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—— Abstract

For n > 3, let (H,, E) denote the n-th Henson graph, i.e., the unique countable homogeneous
graph with exactly those finite graphs as induced subgraphs that do not embed the complete
graph on n vertices. We show that for all structures I' with domain H,, whose relations are
first-order definable in (H,, E) the constraint satisfaction problem for T' is either in P or is
NP-complete.

We moreover show a similar complexity dichotomy for all structures whose relations are
first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation.

Together with earlier results, in particular for the random graph, this completes the complex-
ity classification of constraint satisfaction problems of structures first-order definable in countably
infinite homogeneous graphs: all such problems are either in P or NP-complete.
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1 Introduction

1.1 Constraint satisfaction problems

A constraint satisfaction problem (CSP) is a computational problem in which the input
consists of a finite set of variables and a finite set of constraints, and where the question is
whether there exists a mapping from the variables to some fixed domain such that all the
constraints are satisfied. We can thus see the possible constraints as relations on the domain,
and in an instance of the CSP, we are asked to assign domain values to the variables such
that certain specified tuples of variables become elements of certain specified relations.
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Constraint satisfaction problems for reducts of homogeneous graphs

When the domain is finite, and arbitrary constraints are permitted, then the CSP is
NP-complete. However, when only constraints from a restricted set of relations on the domain
are allowed in the input, there might be a polynomial-time algorithm for the CSP. The set of
relations that is allowed to formulate the constraints in the input is often called the constraint
language. The question which constraint languages give rise to polynomial-time solvable
CSPs has been the topic of intensive research over the past years. It has been conjectured by
Feder and Vardi [21] that CSPs for constraint languages over finite domains have a complexity
dichotomy: they are either in P or NP-complete. This conjecture remains unsettled, although
dichotomy is now known on substantial classes (for example when the domain has at most
three elements [30, 19] or when the constraint language contains a single binary relation
without sources and sinks [24, 1]). Various methods, combinatorial (graph-theoretic), logical,
and universal-algebraic have been brought to bear on this classification project, with many
remarkable consequences. A conjectured delineation for the dichotomy was given in the
algebraic language in [20].

When the domain is infinite, the complexity of the CSP can be outside NP, and even
undecidable [11]. But for natural classes of such CSPs there is often the potential for
structured classifications, and this has proved to be the case for structures first-order
definable over the order (Q, <) of the rationals [8] or over the integers with successor [9].
Another classification of this type has been obtained for CSPs where the constraint language
is first-order definable over the random (Rado) graph [14], making use of structural Ramsey
theory. This paper was titled ‘Schaefer’s theorem for graphs’ and it can be seen as lifting the
famous classification of Schaefer [30] from Boolean logic to logic over finite graphs, since the
random graph is universal for the class of finite graphs.

1.2 Homogeneous graphs and their reducts

The notion of homogeneity from model theory plays an important role when applying
techniques from finite-domain constraint satisfaction to constraint satisfaction over infinite
domains. A relational structure is homogeneous if every isomorphism between finite induced
substructures can be extended to an automorphism of the entire structure. Homogeneous
structures are uniquely (up to isomorphism) given by the class of finite structures that embed
into them. The structure (Q, <) and the random graph are among the most prominent
examples of homogeneous structures. The class of structures that are definable over a
homogeneous structure with finite relational signature is a very large generalisation of the
class of all finite structures, and CSPs for those structures have been studied independently in
many different areas of theoretical computer science, e.g. in temporal and spatial reasoning,
phylogenetic analysis, computational linguistics, scheduling, graph homomorphisms, and
many more; see [4] for references.

While homogeneous relational structures are abundant, there are remarkably few countably
infinite homogeneous (undirected, irreflexive) graphs; they have been classified by Lachlan
and Woodrow [26]. Besides the random graph mentioned earlier, an example of such a graph
is the countable homogeneous universal triangle-free graph, one of the fundamental structures
that appears in most textbooks in model theory. This graph is the up to isomorphism unique
countable triangle-free graph (Hs, E) with the property that for every finite independent set
X C Hj and for every finite set Y C Hj there exists a vertex x € Hs \ (X UY") such that x
is adjacent to every vertex in X and to no vertex in Y.

Further examples of homogeneous graphs are the graphs (Hs, E), (Hy, E), (Hs, E), ...,
called the Henson graphs, and their complements. Here, (H,,, E') for n > 3 is the generalisation
of the graph (Hs, E) above from triangles to cliques of size n. Finally, the list of Lachlan
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and Woodrow contains only one more family of infinite graphs, namely the graphs (C%, E)
whose reflexive closure Eq is an equivalence relation with n classes of equal size s, where
1 < n,s < w and either n or s equals w, as well as their complements. We remark that
(Cs, Eq) is itself homogeneous and first-order interdefinable with (C%, E), and so we shall
sometimes refer to the homogeneous equivalence relations.

All countable homogeneous graphs, and even all structures which are first-order definable
over homogeneous graphs, are w-categorical, that is, all countable models of their first-order
theory are isomorphic. Moreover, all countably infinite homogeneous graphs I" are finitely
bounded in the sense that the age of I'; i.e., the class of finite structures that embed into T,
can be described by finitely many forbidden substructures. Finitely bounded homogeneous
structures also share with finite structures the property of having a finite description: up to
isomorphism, they are uniquely given by the finite list of forbidden structures that describes
their age. Recent work indicates the importance of finite boundedness for complexity
classification [2, 10], and it has been conjectured that all structures with a first-order
definition in a finitely bounded homogeneous structure enjoy a complexity dichotomys, i.e.,
their CSP is either in P or NP-complete (cf. [16, 2]). The structures first-order definable in
homogeneous graphs therefore provide the most natural class on which to test further the
methods developed in [14] specifically for the random graph.

In this article we obtain a complete classification of the computational complexity of CSPs
where all constraints have a first-order definition in one of the Henson graphs. We moreover
obtain such a classification for CSPs where all constraints have a first-order definition in
a countably infinite homogeneous graph whose reflexive closure is an equivalence relation,
expanding earlier results for the special cases of one single equivalence class (so-called equality
constraints [7]) and infinitely many infinite classes [18]. Together with the above-mentioned
result on the random graph, this completes the classification of CSPs for constraints with a
first-order definition in any countably infinite homogeneous graph, by Lachlan and Woodrow’s
classification.

Following an established convention [33, 12], we call a structure with a first-order definition
in another structure A a reduct of A. That is, for us a reduct of A is as the classical definition
of a reduct with the difference that we first allow a first-order expansion of A. With this
terminology, the present article provides a complexity classification of the CSPs for all reducts
of countably infinite homogeneous graphs. In other words, for every such reduct we determine
the complexity of deciding its primitive positive theory, which consists of all sentences which
are existentially quantified conjunctions of atomic formulas and which hold in the reduct. We
remark that all reducts of such graphs can be defined by quantifier-free first-order formulas,
by homogeneity and w-categoricity.

For reducts of (H,, E), the CSPs express computational problems where the task is to
decide whether there exists a finite graph without any clique of size n that meets certain
constraints. An example of a reduct whose CSP can be solved in polynomial time is
(Hp, #{(z,y,u,v) : E(z,y) = E(u,v)}), where n > 3 is arbitrary. As it turns out, for every
CSP of a reduct of a Henson graph which is solvable in polynomial time, the corresponding
reduct over the Rado graph, i.e., the reduct whose relations are defined by the same quantifier-
free formulas, is also polynomial-time solvable. On the other hand, the CSP of the reduct
(Hn, {(z,y,u,v) : E(z,y) V E(u,v)}) is NP-complete for all n > 3, but the corresponding
reduct over the random graph can be decided in polynomial time.

Similarly, for reducts of the graph (C, E') whose reflexive closure is an equivalence relation
with n classes of size s, where 1 < n, s < w, the computational problem is to decide whether
there exists an equivalence relation with n classes of size s that meets certain constraints.
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1.3 Results

Our first result is the complexity classification of the CSPs of all reducts of Henson graphs,
showing in particular that a uniform approach to infinitely many “base structures” (namely,
the n-th Henson graph for each n > 3) is possible.

» Theorem 1. Let n > 3, and let T’ be a finite signature reduct of the n-th Henson graph
(Hy, E). Then CSP(T') is either in P or NP-complete.

We then obtain a similar complexity dichotomy for reducts of homogeneous equivalence
relations, expanding earlier results for special cases [18, 7].

» Theorem 2. Let (C5, E) be an infinite graph whose reflezive closure Eq is an equivalence
relation with n classes of size s, where 1 < n,s < w. Then for any finite signature reduct T’
of (C:,E), the problem CSP(T") is either in P or NP-complete.

Together with the classification of countable homogeneous graphs, and the fact that
the complexity of the CSPs of the reducts of the Rado graph have been classified [14], this
completes the CSP classification of reducts of all countably infinite homogeneous graphs,
confirming further instances of the open conjecture that CSPs of reducts of finitely bounded
homogeneous structures are either in P or NP-complete [16, 2].

» Corollary 3. Let T' be a finite signature reduct of a countably infinite homogeneous graph.
Then CSP(T) is either in P or NP-complete.

1.4 The strategy

The method we employ follows to a large extent the method invented in [14] for the
corresponding classification problem where the ‘base structure’ is the random graph. The
key component of this method is the usage of Ramsey theory (in our case, a result of Nesetfil
and Rodl [27]) and the concept of canonical functions introduced in [13]. There are, however,
some interesting differences and novelties that appear in the present proof, as we now shortly
outline.

1.4.1 Henson graphs

When studying the proofs in [14], one might get the impression that the complexity of the
method grows with the model-theoretic complexity of the base structure, and that for the
random graph we have really reached the limits of bearableness for applying the Ramsey
method.

However, quite surprisingly, when we step from the random graph to the graphs (H,, E),
which are in a sense more complicated structures from a model-theoretic point of view!, the
classification and its proof become easier again. It is one of the contributions of the present
article to explain the reasons behind this effect. Essentially, certain behaviours of canonical
functions existing on the random graph can not be realised in (H,, E). For example the
canonical polymorphisms of behaviour “max” (cf. preliminaries) play no role for the present
classification, but account over the random graph for the tractability of, inter alia, the 4-ary
relation defined by the formula E(z,y) V E(u,v).

L For example, the random graph has a simple theory [32], whereas the Henson graphs are the most basic
examples of structures whose theory is not simple.
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Interestingly, we are able to reuse results about canonical functions over the random
graph, since the calculus for composing behaviours of canonical functions is the same for
any other structure with the same type space, and in particular the Henson graphs. Via this
meta-argument we can, on numerous occasions, make statements about canonical functions
over the Henson graphs which were proven earlier for the Rado graph, ignoring completely
the actual underlying structure; even more comfortably, we can a posteriori rule out some
possibilities in those statements because of the K,,-freeness of the Henson graphs. Examples
of this phenomenon appear in Lemma 14.

On the other hand, along with these simplifications, there are also new additional
difficulties that appear when investigating reducts of (H,, E) and that were not present in
the classification of reducts of the random graph, which basically stem from the lower degree
of symmetry of (H,, E) compared to the Rado graph. For example, in expansions of Henson
graphs by finitely many constants, not all orbits induce copies of Henson graphs; the fact
that the analogous statement does hold for the Rado graph was used extensively in [14].

1.4.2 Equivalence relations

Similarly to the situation for the equivalence relation with infinitely many infinite classes
studied in [18], there are two interesting sources of NP-hardness for the reducts I" of other
homogeneous equivalence relations: namely, if the equivalence relation is invariant under the
polymorphisms of I', then the structure obtained from I' by factoring by the equivalence
relation might have a NP-hard CSP, implying NP-hardness for the CSP of T itself; or, roughly,
for a fixed equivalence class the restriction of I' to that class might have a NP-hard CSP,
again implying NP-hardness of the CSP of I' (assuming that I" is a model-complete core, see
Sections 3 and 6). But whereas for the equivalence relation with infinitely many infinite
classes both the factor structure and the restriction to a class are again infinite structures,
for the other homogeneous equivalence relations one of the two is a finite structure, obliging
us to combine results about CSPs of finite structures with those of infinite structures. As it
turns out, the two-element case is, not surprisingly, different from the other finite cases and,
quite surprisingly, significantly more involved than the other cases.

2 Preliminaries

Let E denote the irreflexive edge relation of our respective graphs and N its irreflexive
complement. The following lemma has been first stated in [25] for finite domain structures T’
only, but the proof there also works for arbitrary infinite structures.

» Lemma 4. Let ' = (D, Ry,...,Ry) be a relational structure, and let R be a relation that
has a primitive positive (pp) definition in I'. Then CSP(I") and CSP(D, R, Ry, ..., Ry) are
polynomial-time equivalent.

» Theorem 5 (from [11]). Let I" be a countable w-categorical structure. Then the relations
preserved by the polymorphisms Pol(T') are precisely those having a primitive positive definition
in I

These facts make it possible to apply a universal algebraic approach, and classify the
complexity of reducts of an w-categorical structure through understanding the polymorphism
clones of these reducts. In fact, we can state our results in terms of the polymorphism clones,
see Theorems 21 and 37. Roughly speaking, we will conclude that if ' is a reduct of a
homogeneous graph with a finite relational language, then CSP(T") is NP-complete iff for

23:5
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some finite tuple ¢ in T, the clone Pol(T", ¢) maps to the clone of projections via a continuous
homomorphism.

If such a homomorphism does not exist, it implies the existence of functions in Pol(T"),
which satisfy an equation that prevents them from being mapped to projections with a
homomorphism. The idea then is to find patterns in the behaviour of these functions, and
show that they must generate one out of a given finite number of well-behaved functions;
those appearing in Theorems 21 and 37, and whose incidence in Pol(T") automatically make
CSP(T") solvable in polynomial time. These well-behaved functions in Pol(T"), called canonical
functions, are obtained by the method mentioned in Section 1.4 using Ramsey theory.

» Definition 6. Let A be a structure. The type tp(a) of an n-tuple a in A is the set
of first-order formulas with free variables x1,...,z, that hold for a in A. For structures
Ay, ..., Ay and tuples a',...,a" € Ay x --- X Ay, the type tp(a,...,a") of (al,...,a") in
Aq x --- x Ay is the k-tuple containing the types of (a},...,al) in A; for each 1 <i < k.

[

It is well-known that in homogeneous structures such as (H,,, E) and (C¥, E), two n-tuples
have the same type if and only if they are in the same orbit of the automorphism group.

» Definition 7. Let Aq,..., A and A be structures. A behaviour B between A4, ..., A and
A is a partial function from the types over Ay, ..., Ak to the types over A. Pairs (s,t) with
B(s) =t are also called type conditions. We say that a function f: Ay x--- X Ap — A satisfies
the behaviour B if whenever B(s) =t and (a!,...,a™) has type s in Ay,..., Ay, then the
n-tuple (f(ai,...,a}),..., f(at,...,a})) has type ¢ in A. A function f: Ay x --- x Ay = A
is canonical if it satisfies a behaviour which is a total function from the types over Aq, ..., Ay
to the types over A.

To provide immediate examples for these notions, we now define some behaviours that
will appear in our proof as well as in the precise CSP classification. For m-ary relations
Ry, ..., Ry over a set D, we will in the following write R; --- Ry for the m-ary relation on
D* that holds between k-tuples ', ..., 2™ € DF iff R;(z},...,2™) holds for all 1 <i < k.

» Definition 8. Given a homogeneous graph (G, F) we say that a binary injective operation
f:G? = G is
balanced in the first argument if for all u,v € G? we have that E=(u,v) implies
E(f(u), f(v)) and N=(u,v) implies N(f(u), f(v));
E-dominated (N-dominated) in the first argument if for all u,v € G? with #=(u,v) we
have that E(f(u), f(v)) (N(f(u), f(v)));

balanced/E-dominated /N -dominated in the second argument if (x,y) — f(y,x) is balanced/E-

dominated/ N-dominated in the first argument;

balanced/E-dominated /N -dominated if f is balanced/E-dominated/N-dominated in both

arguments, and unbalanced if f is not balanced;

of behaviour p; if for all u,v € G? with ##(u,v) we have E(f(u), f(v)) iff E(uy,v1);

of behaviour py if (x,y) — f(y,z) is of behaviour py;

of behaviour projection if it is of behaviour p; or po;

of behaviour min if for all u,v € G? with ##(u,v) we have E(f(u), f(v)) iff EE(u,v).
A ternary canonical injection f: G® — G is

hyperplanely of behaviour projection iff the functions (u,v) — f(c,u,v), (u,v) — f(u,c,v),

and (u,v) — f(u,v, c) are of behaviour projection for all ¢ € G. Similarly other hyperplane

behaviours, such as hyperplanely E-dominated, are defined.

of behaviour minority if for all u,v € G3 with ###(u,v) we have E(f(u), f(v)) if and

only if EEE(u,v), NNE(u,v), NEN(u,v), or ENN(u,v).
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2.1 Overview

This article is organised as follows. Basic notions and definitions, as well as the fundamental
facts of the method we are going to use, are deferred for reasons of space to the appendix.
Our notation and definitions may also be found in [14].

Sections 3 to 5 deal with the Henson graphs: Section 3 is complexity-free and investigates
the structure of reducts of Henson graphs via polymorphisms and Ramsey theory. In
Section 4, we provide hardness results for different classes of reducts. In Section 5 we
rephrase Theorem 1, and we discuss the complexity classification in more detail, formulating
in particular a tractability criterion for CSPs of reducts of Henson graphs.

Section 6 investigates the structure of reducts of homogeneous equivalence relations via
polymorphisms and Ramsey theory and describes the polynomial-time cases.

3 Polymorphisms over Henson graphs

We investigate polymorphisms of reducts of (H,,, E). We start with unary polymorphisms in
Section 3.1, obtaining that we can assume that the relations £ and N are pp-definable in
our reducts. We then turn to binary polymorphisms in Section 3.2, obtaining Proposition 15
telling us that we may further assume the existence of a binary injective polymorphism.
Building on the results of those sections, we show in Section 3.3 via an analysis of ternary
polymorphisms that for any reduct which pp-defines the relations E and N, either the
polymorphisms preserve a certain relation H, or there is a canonical polymorphism of
behaviour min (Proposition 17).

3.1 The unary case: model-complete cores

A countable w-categorical structure A is called a model-complete core if Aut(A) is dense
in End(A), or equivalently, every endomorphism of A is an elementary self-embedding,
i.e., preserves all first-order formulas over A. Every countable w-categorical structure I is
homomorphically equivalent to an up to isomorphism unique w-categorical model-complete
core A, that is, there exists homomorphisms from I' into A and vice-versa [3]. Since the CSPs
of homomorphically equivalent structures are equal, it has proven fruitful in classification
projects to always work with model-complete cores. The following proposition essentially
calculates the model-complete cores of the reducts of Henson graphs.

» Proposition 9. Let T" be a reduct of (H,,, E). Then either End(T") contains a function whose
image induces an independent set, or End(T") = Aut(T") = Aut(H,, E).

In the first case of Proposition 9, the model-complete core of the reduct is in fact a reduct
of equality. Since the CSPs of reducts of equality have been classified [7], we do not have to
consider any further reducts with an endomorphism whose image induces an independent set.

» Lemma 10. Let T be a reduct of (Hy, E), and assume that End(T") contains a function
whose image is an independent set. Then I' is homomorphically equivalent to a reduct of
(Hp,=).

In the second case of Proposition 9, it turns out that all polymorphisms preserve the
relations F, N, and #, by the following lemma and Theorem 5.

» Lemma 11. Let T be such that End(T") = Aut(H,,, E). Then E, N, and # have primitive
positive definitions in T.

23:7
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Before moving on to binary polymorphisms, we observe the following corollary of Propos-
ition 9, first mentioned in [33].

» Corollary 12. For every n > 3, the permutation group Aut(H,, E) is a maximal closed
subgroup of the full symmetric group on H,, i.e., every closed subgroup of the full symmetric
group containing Aut(H,, E) either equals Aut(H,, E) or the full symmetric group.

3.2 Binary polymorphisms

We investigate binary functions preserving E, N, and #. A finitary operation f(z1,...,z,)
on a set is essential if it does not depend on only one of its arguments x;.

» Lemma 13. Every essential function f: HF — H, that preserves E, N, and # generates
a binary injection.

By Proposition 9, the remark thereafter, Lemma 11 and Lemma 13, we may assume that
Pol(T") contains a binary injection f, as otherwise the complexity of CSP(T") is known. After
an analysis of the possible behaviours of f, we can make further assumptions on the binary
injection in Pol(T").

» Lemma 14. Let f: H* — H, be an essential function that preserves E, N, and #.
Then f generates one of the following binary canonical injections: of behaviour min and
N-dominated; or of behaviour py, balanced in the first, and N-dominated in the second
argument.

We conclude this section by summarising the results we have so far.

» Proposition 15. Let I be a reduct of (H,, E), where n > 3. Then either
(1) T is homomorphically equivalent to a reduct of (H,,=), or
(2) T pp-defines E, N, and #.

In the latter case we have that either

(2a) every function in Pol(T") is essentially unary, or
(2b) Pol(T") contains one of the two binary canonical injections of Lemma 14.

Note that if item (1) holds then CSP(T') is either in P or NP-complete [7], and if item (2a)
holds then CSP(T") is NP-complete (Theorem 10 in [5]). In case (2b), when Pol(T") contains
a binary canonical injection of behaviour min which is N-dominated then CSP(T') is in P, as
we will discuss later. It thus remains to further consider the second case of Lemma 14, which
we do in the next subsection.

3.3 The relation H

We investigate Case (2b) of Proposition 15. The following relation characterises the NP-
complete cases in this situation.

» Definition 16. We define a 6-ary relation H(z1,y1, T2, Y2, T3, ys3) on H, by

/\ N(u,v)

1,5€{1,2,3},i#ju€{z;,yi }ve{z;,y;}
((B(z1,y1) A N(z2,y2) A N(23,y3))

vV (N(z1,91) A E(72,92) A N(23,93))

V (N (x1,y1) A N(z2,y2) A E(xs,y3))) -

A
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The importance of the relation H is reflected in the following proposition, which states
that if T is a reduct of (H,,, F) with E and N primitive positive definable in I, then either H
has a primitive positive definition in T'; in which case CSP(T") is NP-complete, or Pol(T") has
a certain canonical polymorphism which will imply tractability of the CSP. NP-completeness
and tractability for those cases will be discussed in Sections 4 and 5.

» Proposition 17. Let T be a reduct of (H,, E) with E and N primitive positive definable in
I". Then at least one of the following holds:

(a) There is a primitive positive definition of H in T'.

(b) Pol(T') contains a canonical binary injection of behaviour min.

4 CSPs over Henson graphs

We now explain why any reduct of (H,,, F) which has H among its relations, and hence by
Lemma 4 every reduct which pp-defines H, has an NP-hard CSP. While it would be possible
to show NP-hardness of CSP(H,,, H) directly by reduction of, say, the NP-hard problem
positive 1-in-3-SAT, we will use results from [15], and in fact a recent strengthening thereof
from [2], to prove hardness more elegantly via a structural property of Pol(H,,, H).

» Definition 18. Let I" be a structure. A projective clone homomorphism of T' (or Pol(T")) is
a mapping from Pol(T") onto its projections which: preserves arities; fixes each projection;
and preserves composition.

A projective strong h1 clone homomorphism of I' is a mapping as above, where the third
condition is weakened to preservation of composition with projections.

» Theorem 19 (from [2]). Let I' be a countable w-categorical structure in a finite relational
language which has a uniformly continuous strong h1 clone homomorphism. Then CSP(T") is
NP-hard.

» Proposition 20. The structure (H,, H) has a uniformly continuous strong hl clone homo-
morphism. Consequently, CSP(H,,, H) is NP-hard.

5 Summary for the Henson graphs

We can restate Theorem 1 in a more detailed fashion as follows.

» Theorem 21. Let T’ be a reduct of a Henson graph (H,,E). Then one of the following
holds.

(1) T has an endomorphism whose image induces an independent set, and is homomorphically

equivalent to a reduct of (Hy,=).

(2) Pol(T') has a uniformly continuous projective clone homomorphism.

(3) Pol(T') contains a binary canonical injection which is of behaviour min and N -dominated.
Items (2) and (3) cannot simultaneously hold, and when I" has a finite relational signature,
then (2) implies NP-completeness and (3) implies tractability of its CSP.

The first statement of Theorem 21 follows directly from the proof of Theorem 1, with the
additional observation that the strong hl clone homomorphism defined in Proposition 20 is in
fact a clone homomorphism. When (3) holds for a reduct, then (2) cannot hold, because (3)
implies the existence of f(z,y) € Pol(T") and a € Aut(T") such that f(z,y) = af(y,x) holds,
and equation impossible to satisfy by projections. In fact, by further analysing case (1), one

can easily show that it also implies either (2) or (3), so that we have the following.

CVIT 2016
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» Corollary 22. For every reduct ' of a Henson graph (H,,, E), precisely one of the following
holds: Pol(T") has a uniformly continuous projective clone homomorphism; or Pol(T') contains
f(z,y) € Pol(T") and o € Aut(T") such that f(x,y) = af(y,z).

When I' has a finite relational signature, then the first case possesses NP-completeness
and the second case the tractability of its CSP.

6 Reducts of homogeneous equivalence relations

We now investigate polymorphisms of reducts of the graphs (Cg, E), for 2 < n,s < w, with
precisely one of n,s equal to w. Recall from the preliminaries that we write FEq for the
reflexive closure of F.

Similarly to the case of the Henson graphs, we start with unary polymorphisms in
Section 6.1, reducing the problem to model-complete cores.

We then turn to higher-arity polymorphisms; here, the organisation somewhat differs
from the case of the Henson graphs. The role of the NP-hard relation H from the Henson
graphs is now taken by the two sources of NP-hardness mentioned in the introduction: the
first source being that factoring by the equivalence relation Eq yields a structure with an
NP-hard problem, and the second source being that restriction to some equivalence class
yields a structure with an NP-hard problem. In Section 6.2, we show that in fact, one of
the two sources always applies for model-complete cores when 2 < n < w or 2 < s < w.
Consequently, only the higher-arity polymorphisms of the reducts of (CY, E) and (C?, E)
require deeper investigation using Ramsey theory; this will be dealt with in Sections 6.3
and 6.4, respectively.

6.1 The unary case: model-complete cores

» Proposition 23. Let I' be a reduct of (CZ, E), where 1 < n,s < w, and at least one of n, s
equals w. Then End(I") = Aut(T") = Aut(C%, E), or End(T") contains an endomorphism onto
a clique or an independent set.

In the following sections, we investigate essential polymorphisms of reducts I" of (CZ, E)
which are model-complete cores, i.e., End(I') = Aut(C%,E). The following proposition
implies that in that situation, the equivalence relation Fq is invariant under Pol(T").

» Proposition 24. Let T be a reduct of (C2, E), where 1 < n,s <w. If End(I") = Aut(C3, E),
then E, N and Eq are preserved by the polymorphisms of T'.

Therefore, in the above situation Fq is an equivalence relation which is invariant under
Pol(T"), and so Pol(T") acts naturally on the equivalence classes of Eq. Moreover, if we fix
any ¢ € C; and expand the structure I' by the constant ¢, then the equivalence class C
of ¢ has a primitive positive definition in that expansion (T, ¢), since Eq and ¢ do. Hence,
C' is invariant under Pol(T', ¢), and so Pol(T, ¢) acts naturally on C' via restriction. In the
following sections, we analyse these actions.

6.2 Thecase2<n<wor2<s<uw

It turns out that in these cases, one of the sources of hardness always applies. We will use
the following fact about function clones on a finite domain.

» Proposition 25 (from [23]). Every function clone on a finite domain of at least three elements
which contains all permutations as well as an essential function contains a unary constant
function.
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» Proposition 26. Let I be a reduct of (C¥, E), where 2 < n < w, such that End(T") =
Aut(Cw, E). Then the action of Pol(T') on the equivalence classes of Eq has no essential and
no constant operation.

» Proposition 27. Let T" be a reduct of (C2, E), where 2 < s < w, such that End(T") =
Aut(Cg, E). Then for any ¢ € C, the action of Pol(T", ¢) on the equivalence class of ¢ has
no essential and no constant operation.

6.3 The case of two infinite classes: n =2 and s =w

The following proposition states that either one of the two sources of hardness applies, or
Pol(T") contains a ternary canonical function with a certain behaviour.

» Proposition 28. Let I' be a reduct of (C¥, E) such that End(T") = Aut(C%, E). Then one
of the following holds:

the action of Pol(T") on the classes of Eq has no essential function;

the action of Pol(T', ¢) on the equivalence class of ¢ has no essential function, for some

ce ¥,

Pol(T") contains a canonical ternary injection of behaviour minority which is hyperplanely

of behaviour E-dominated projection.
To prove the proposition, we need to recall a special case of Post’s classical result about
function clones acting on a two-element set, as well as a result on function clones on a
countable set which contain all permutations. Comparing this statement with Proposition 25
sheds light on why the case of this section is more involved than the cases of the preceding
section.

» Proposition 29 (Post [29]). Every function clone with domain {0,1} containing both
permutations of {0,1} as well as an essential function contains a unary constant operation
or the ternary addition modulo 2.

» Proposition 30 (from [7]). Every closed function clone on a countably infinite set which
contains all permutations as well as an essential operation contains a binary injection.

» Proposition 31. Let I" be preserved by a ternary injection h of behaviour minority which is
hyperplanely an E-dominated projection. Then CSP(T") can be solved in polynomial time.

6.4 The case of infinitely many classes of size two: n =w and s = 2

As in the preceding section, we show that either one of the two sources of hardness applies,
or Pol(T") contains a ternary canonical function of a certain behaviour.

» Proposition 32. Let I' be a reduct of (C2, E) such that End(I") = Aut(C2, E). Then one
of the following holds:
the action of Pol(I") on the classes of Fq has no essential function;
the action of Pol(T", ¢) on the equivalence class of ¢ has no essential function, for some
ceC?;
Pol(T") contains a ternary canonical function h with A(N,-,-) = h(-,N,-) = h(-,-,N) = N
and which behaves like a minority on {F, =}.

To prove the proposition, we are again going to make use of Propositions 29 and 30, and
the following lemma.

» Lemma 33. Let ' be a reduct of (C%, E) such that End(T') = Aut(C2, E). If Pol(T")
contains a ternary function which behaves like x 4+ y + z modulo 2 on some equivalence class,
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then it contains a ternary function which behaves like x 4+ y + z modulo 2 on all equivalence
classes.

Let T be a reduct of (C2, Eq) where Eq is an equivalence relation with infinitely many
classes of size two such that Pol(I") contains a ternary canonical function h as in item 3 of
Proposition 32.

» Proposition 34. A relation with a first-order definition in (C2, Eq) is preserved by h if and
only if it can be defined by a conjunction of formulas of the form

N(zy,y1) V-V N(zp,yx) V Eq(21, 22) (1)
for k > 0, or of the form
N(z1,y1) V-V N(@r,ye)V({i € S 2 # yi}| =2 p) (2)

where p € {0,1} and S C {1,...,k}.

» Proposition 35. There is a polynomial-time algorithm that decides whether a given set ®
of formulas as in the statement of Proposition 34 is satisfiable.

» Corollary 36. Let I' be a reduct of (C2, Eq) with finite signature and such that Pol(T)
contains the operation h. Then CSP(T") is in P.

We close the section with a more detailed variant of Theorem 2.

» Theorem 37. Let (C:, E) be an infinite graph whose reflexive closure Eq is an equivalence
relation with n classes of size s, where 1 < n,s <w. Let T be a reduct of (CZ, E). Then one
of the following holds.

(1) T has an endomorphism whose image induces a clique or an independent set, and is
homomorphically equivalent to a reduct of (C2,=).

(2) T is a model complete core and Pol(T,c) has a uniformly continuous projective clone
homomorphism for some c € (C3, E).

(3) n=2,s=w,T isamodel complete core, and Pol(T") contains a canonical ternary injection
of behaviour minority which is hyperplanely of behaviour E-dominated projection.

(4) n=w,s =2, T is a model complete core, and Pol(T") contains a ternary canonical
function h with h(N,-,-) = h(-,N,-) = h(-,-, N) = N and which behaves like a minority
on {E,=}.

Neither items (2) and (3), nor items (2) and (4) can simultaneously hold, and when T has
a finite relational signature, then (2) implies NP-completeness and both (3) and (4) imply
tractability of its CSP.

Outlook

We have classified the computational complexity of CSPs for reducts of the infinite homo-
geneous graphs. Our proof shows that the scope of the classification method from [14] is
much larger than one might expect at first sight. The general research goal here is to identify
larger and larger classes of infinite-domain CSPs where systematic complexity classification
is possible; a general dichotomy conjecture is open for CSPs of reducts of finitely bounded
homogeneous structures [16, 2]. The next step in this direction might be to show a general
complexity dichotomy for reducts of homogeneous structures whose age is finitely bounded
and has the free amalgamation property (the Henson graphs provide natural examples for
such structures). The present paper indicates that this problem might be within reach.
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