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Abstract

Here we explore the use of various feature point descriptors
as visual word variants within a Bag-of-Visual-Words (BoVW)
representation scheme for image classification based threat de-
tection within baggage security X-ray imagery. Using a clas-
sical BoOVW model with a range of feature point detectors and
descriptors, supported by both Support Vector Machine (SVM)
and Random Forest classification, we illustrate the current per-
formance capability of approaches following this image clas-
sification paradigm over a large X-ray baggage imagery data
set. An optimal statistical accuracy of 0.94 (true positive: 83%;
false positive: 3.3%) is achieved using a FAST-SURF feature
detector and descriptor combination for a firearms detection
task. Our results indicate comparative levels of performance
for BoVW based approaches for this task over extensive vari-
ations in feature detector, feature descriptor, vocabulary size
and final classification approach. We further demonstrate a
by-product of such approaches in using feature point density
as a simple measure of image complexity available as an in-
tegral part of the overall classification pipeline. The perform-
ance achieved characterises the potential for BoVW based ap-
proaches for threat object detection within the future automa-
tion of X-ray security screening against other contemporary ap-
proaches in the field.

1 Introduction

Within transport security, screening personnel are required to
manually inspect thousands of baggage items for a range of
contraband on a daily basis. In addition to this enormous work-
load, X-ray baggage imagery can be extremely challenging to
interpret. Due to the nature of packed baggage, where ob-
jects are tightly packed, X-ray imagery generally contains a
very high degree of clutter and inter-object occlusion. Con-
sequently, objects are most often occluded or shown from un-
usual viewpoints (see Figure 1). It has been shown that both
human and computer detection rates are severely affected by
complexity and clutter and therefore image interpretation in
such environments is particularly challenging. Furthermore,
increasing global travel demands ever increasing turnover rates
at security checkpoints allowing screening personnel only lim-
ited time to examine each baggage item.

A reliable automated threat detection system for X-ray bag-
gage imagery that can automatically detect the presence of
threat item characteristics offers the potential to significantly
stream-line this screening process and facilitate an extended
threat screening footprint beyond the conventional remit of pas-

Figure 1. Typical X-ray baggage imagery.

senger carry-on baggage. This poses an interesting challenge
for the use of automatic object recognition approaches akin to
the prior work of [1, 2, 3, 4]. In addition, an associated abil-
ity to automatically assess the underlying complexity of a given
X-ray baggage image facilitates the potential of “auto-clearing”
low complexity baggage items (e.g. comprised solely of paper-
work, clothing) and similarly “auto-referring” high complexity
items that maybe more challenging for automatic detection ap-
proaches.

In general, prior work on object detection in X-ray bag-
gage imagery is limited. Inspired by implicit shape models,
Mery [5] proposes a method that automatically detects X-ray
baggage objects using a visual vocabulary concept, occurrence
structures with 99% and 0.2% true positive and false posi-
tive achieved for handgun detection over 200 example images.
Shape-based handgun detection is further investigated in [6]
by training fuzzy k-NN classifier but with limited evaluation
over only 15 image examples. The work of Bastan et al. [1]
considers the concept of Bag-of-Visual-Words (BoVW) within
X-ray baggage imagery using Support Vector Machine (SVM)
classification with SIFT feature descriptors [7] achieving per-
formance of 0.7, 0.29, 0.57 recall, precision and average pre-
cision, respectively. Turcsany et al. [4] followed a similar ap-
proach, extending the work of [1], using BoVW with SURF
feature descriptors [8] and SVM classification together with
a modified version of vocabulary generation to yield 99.07%
true positive, and 4.31% false positive on firearms detection
over 2000 examples. A BoVW approach with SIFT feature de-
scriptors, augmented with SPIN X-ray intensity features [9],
and SVM classification is also used in [3] for the classifica-
tion of single and dual view X-ray images with best aver-
age precisions achieved for gun and laptop objects of 94.6%
and 98.2%. Bastan thoroughly reviews several feature detec-
tors (Harris—Laplace, Harris-affine, Hessian—Laplace, Hessian-
affine) in his latest work [2], on which he studies applicability
and efficiency of sparse local features (SIFT + SPIN [7, 9]) on
object detection in X-ray baggage imagery via the use of a sim-
ilar Bag-of-Features concept. This work also investigates how
material information given in X-ray imagery via colour map-
ping (Figure 1) and multi-view X-ray imaging affect detection
performance [3, 2].



Figure 2. SUREF feature points (green) give a raw indication of
composition complexity across the X-ray image.

A related body of work in 3D Computed Tomography (CT)
for baggage security has investigated a 3D BoVW approach
with suitable extensions to the relevant feature detection and
descriptor approaches [10, 11, 12, 13]. This work largely con-
cludes that the choice of the feature descriptor, feature sam-
pling/detection strategy and the final classification framework
had a significant impact on performance [10, 11, 13] with the
use of simplistic feature descriptors notably outperforming 3D
derivatives of established approaches (e.g. SIFT / RIFT [10]).

With a notable common focus across a range of prior work
in this domain on the BoVW feature representation approach
[1,4,5,3,12, 11, 2], the objective of this study is thus to invest-
igate the relative performance of a number of state-of-the-art
feature point detection and description approaches for this task.
With contrasting trends towards the use of end-to-end convolu-
tional neural network (CNN) for the complete feature detection
to classification pipeline (e.g. [14, 15]), here we aim to provide
a definitive benchmark of over a range of hand-tuned features
of varying complexity (namely: FREAK [16], DAISY [17],
BRISK [18], ORB [19], KAZE [20], AKAZE [21]) against the
mainstay of prior work in the field (i.e. SIFT [7] / SURF [§]
with [1, 4, 3, 2]). To these ends, we present an overview of a
classical BoVW architecture (Section 2) into which we present
both the by-product availability of complexity analysis (Figure
2) and our comparative performance evaluation (Section 3).

2 Bag-of-Visual-Words

Following the prior work of [4], we address the issue of au-
tomatic threat recognition as a binary classification problem:
image parts which represent a particular target object are dis-
tinguished from background parts, which do not contain the
target object. In particular, we consider detection in cluttered
2D X-ray baggage imagery using a feature-driven approach
known as Bag-of-Visual-Words (BoVW) (or simply bag-of-
words (BoW) in earlier work, [4]).

The concept of the BoW model has origins as a document
representation technique used in text information retrieval and

text classification. Within this original context a document is
represented by a simple frequency vector of words occurrence
eliminating all information about word order. In an image clas-
sification context, an image can be represented as a collection
of local features, generally in the form of local feature de-
scriptor vectors that encode the local intensity patterns at vary-
ing image locations. These descriptors are continuous valued
multi-dimensional vectors and occurring at various points of
localized salience within the image. Sivic et al., [22] originally
proposed a method to obtain the equivalent of the bag-of-words
model for images: local features obtained from an image set are
clustered into a finite number of clusters and the cluster cen-
troids form a codebook (vocabulary) which is used to encode
features of images in a vector quantized representation. These
cluster centroids are called visual words and hence the BoVW
model now represents an image as a histogram of visual words
occurrence. Following widespread uptake for generalized ob-
ject recognition, recent work in X-ray imagery has followed
this paradigm [4, 12].

Traditionally, image classification using the BoVW repre-
sentation of an image is composed of the following stages: 1)
feature detection and description; 2) visual codebook genera-
tion; 3) BoW representation and 4) classification. We follow
this general framework introducing variation in the core fea-
ture detection and description (descriptor) stage. The details of
each of the components of this approach are discussed below.

Feature detection and description: Image representations
based on local feature descriptors are widely applied in image
classification and object recognition frameworks due to their
robustness to partial occlusion and variations in object lay-
out and viewpoint. Distinctive features of objects are detected
at interest point locations which generally correspond to local
maxima of a saliency measure calculated at each location in an
image. The intensity patterns around these interest points are
encoded using a descriptor vector. The most widely followed
work in the area of local feature extraction has been Lowe’s
method of the Scale Invariant Feature Transform (SIFT) [7]
which introduced a feature descriptor that is invariant to trans-
lation, scale and rotation and robust to image noise (as used in
X-ray object detection work of [1, 3, 2]). Bay et al.’s later work
[8] proposed the Speeded Up Robust Features (SURF) algo-
rithm for feature detection and description that is loosely based
on SIFT. The computational cost associated with SIFT are dra-
matically reduced without significant deterioration in perfor-
mance (as used in X-ray object detection work of [4] and later
for comparison in the CNN work of [14]).

More recently, research in this area led to industrious ef-
forts to optimize sparse feature stability against computational
performance leading to a range of local feature and detector
variants. A standalone feature detector FAST (Features from
Accelerated Segment Test) [23] provides significant number
of candidate points for extraction while maintaining low com-
putational cost. The detector-extractor frameworks BRIEF
(Binary Robust Independent Elementary Features) [24], and
BRISK (Binary Robust Invariant Scalable Key-points)[18] of-
fer integer-space representations, avoiding the floating point
operation of earlier SURF/SIFT variants, for faster extrac-



tion and subsequent computation on embedded platforms.
ORBJ[19] (Oriented FAST and Rotated BRIEF) extends such
methods to address issues of rotation invariance. A recent
pairing of floating-point and integer space feature frameworks
KAZE [20] and AKAZE [21] aim to improve feature unique-
ness and robustness of features by describing them based on
a non-linear model of an image. More recently FREAK (Fast
Retina Key-point) [16], following from the earlier DAISY [17],
represent feature extractors specifically inspired by retinal sam-
pling in the human visual system.

Although many further variants exist, here we identify a
board range of such feature descriptors which are subsequently
evaluated both with their original and variant initial feature
point detection approaches (Tables 2 / 3). In all cases, the dens-
ity of these locally-salient feature points gives rise to both a
local and global means of measuring image complexity as a
by-product of the BoVW process (e.g. Figure 2).

Visual codebook generation: After the feature extraction
stage, a given image is now represented as a variable size set of
unordered local features (e.g. Figure 2). However, most state-
of-the-art classification techniques (e.g. SVM / Random For-
est) require a fixed dimensionality of vector input. This prob-
lem is essentially solved using the BoVW feature representa-
tion. The first step is to apply vector quantisation to the feature
descriptors. In order to achieve this, a codebook is generated by
clustering feature descriptors, usually by a k-means algorithm
via fast approximate nearest neighbour matching [25], such
that any feature descriptor can be subsequently encoded by as-
signing it to the closest cluster centroid (visual word) within
the resulting set, k..

Bag-of-words representation: Up to this point images
have been represented by their collections of local features.
Once the visual codebook has been generated, this image rep-
resentation can be transformed into a fixed dimension feature
vector. To this end, each feature descriptor is encoded by hard
assignment to the cluster it belongs to, which is given by the
nearest visual word in the codebook according to either Eu-
clidean distance (for floating point descriptors) or Hamming
distance (for binary descriptors). This vector quantization of
features is not only important for obtaining suitable image rep-
resentation for classification but also reduces noise due to mi-
nor differences in the descriptor vectors of corresponding fea-
tures. By assigning each feature of an image to the appropriate
visual word and accumulating the word-counts one can obtain
a histogram over visual words (BoVW). This histogram gives
a highly generalized representation of the image content due to
its inherent robustness to noise and changes in scale, rotation
and viewpoint. The image features are now represented in a
form which allows for integration into any common classifica-
tion algorithm.

Classification: From this BoVW feature encoding of fea-
ture descriptors, we have an overall feature representation of
dimension k, (the number of visual code words used in our
earlier bag of visual words vocabulary/codebook). SVM [26]
and Random Forest (RF) [27] classifiers are trained using this
encoded feature representations over a corpus of exemplar im-
agery (X-ray image patches, Figure 3). SVM are trained using

Table 1. Mean execution time and feature density.

Detector Descriptor density (%) | execution (ms.)
SUREF [8] SUREF [8] 0.24 4.7

(Hessian = 100, octaves = 4, octave layers = 3, dim = 64)

SIFT [7] | SIFT [7] [0.21 [127

(octaves = 3, contrast = 0.04, edge = 10, 0 = 1.6)

ORB [19] [ORB[19]  [0.66 |14

(scale = 1.2, levels = 8, patch size = 5, threshold = 5)

KAZE[20]  |KAZE[20] [0.19 [17
(threshold = 0.001, octaves = 4, layers = 4)
FAST[23] | SURF [8] [1.22 |58

(threshold = 0, with non-maximal suppression, as above)

FAST[23] | SIFT [7] [1.22 |51.4
(as above)

FAST[23]  [ORB[19]  [1.I3 |11
(as above)

FAST[23] |FREAK [16] [1.22 |41
(as above + octaves = 4, scale = 0.1)

FASTI[23] [DAISY [17]  [1.22 |8
(as above + radius = 15, ¢radius = 3,90 = 8, qhist = 8))
FAST[23]  [BRISK[18] [1.22 [42
(as above + scale = 0.1)

BRISK [18]  [BRISK [18] [1.70 |14

( threshold = 10, octaves = 3, scale = 0.1)

AKAZE [21] |AKAZE[21] [0.04 [32

(threshold = 0.001, octaves = 4, layers = 4)

Radial Basis Function (RBF) kernel {SV Mgpr} with a grid
search over kernel parameter, v = 2* : © € {—15,3}, and
model fitting cost, ¢ = 27 : & € {5, 15}, using k—fold cross
validation (k = 5)., using k—fold cross validation (k = 5) with
F-score optimisation (being more representative then accuracy
for unbalanced data set). RF are trained over varying values
of maximal tree depth, d = {5..50}, with maximal number of
trees per forest, t = {1000, 5000} and minimal sample count
per leaf node set to equal 1% of training data. The results for
the best performing parameter set are reported for each feature
configuration (Section 3).

3 Evaluation

Our evaluation datasets consist of 19398 X-ray sample
patches (dual-energy, false-coloured, from varying manufac-
turers) upon which we evaluate our feature point detector and
descriptor approaches on a classical two-class firearms detec-
tion problem (positive class: 3179 gun images / 1176 images of
gun components; negative class: 476 images of cameras, 2750
knives, 1561 ceramic knives, 995 laptops and 9261 cropped im-
ages of background clutter). This is randomly split into training
(67%) and validation test subsets (33%) with the former used
for k-fold cross-validation based training (k = 5, see examples
in Figure 3). The parameters used for the feature detectors and
descriptor combinations evaluated are listed in Table 1 together
with average feature detection density (as percentage of image
resolution) and execution time (measured as CPU time used
in milliseconds, ms) calculated over a random subset of 1400
X-ray image patches taken from the training set (resolution:
256 x 256 pixels).



Within the feature detector, descriptor and classification
variants outlined, we consider the comparison of True Posit-
ive Rate (TP), False Positive Rate (FP) (%) together with the
Precision (P), accuracy (A) and F-score (F) (harmonic mean of
precision and true positive rate) as shown in Tables 2 & 3.

From these results (Tables 2 and 3) we can see that the
best performance was achieved using a FAST-SURF feature
detector and descriptor combination with a k,, = 2000 BoVW
vocabulary and SVM based classification (A: 0.94, TP: 83%,
FP: 3.3% - Table 2). This optimal performance is closely
followed by SURF-SURF (A: 0.93), FAST-SIFT and KAZE-
KAZE (both A: 0.92) feature detector and descriptor com-
binations (using k, = 1500 vocabulary and SVM, Table
2). These four feature detector and descriptor combinations
notable outperform other approaches with F-scores of 0.85
(FAST-SURF), 0.84 (SURF-SURF), 0.81 (FAST-SIFT) and
0.81 (KAZE-KAZE) (for k, = 1500) that are significantly
higher than the next best (fifth ranking) method SIFT-SIFT (F-
score 0.75, k, = 2000). The FP is just over 3% for the over-
all best performing classifiers, dropping to 1.9%v for Random
Forest trained KAZE-KAZE at expense of significantly lower
TP of 54.9% (Table 3). Vocabulary size has only a marginal
difference towards the final result suggesting that vocabulary
k, = 500 is enough to create a viable feature model and the
final result is limited by discriminative properties of the fea-
ture detector and descriptor combination in use. Overall the
SVM results (Table 2) are consistently better than the RF res-
ults (Table 3) for all feature detector and descriptor combina-
tions.

From Table 1 we can see that by contrast the FAST-ORB
feature detector and descriptor combination gives the best
computational efficiency (under 1.5ms) compared to the oth-
ers. However the slower, high accuracy combinations (from
Table 2), FAST-SURF (5.8ms) and SURF-SUREF (4.7ms), sig-
nificantly outperform the next best performing combinations
(FAST-SIFT and KAZE-KAZE) in terms of efficiency.

Overall the best detection accuracy is achieved using vari-
ants of the SURF [8] feature detector and descriptor which also
perform very computationally efficiently within this side-by-
side comparison. This supports the prior work in the field us-
ing both SURF [4] and SIFT [3, 1, 2] based BoVW variants
for X-ray object detection tasks and comprehensively shows
comparative statistical accuracy and relative computational ef-
ficiency over a common dataset of ~20,000 examples. The
strong performance of the simpler SURF [8] feature detector
and descriptor in place of more complex approaches echo
analogous findings in the CT-based object detection literature
where simpler density-based descriptors were notably found to
outperform contemporary 3D extensions of the seminal SIFT
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Figure 3. Training data examples. Positive examples (left) showing firearms and sub-components of various sizes, shapes,
orientations etc. Negative examples (right) showing a variety of clutter items.

approach [10, 12].

In addition to this statistical analysis, exemplar detection
results for both whole firearms and firearm components in
cluttered and challenging X-ray imagery are shown in Figures
4 (A-G) and 5 (A-E) where we see both the detected item high-
lighted (Figures 4 / 5, left - red box) and the resulting heat map
of localized detection strength (Figures 4 / 5, right). Based
on the BoVW classification approach outlined, object local-
ization within the X-ray image is performed using a classi-
cal sliding window search strategy where-by each sub-region
(patch) of the X-ray image is individually classified for the
presence/absence of the target object. These are then aggre-
gated based on classification response which is based either
on normalized distance from the SVM classification bound-
ary or from the majority vote of the RF ensemble classifica-
tion. This scanning window approach gives rise to both the
heat map of localized detection strength (left) and the aggreg-
ated minimal object bounding box (right) as shown in Fig-
ures 4 and 5. The dimension of the scan window is of fixed
size, w, X w,, determined from the scale of the scan plane
to image plane projection used by the X-ray scanner in use
(here: w, X w, = image5width > image5height; with step-
size= 60). Overlapping or non-overlapping scan windows can
be employed, however, the structureless nature of the BoVW
descriptor that makes it notably robust to object occlusion [22]
and similarly supports the detection of object sub-parts split
between multiple window patches (see examples of Figure 3)
as used here (Figures 4 / 5). Within this work, explicit multiple
scale object detection is not performed due to the parallel (scale
preserving) nature of the X-ray scanner image plane projection
and the inherent scale invariance of the BoVW approach [22].
If the scanner projection is not scale preserving for some rea-
son (e.g. images are non-uniformly re-scaled for regular hu-
man review) then an alternative multi-scale classifier training
and subsequent scan window search strategy maybe required.

4 Conclusions

This work has re-enforced the capability of BoVW techniques
for object detection in X-ray imagery providing a comprehen-
sive comparison of feature detector and descriptor approaches
on the sample task of firearm detection under varying vocabu-
lary sizes and classification approaches. It shows optimal per-
formance of a combined FAST [23] feature detector and SURF
[8] feature descriptor over other contemporary approaches (A:
0.94, TP: 83%, FP: 3.3%) over a significantly larger data set
than in previous work [1, 5, 3, 4, 2]. The results supports the
choice and performance of this descriptor in early isolated stud-
ies [4] and as a contemporary comparator for BOVW against
other techniques (e.g. [14]). An object detection capability
for firearms, and an implicit ability to offer image complexity



Table 2. Results of feature point detector and descriptor variants using BoVW with SV Mg classification for firearm detection.

k., = 500 k., = 1000 k., = 1500 k, = 2000
| Detector | Descriptor | TP [FP[ P [ A[F [ TP [FP[P[A|F [TP [FP|P [A[F | TP [FP|[ P [A|F
SUREF [8] SURF [8] | 80.8 | 4.0 {0.85]0.93/0.83| 79.8 | 3.6 |0.87[0.93|0.83| 79.3 | 3.1 |0.88(0.93|0.84| 79.2 | 3.2 |0.88]0.93|0.83
SIFT [7] SIFT [7] | 70.1|5.7 (0.78]|0.89(0.74| 68.3 | 4.5 [0.82]0.89(0.74| 69.1 | 4.9 [0.81|0.89]0.74| 68.3 | 4.2 |0.83|0.90|0.75
ORB [19] ORB [19] | 85.6 |27.0/0.48]0.76|0.62| 81.2 {26.4|0.47|0.75|0.60| 80.2 {24.1|0.49|0.77(0.61| 82.3 {23.6/0.51|0.78|0.63
KAZE [20] | KAZE [20] | 78.3 | 4.6 [0.83]0.92/0.81| 78.6 | 3.6 |0.86|0.92(0.82| 76.9 | 4.1 {0.85]0.92|0.81| 77.3 | 3.9 |0.85|0.92|0.81
FAST [23] | SURF[8] |81.4 |3.5/0.87/0.93/0.84| 81.4 | 3.3 |0.88/0.93|0.85| 81.3 | 3.5 (0.87(0.93|0.84| 83.0 | 3.3 |0.88/0.94/0.85
FAST [23] SIFT [7] | 81.1 | 4.8 |0.83/0.92|0.82| 82.4 | 4.9 |0.83]|0.92|0.83| 78.8 | 4.8 |0.83|0.91|0.81| 80.9 | 4.3 |0.85(0.92/0.83
FAST [23] | ORB [19] | 64.525.210.43|0.72]0.52| 68.8 |27.0{0.43|0.72]0.53| 70.0 |23.9]0.46|0.75|0.56| 70.1 |26.1]0.44|0.73]0.54
FAST [23] |FREAK [16]| 56.3 |23.8]0.41|0.72]0.47| 55.8 |21.2{0.44|0.74]0.49| 58.2 |19.8]0.46|0.75|0.52| 62.4 |22.310.45|0.74]0.52
FAST [23] | DAISY [17] | 65.5 | 6.0 [0.76|0.88]0.71| 72.7 | 6.5 |0.77|0.89]0.75| 71.9 | 7.4 |0.74|0.88|0.73| 73.0 | 7.0 [0.75|0.88|0.74
FAST [23] | BRISK [18] | 60.5 |21.0]0.46|0.75]0.52| 64.6 |29.6|0.39|0.69]0.49| 66.2 |21.9]0.47|0.75|0.55| 71.4 |128.9]0.42|0.71]0.53
BRISK [18] | BRISK [18] |100.0|99.9]0.23|0.23]0.37|100.0|99.9{0.23|0.23]0.37|100.0|99.910.23]0.23]0.37/100.0|99.910.23|0.23]0.37
AKAZE [21]|AKAZE [21]] 66.9 {22.4|0.47|0.75|0.55| 77.9 [29.3|0.44|0.72|0.56| 74.4 {29.0|0.43]0.72(0.55| 76.1 {28.6|0.44|0.72|0.56
Table 3. Results of feature point detector and descriptor variants using BoVW with RF classification for firearm detection.
k, = 500 k, = 1000 k, = 1500 k., = 2000
| Detector | Descriptor [TP[FP| P [ A[ F [TP|FP|[ P [A | F |[TP[FP|[ P |[A[F [TP[FP[P [A | F
SUREF [8] SURF [8] |70.7| 3.5 0.86(0.91|0.77({70.9| 3.5 |0.86|0.91|0.78(69.9| 2.8 [0.88/0.91|0.78|68.4| 2.5 |0.89(0.91|0.77
SIFT [7] SIFT [7] [57.9| 2.6 |0.87]0.88|0.69|54.8| 2.1 [0.88|0.88]0.68|54.0| 2.1 |{0.88]0.88|0.67|54.4| 2.3 [0.88|0.88(0.67
ORB [19] ORB [19] (82.8]21.9/0.53|0.79|0.64|82.1|23.210.51|0.78{0.63|82.7(21.5{0.53{0.79]0.65|84.4|21.9(0.53|0.80|0.65
KAZE [20] | KAZE [20] |54.9| 1.9 |0.890.88|0.68 62.6| 2.7 |0.87|0.89|0.73|61.3| 2.4 |0.88/0.89|0.72|58.4| 2.2 |0.89(0.89|0.70
FAST [23] | SURF[8] |71.1] 3.2 [0.87]0.91|0.78|69.2| 2.7 |0.88|0.91|0.78|72.1| 3.3 {0.86(0.91[0.79|71.9| 2.8 |0.88|0.91|0.79
FAST [23] SIFT [7] [60.0| 3.2 [0.85|0.88/0.70|61.2| 2.9 {0.86|0.89(0.72|59.3| 2.8 |0.86|0.890.70(58.9| 2.7 {0.87|0.89(0.70
FAST [23] ORB [19] [90.9]26.8|0.50|0.77|0.64]90.7|28.5{0.48|0.76[0.63|91.2{28.2|0.49]0.76|0.6491.2|28.0[0.49|0.76 | 0.64
FAST [23] |FREAK [16](88.7|27.310.49|0.76(0.63|89.3|27.3|0.49(0.76|0.63|89.9|26.6|0.50|0.77 |0.64|90.4 |27.0|0.50|0.77|0.64
FAST [23] | DAISY [17] |38.5] 2.9 [0.80|0.84(0.52|41.9| 2.5 |0.83]0.85]0.56(42.3| 2.6 |0.83|0.85(0.56|41.4| 2.6 |0.82|0.85]0.55
FAST [23] | BRISK [18] {90.9]27.9]0.49|0.76|0.64]|91.8|29.3|0.480.76|0.63|91.6|28.8|0.48|0.76[0.63]91.7|29.4|0.48|0.75]0.63
BRISK [18] | BRISK [18] {99.9/99.9|0.23(0.23]0.37|99.9199.9|0.23|0.23]|0.37{99.9/99.9/0.23|0.23]0.37|99.9199.9|0.230.23|0.37
AKAZE [21]|AKAZE [21]|91.7]34.6|0.44|0.71]|0.59]93.9|34.9/0.44|0.72|0.60|93.5[35.5|0.44(0.71]0.60|95.7|37.210.43|0.70 [ 0.59
analysis, is illustrated for a range of realistic and challenging [9] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture rep-

examples. Future work will consider the classification of ad-
ditional object types, the use of multi-view X-ray imagery and
additional BoVW feature pooling representations.
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