
be faster than the commonly used CAS method within our
framework.

VI. CONCLUSIONS

In this work, we proposed a high-level structured frame-
work for parallel hashing, which has been designed for
processing massive data. This framework supports (a) dis-
tributed memory while avoiding frequent remote memory
access, and (b) thread coordination on a per-partition basis.
Based on that, we presented an efficient parallel hashing
algorithm by employing the popular CAS and our proposed
range-based lock-free hashing strategies.

The experimental evaluation results show that our imple-
mentation is highly efficient and scalable in processing large
datasets. Additionally, this hash framework demonstrates
useful flexibility in that it can employ various hashing
techniques and can be run on commodity hardware. Finally,
the proposed Range lock-free strategy is faster than the con-
ventional CAS operation and presents better load balancing
characteristics than approaches which use a single thread per
partition.

Our future work lies in extending our current approach
with methods to better handle skew and applications in large
and robust parallel joins.

ACKNOWLEDGMENTS

This work is supported by the Irish Research Council and
IBM Research Ireland.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A scal-
able peer-to-peer lookup protocol for internet applications,”
IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–32, Feb. 2003.

[2] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“Efficiently handling skew in outer joins on distributed sys-
tems,” in CCGrid, 2014, pp. 295–304.

[3] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“Robust and efficient large-large table outer joins on dis-
tributed infrastructures,” in Euro-Par, 2014, pp. 258–269.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms. MIT press, 2001.

[5] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“QbDJ: A novel framework for handling skew in parallel
join processing on distributed memory,” in HPCC, 2013, pp.
1519–1527.

[6] L. Cheng, A. Malik, S. Kotoulas, T. E. Ward, and G. Theodor-
opoulos, “Efficient parallel dictionary encoding for RDF
data,” in WebDB, 2014.

[7] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“Robust skew-resistant parallel joins in shared-nothing sys-
tems,” in CIKM, 2014.

[8] M. Herlihy, “Wait-free synchronization,” ACM Trans. Pro-
gram. Lang. Syst., vol. 13, no. 1, pp. 124–149, Jan. 1991.

[9] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. Elsevier Science, 2011.

[10] E. Goodman, M. N. Lemaster, and E. Jimenez, “Scalable
hashing for shared memory supercomputers,” in SC, 2011,
pp. 41:1–41:11.

[11] E. Goodman, D. Haglin, C. Scherrer, D. Chavarria-Miranda,
J. Mogill, and J. Feo, “Hashing strategies for the Cray XMT,”
in IPDPS Workshop, 2010, pp. 1–8.

[12] A. Stivala, P. J. Stuckey, M. Garcia de la Banda,
M. Hermenegildo, and A. Wirth, “Lock-free parallel dynamic
programming,” J. Parallel Distrib. Comput., vol. 70, no. 8, pp.
839–848, Aug. 2010.

[13] D. Zhang and P.-A. Larson, “LHlf: lock-free linear hashing,”
in PPoPP, 2012, pp. 307–308.

[14] D. Dice, D. Hendler, and I. Mirsky, “Lightweight contention
management for efficient compare-and-swap operations,” in
Euro-Par, 2013, pp. 595–606.

[15] G. A. Cagri Balkesen, Jens Teubner and M. T. Öszu, “Main-
memory hash joins on multi-core CPUs: Tuning to the un-
derlying hardware,” in ICDE, 2013, pp. 362–373.

[16] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of
main memory hash join algorithms for multi-core CPUs,” in
SIGMOD, 2011, pp. 37–48.

[17] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-
oriented approach to non-uniform cluster computing,” in
OOPSLA, 2005, pp. 519–538.

[18] C. Maynard, “Comparing UPC and one-sided MPI: A dis-
tributed hash table for gap,” in PGAS, 2011.

[19] J. M. Malard and R. D. Stewart, “Distributed dynamic hash
tables using IBM LAPI,” in SC, 2002, pp. 1–11.

[20] B. Roussev and J. Wu, “Distributed computing using Java: A
comparison of two server designs,” J. Syst. Archit., vol. 52,
no. 7, pp. 432–440, Jul. 2006.

[21] T. El-Ghazawi and F. Cantonnet, “UPC performance and
potential: A npb experimental study,” in SC, 2002, pp. 1–26.

[22] A. R. Karlin and E. Upfal, “Parallel hashing: An efficient
implementation of shared memory,” in Journal of the ACM,
vol. 35, no. 4, pp. 876–892, 1988.

[23] Y. Matias and U. Vishkin, “On parallel hashing and integer
sorting,” Journal of Algorithms, vol. 12, no. 4, pp. 573–606,
1991.

[24] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta,
M. Mitzenmacher, J. D. Owens, and N. Amenta, “Real-time
parallel hashing on the GPU,” ACM Trans. Graph., vol. 28,
no. 5, pp. 154:1–154:9, Dec. 2009.

[25] I. Garcı́a, S. Lefebvre, S. Hornus, and A. Lasram, “Coherent
parallel hashing,” ACM Trans. Graph., vol. 30, no. 6, pp.
161:1–161:8, Dec. 2011.

[26] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively
parallel sort-merge joins in main memory multi-core database
systems,” Proc. VLDB Endow., vol. 5, no. 10, pp. 1064–1075,
Jun. 2012.

