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Abstract
A graph H is a square root of a graph G if G can be obtained from H by the addition of
edges between any two vertices in H that are of distance 2 from each other. The Square Root
problem is that of deciding whether a given graph admits a square root. We consider this problem
for planar graphs in the context of the “distance from triviality” framework. For an integer k, a
planar+kv graph is a graph that can be made planar by the removal of at most k vertices. We
prove that a generalization of Square Root, in which some edges are prescribed to be either
in or out of any solution, has a kernel of size O(k) for planar+kv graphs, when parameterized
by k. Our result is based on a new edge reduction rule which, as we shall also show, has a wider
applicability for the Square Root problem.
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1 Introduction

Squares and square roots are well-known concepts in graph theory with a long history. The
square G = H2 of a graph H = (VH , EH) is the graph with vertex set VG = VH , such that
any two distinct vertices u, v ∈ VH are adjacent in G if and only if u and v are of distance at
most 2 in H. A graph H is a square root of G if G = H2. It is easy to check that there exist
graphs with no square root, graphs with a unique square root as well as graphs with many
square roots. The corresponding recognition problem, which asks whether a given graph
admits a square root, is called the Square Root problem. Motwani and Sudan [21] showed
that Square Root is NP-complete.

1.1 Existing Results
In 1967, Mukhopadhyay [22] characterized the graphs that have a square root. In line with
the aforementioned NP-completeness result of Motwani and Sudan, which appeared in 1994,
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this characterization does not lead to a polynomial-time algorithm for Square Root. Later
results focussed on the following two recognition questions (G denotes some fixed graph
class):

(1) How hard is it to recognize squares of graphs of G?
(2) How hard is it to recognize graphs of G that have a square root?

Note that the second question corresponds to the Square Root problem restricted to
graphs in G, whereas the first question is the same as asking whether a given graph has a
square root in G.

Ross and Harary [24] characterized squares of a tree and proved that if a connected graph
has a tree square root, then this root is unique up to isomorphism. Lin and Skiena [18] gave
a linear-time algorithm for recognizing squares of trees; they also proved that Square Root
can be solved in linear time for planar graphs. Le and Tuy [16] generalized the above results
for trees [18, 24] to block graphs. Nestoridis and Thilikos [23] proved that Square Root
is not only polynomial-time solvable for the class of planar graphs but for any non-trivial
minor-closed graph class, that is, for any graph class that does not contain all graphs and
that is closed under taking vertex deletions, edge deletions and edge contractions.

Lau [12] gave a polynomial-time algorithm for recognizing squares of bipartite graphs;
note that Square Root is trivial for bipartite graphs, and even for K4-free graphs, or
equivalently, graphs of clique number at most 3, as square roots of K4-free graphs must have
maximum degree at most 2. Milanic, Oversberg and Schaudt [19] proved that line graphs
can only have bipartite graphs as a square root. The same authors also gave a linear-time
algorithm for Square Root restricted to line graphs.

Lau and Corneil [13] gave a polynomial-time algorithm for recognizing squares of proper
interval graphs and showed that the problems of recognizing squares of chordal graphs
and squares of split graphs are both NP-complete. The same authors also proved that
Square Root is NP-complete even for chordal graphs. Le and Tuy [17] gave a quadratic-
time algorithm for recognizing squares of strongly chordal split graphs. Le, Oversberg
and Schaudt [14] gave polynomial algorithms for recognizing squares of ptolemaic graphs
and 3-sun-free split graphs. In a more recent paper [15], the same authors extended the
latter result by giving polynomial-time results for recognizing squares of a number of other
subclasses of split graphs. Milanic and Schaudt [20] proved that Square Root can be solved
in linear time for trivially perfect graphs and threshold graphs. They posed the complexity of
Square Root restricted to split graphs and cographs as open problems. Recently, we proved
that Square Root is linear-time solvable for 3-degenerate graphs and for (Kr, Pt)-free
graphs for any two positive integers r and t [8].

Adamaszek and Adamaszek [1] proved that if a graph has a square root of girth at least
6, then this square root is unique up to isomorphism. Farzad, Lau, Le and Tuy [7] showed
that recognizing graphs with a square root of girth at least g is polynomial-time solvable if
g ≥ 6 and NP-complete if g = 4. The missing case g = 5 was shown to be NP-complete by
Farzad and Karimi [6].

In a previous paper [2] we proved that Square Root is polynomial-time solvable for
graphs of maximum degree 6. We also considered square roots under the framework of
parameterized complexity [3, 2]. We proved that the following two problems are fixed-
parameter tractable with parameter k: testing whether a connected n-vertex graph with m

edges has a square root with at most n− 1 + k edges and testing whether such a graph has a
square root with at least m− k edges. In particular, the first result implies that the problem
of recognizing squares of tree+ke graphs, that is, graphs that can be modified into trees by
removing at most k edges, is fixed-parameter tractable when parameterized by k.
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1.2 Our Focus
We are interested in developing techniques that lead to new polynomial-time or parameterized
algorithms for Square Root for special graph classes. In particular, there are currently
very few results on the parameterized complexity, which is the main focus of our paper.

The graph classes that we consider fall under the “distance from triviality” framework,
introduced by Guo, Hüffner and Niedermeier [10]. For a graph class G and an integer p we
define four classes of “almost G” graphs, that is, graphs that are editing distance k apart
from G. To be more precise, the classes G + ke, G − ke, G + kv and G − kv consist of all
graphs that can be modified into a graph of G by deleting at most k edges, adding at most k

edges, deleting at most k vertices and adding at most k vertices, respectively. Taking k as
the natural parameter, these graph classes have been well studied from a parameterized point
of view for a number of problems. In particular this is true for the vertex coloring problem
restricted to (subclasses of) almost perfect graphs (due to the result of Grötschel, Lovász, and
Schrijver [9], who proved that vertex coloring is polynomial-time solvable on perfect graphs).
We consider G to be the class of planar graphs. As planar graphs are closed under taking
edge and vertex deletions, classes of planar−kv graphs and planar−ke graphs coincide with
planar graphs. Hence, we only need to consider planar+kv graphs and planar+ke graphs,
that is, graphs that can be made planar by at most k vertex deletions or at most k edge
deletions, respectively.

1.3 Our Results
Our main contribution is showing a linear kernel result for Square Root. In fact, we
consider a more general version of Square Root, called Square Root with Labels, that
takes as input a graph G with two subsets R and B of prespecified edges: the edges of R need
to be included in a solution (square root) and the edges of B are forbidden in the solution.
We prove that Square Root with Labels has a kernel of size O(k) for planar+kv graphs,
when parameterized by k. Note that this immediately implies the same result for planar+ke

graphs. Square Root with Labels was introduced in a previous paper [3], but in this
paper we introduce a new reduction rule, which we call the edge reduction rule.

The edge reduction rule is used to recognize, in polynomial time, a certain local sub-
structure that graphs with square roots must have. As such, our rule can be added to
the list of known and similar polynomial-time reduction rules for recognizing square roots.
To give a few examples, the reduction rule of Lin and Skiena [18] is based on recognizing
pendant edges and bridges of square roots of planar graphs, whereas the reduction rule of
Farzad, Le and Tuy [7] is based on the fact that squares of graphs with large girth can be
recognized to have a unique root. In contrast, our edge reduction rule, which is based on
detecting so-called recognizable edges whose neighbourhoods have some special property (see
Section 3 for a formal description) is tailored for graphs with no unique square root, just as
we did in [3]; in fact our new rule, which we explain in detail in Section 4, can be seen as
an improved and more powerful variant of the rule used in [3]. For squares with no unique
square root, not all the root edges can be recognized in polynomial time. Hence, removing
certain local substructures, thereby reducing the graph to a smaller graph, and keeping track
of the compulsory edges (the recognized edges) and forbidden edges is the best we can do.
However, after the reduction, the connected components of the remaining graph might be
dealt with further by exploiting the properties of the graph class under consideration. This
is exactly what we do for planar+kv graphs to obtain the linear kernel in Section 5.

In Section 6 we show, besides giving some directions for future work, that the edge rule
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can also be used to obtain other polynomial-time results for Square Root, namely for
graphs of maximum average degree smaller than 46

11 .

2 Preliminaries

We only consider finite undirected graphs without loops or multiple edges. We refer to the
textbook by Diestel [5] for any undefined graph terminology.

We denote the vertex set of a graph G by VG and the edge set by EG. The subgraph of G

induced by a subset U ⊆ VG is denoted by G[U ]. The graph G−U is the graph obtained from
G after removing the vertices of U . If U = {u}, we also write G− u. Similarly, we denote
the graph obtained from G after deleting an edge e by G− e. A vertex u is a cut vertex of a
connected graph G with at least two vertices if G− u is disconnected. An inclusion-maximal
subgraph of G that has no cut vertices is called a block. A bridge of a connected graph G is
an edge e such that G− e is disconnected.

In the remainder of this section let G be a graph. We say that G is planar+kv if G

can be made planar by removing at most k vertices. The distance distG(u, v) between
a pair of vertices u and v of G is the number of edges of a shortest path between them.
The diameter diam(G) of G is the maximum distance between any two vertices of G. The
distance between a vertex u ∈ VG and a subset X ⊆ VG is denoted by distG(u, X) =
min{distG(u, v) | v ∈ X}. The distance between two subsets X and Y of VG is denoted
by distG(X, Y ) = min{distG(u, v) | u ∈ X, v ∈ Y }. Whenever we speak about the distance
between a vertex set X and a subgraph H of G, we mean the distance between X and VH .

The open neighbourhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG} and
its closed neighbourhood is defined as NG[u] = NG(u) ∪ {u}. For X ⊆ VG, let NG(X) =⋃

u∈X NG(u) \X. Two (adjacent) vertices u, v are said to be true twins if NG[u] = NG[v].
The degree of a vertex u ∈ VG is defined as dG(u) = |NG(u)|. The maximum degree of G is
∆(G) = max{dG(v) | v ∈ VG}. A vertex of degree 1 is said to be a pendant vertex. If v is a
pendant vertex, then we say the unique edge incident to u is a pendant edge.

The framework of parameterized complexity allows us to study the computational com-
plexity of a discrete optimization problem in two dimensions. One dimension is the input
size n and the other one is a parameter k. We refer to the recent textbook of Cygan et
al. [4] for further details and only give the definitions for those notions relevant for our paper
here. A parameterized problem is fixed parameter tractable (FPT) if it can be solved in time
f(k) ·nO(1) for some computable function f . A kernelization of a parameterized problem Π is
a polynomial-time algorithm that maps each instance (x, k) with input x and parameter k to
an instance (x′, k′), such that i) (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance
of Π, and ii) |x′|+ k′ is bounded by f(k) for some computable function f . The output (x′, k′)
is called a kernel for Π. The function f is said to be a size of the kernel. It is well known
that a decidable parameterized problem is FPT if and only if it has a kernel. A logical next
step is then to try to reduce the size of the kernel. We say that (x′, k′) is a linear kernel if f

is linear.

3 Recognizable Edges

In this section we introduce the definition of a recognizable edge, which plays a crucial role in
our paper, together with the corresponding notion of a (u, v)-partition. We also prove some
important lemmas about this type of edges. See Fig. 1 (i) for an example of a recognizable
edge and a corresponding (u, v)-partition (X, Y ).



P.A. Golovach, D. Kratsch, D. Paulusma and A. Stewart XX:5

I Definition 1. An edge uv of a graph G is said to be recognizable if the following four
conditions are satisfied:
a) NG(u) ∩ NG(v) has a partition (X, Y ) where X = {x1, . . . , xp} and Y = {y1, . . . , yq},

p, q ≥ 1, are (disjoint) cliques in G;
b) xiyj /∈ EG for i ∈ {1, . . . , p} and j ∈ {1, . . . , q};
c) for any w ∈ NG(u) \ NG[v], wyj /∈ EG for j ∈ {1, . . . , q}, and symmetrically, for any

w ∈ NG(v) \NG[u], wxi /∈ EG for i ∈ {1, . . . , p};
d) for any w ∈ NG(u) \NG[v], there is an i ∈ {1, . . . , p} such that wxi ∈ EG, and symmet-

rically, for any w ∈ NG(v) \NG[u], there is a j ∈ {1, . . . , q} such that wyj ∈ EG.
We also call such a partition (X, Y ) a (u, v)-partition of NG(u) ∩NG(v).

Notice that due to c) and d), (X, Y ) is an ordered pair defined for an ordered pair (u, v); if
NG(u) \NG(v) 6= ∅ or NG(v) \NG(u) 6= ∅ then (Y, X) is not a (u, v)-partition, as condition
c) is violated (and in some instances, condition d) as well).

i)
X Y

u v

ii)
X Y

u v

Figure 1 (i) An example of a graph G with a recognizable edge uv and a corresponding (u, v)-
partition (X, Y ). (ii) A square root of G. In this figure, the edges of the square root are shown by
thick lines and the edges of G not belonging to the square root are shown by dashed lines. Edges
which may or may not belong to the square root are shown by neither thick nor dashed lines.

In the next lemma we give a necessary condition of an edge of a square root H of a
graph G to be recognizable in G. In particular, this lemma implies that any non-pendant
bridge of H is a recognizable edge of G.

I Lemma 2. Let H be a square root of a graph G. Let uv be an edge of H that is not
pendant and such that any cycle in H containing uv has length at least 7. Then uv is a
recognizable edge of G and (NH(u) \ {v}, NH(v) \ {u}) is a (u, v)-partition in G.

Proof. Let H be a square root of a graph G and let uv be an edge of H such that uv

is not a pendant edge of H and any cycle in H containing uv has length at least 7. Let
X = {x1, . . . , xp} = NH(u) \ {v} and Y = {y1, . . . , yq} = NH(v) \ {u}. Because uv is not
a pendant edge and any cycle in H that contains uv has length at least 7, it follows that
X 6= ∅, Y 6= ∅ and X ∩ Y = ∅. We show that (X, Y ) is a (u, v)-partition of NG(u) ∩NG(v)
in G by proving that conditions a)–d) of Definition 1 are fulfilled.

First we prove a). Let z ∈ NG(u)∩NG(v). We will show that z ∈ X∪Y . If uz ∈ EH then
z ∈ X, and if vz ∈ EH then z ∈ Y . Suppose that z /∈ X and z /∈ Y . Since uz ∈ EG, there is
a vertex w ∈ VG such that uw, wz ∈ EH . Since vz /∈ EH it follows that w 6= v. It follows due
to symmetry that there exists w′ ∈ VG such that vw′, w′z ∈ EH and w′ 6= u. Then either
wuvw′ is a cycle in H if w = w′, otherwise, zwuvw′z is a cycle of H. In both cases we have
a contradiction since any cycle in H containing uv has length at least 7. This proves that
z ∈ X ∪ Y and therefore, NG(u) ∩NG(v) ⊆ X ∪ Y . Since vxi ∈ EG and uyj ∈ EG for all
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i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, we see that X ∪ Y ⊆ NG(u) ∩NG(v). Because X, Y 6= ∅
and X ∩ Y = ∅, (X, Y ) is a partition of NG(u) ∪NG(v). It remains to observe that X and
Y are cliques in G because any two vertices of X and any two vertices of Y have u or v,
respectively, as common neighbour in H.

To prove b), assume that there are i ∈ {1, . . . , p} and j ∈ {1, . . . , q} such that xiyj ∈ EG.
Because H has no cycle of length 4 containing uv, xiyj /∈ EH . Hence, there is z ∈ VH

such that xiz, zyj ∈ EH . Because H has no cycles of length 3 containing uv, we find that
z /∈ {u, v}. We conclude that zxiuvyjz is a cycle of length 5 in H that contains uv; a
contradiction.

To prove c), it suffices to show that for any w ∈ NG(u)\NG[v], wyj /∈ EG for j ∈ {1, . . . , q},
as the second part is symmetric. To obtain a contradiction, assume that there are vertices
w ∈ NG(u) \NG[v] and yj for some j ∈ {1, . . . , q} such that wyj ∈ EG. By a), (X, Y ) is a
partition of NG(u) ∩ NG(v). Hence, w /∈ X and w /∈ Y . Because w /∈ X and w ∈ NG(u),
there is x ∈ VG such that ux, xw ∈ EH . As ux ∈ EH , we have x ∈ X. If wyj ∈ EH , then
the cycle uxwyjvu containing uv has length 5; a contradiction. Hence, wyj /∈ EH . Because
wyj ∈ EG, there is a vertex z ∈ VH such that wz, zyj ∈ EH . Since w ∈ NG(u) \NG[v], we
have w /∈ {u, v}. If x = z, then uvyjxu is a cycle of length 4 containing uv, a contradiction.
If x 6= z, then uvyjzwxu is a cycle of length 6 containing uv, another contradiction.

To prove d) we consider some w ∈ NG(u)\NG[v]. We note that since X ⊆ NG(u)∩NG(v),
w /∈ X and thus uw /∈ EH . Since uw ∈ EG by definition, there must be some x ∈ VG such
that ux, xw ∈ EH . Because w is not adjacent to v, we find that x 6= v. Since ux ∈ EH

and X = NH(u) \ {v}, this means that x ∈ X. The second condition in d) follows by
symmetry. J

The following corollary follows immediately from Lemma 2.

I Corollary 3. Let H be a square root of a graph with no recognizable edges. Then every
non-pendant edge of H lies on a cycle of length at most 6.

In Lemma 4 we show that recognizable edges in a graph G can be used to identify some
edges of a square root of G and also some edges that are not included in any square root of
G; see Fig. 1 (ii) for an illustration of this lemma.

I Lemma 4. Let G be a graph with a square root H. Additionally let uv be a recognizable
edge of G with a (u, v)-partition (X, Y ) where X = {x1, . . . , xp} and Y = {y1, . . . , yq}. Then:
i) uv ∈ EH ;
ii) for every w ∈ NG(u) \NG[v], wu /∈ EH , and for every w ∈ NG(v) \NG[u], wv /∈ EH .
iii) if u, v are true twins in G, then either ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH and

uy1, . . . , uyq /∈ EH , vx1, . . . , vxp /∈ EH or ux1, . . . , uxp /∈ EH , vy1, . . . , vyq /∈ EH and
uy1, . . . , uyq ∈ EH , vx1, . . . , vxp ∈ EH ;

iv) if u, v are not true twins in G, then ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH and
uy1, . . . , uyq /∈ EH , vx1, . . . , vxp /∈ EH .

Proof. The proof uses conditions a)–d) of Definition 1.
To prove i), suppose that uv /∈ EH . Then there is a vertex z ∈ NG(u) ∩NG(v) such that

zu, zv ∈ EH . Assume without loss of generality that z ∈ X. Because of b), zy1 /∈ EG, which
implies, together with zv ∈ EH , that vy1 /∈ EH . Because vy1 ∈ EG, this means that there is
a vertex w with vw, wy1 ∈ EH . Because we assume uv /∈ EH , we observe that w 6= u. By b),
w /∈ X and, therefore, w ∈ NG(v) \NG(u). As zv, vw ∈ EH , we obtain wz ∈ EG. However,
as z ∈ X, this contradicts c). We conclude that uv ∈ EH .
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To prove ii), it suffices to consider the case in which w ∈ NG(u) \ NG[v], as the other
case is symmetric. If wu ∈ EH , then because uv ∈ EH , we have wv ∈ EG contradicting
w /∈ NG(v).

We now prove iii) and iv). First suppose that there exist vertices xi and xj (with possibly
i = j) for some i, j ∈ {1, . . . , p} such that xiu, xjv ∈ EH . Then, as xiy1, xjy1 /∈ EG by b),
we find that y1u, y1v /∈ EH . As y1u ∈ EG, the fact that y1u /∈ EH means that there exists
a vertex w ∈ VH \ {u} such that wu, wy1 ∈ EH . As y1v /∈ EH , we find that w 6= v, so
w ∈ VH \ {u, v}. As xiu, uw ∈ EH , we find that xiw ∈ EG, consequently w /∈ Y due to b).
Because wy1 ∈ EH we obtain w /∈ X, again due to b). Hence, w /∈ X ∪ Y = NG(u) ∩NG(v).
Therefore, as uw ∈ EG and w 6= v, we have w ∈ NG(u) \ NG[v], but as wy1 ∈ EG this
contradicts c). Hence, this situation cannot occur.

Suppose that there a vertex xi for some i ∈ {1, . . . , p} such that xiu, xiv /∈ EH . Then, as
xiv ∈ EG, there exists a vertex w ∈ VH \ {u, v}, such that wv, wxi ∈ EH . By b), w /∈ Y . As
uv ∈ EH due to statement i) and vw ∈ EH , we find that uw ∈ EG. Hence, as w /∈ Y , we
obtain w ∈ X. As xiu ∈ EG \ EH and xiv /∈ EH , there is a vertex z ∈ VH \ {u, v} such that
zu, zxi ∈ EH . As uv ∈ EH due to statement i), this implies that zv ∈ EG. Hence, z ∈ X ∪Y .
As zxi ∈ EH , we find that z /∈ Y due to b). Consequently, z ∈ X. This means that we have
vertices w, z ∈ X (possibly w = z) and edges zu, wv ∈ EH . However, we already proved
above that this is not possible.

We obtain that either ux1, . . . , uxp ∈ EH and vx1, . . . , vxp /∈ EH , or ux1, . . . , uxp /∈ EH

and vx1, . . . , vxp ∈ EH . Symmetrically, either uy1, . . . , uyq ∈ EH and vy1, . . . , vyq /∈ EH ,
or uy1, . . . , uyq /∈ EH and vy1, . . . , vyq ∈ EH . By b), it cannot happen that ux1, uy1 ∈ EH

or vx1, vy1 ∈ EH . Hence, either ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH and uy1, . . . , uyq /∈
EH , vx1, . . . , vxp /∈ EH or ux1, . . . , uxp /∈ EH , vy1, . . . , vyq /∈ EH and uy1, . . . , uyq ∈ EH ,
vx1, . . . , vxp ∈ EH . In particular, this implies iii).

To prove iv), assume without loss of generality that NG(u)\NG[v] 6= ∅. For contradiction,
let ux1, . . . , uxp /∈ EH , vy1, . . . , vyq /∈ EH and uy1, . . . , uyq ∈ EH , vx1, . . . , vxp ∈ EH . Let
w ∈ NG(u) \NG[v]. By d), there is a vertex xi for some i ∈ {1, . . . , p} such that wxi ∈ EG.
Then wxi /∈ EH , as otherwise our assumption that vxi ∈ EH will imply that w ∈ NG(v),
which is not possible. Since wxi ∈ EG \ EH , there exists a vertex z ∈ VH , such that
zw, zxi ∈ EH . Because xiu /∈ EH , we find that z 6= u, and because w /∈ NG(v), we find that
z 6= v. Because zxi, xiv ∈ EH , we obtain zv ∈ EG. As w /∈ NG(v) and vxj ∈ EH for all
j ∈ {1, . . . , p}, we have wxj /∈ EH for all j ∈ {1, . . . , p}. Hence, as zw ∈ EH , we find that
z /∈ X. As zxi ∈ EH , we find that z /∈ Y due to b). Hence, z /∈ X ∪ Y = NG(u) ∩NG(v).
As zv ∈ EG, this implies that z ∈ NG(v) \NG[u] (recall that z 6= u). Because zxi ∈ EG, this
is in contradiction with c). J

Remark 1. If the vertices u and v of the recognizable edge of the square G in Lemma 4
are true twins, then by statement iii) of this lemma and the fact that the vertices u and
v are interchangeable, G has at least two isomorphic square roots: one root containing
ux1, . . . , uxp, vy1, . . . , vyq and excluding uy1, . . . , uyq, vx1, . . . , vxp, and another one contain-
ing ux1, . . . , uxp, vy1, . . . , vyq and excluding uy1, . . . , uyq, vx1, . . . , vxp.

4 The Edge Reduction Rule

In this section we present our edge reduction rule. As mentioned in Section 1.3, we solve a
more general problem than Square Root. Before discussing the edge reduction rule, we
first formally define this problem.
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Square Root with Labels
Input: a graph G and two sets of edges R, B ⊆ EG.
Question: is there a graph H with H2 = G, R ⊆ EH and B ∩ EH = ∅?

Note that Square Root is indeed a special case of Square Root with Labels: choose
R = B = ∅.

We say that a graph H is a solution for an instance (G, R, B) of Square Root with
Labels if H satisfies the following three conditions: (i) H2 = G; (ii) R ⊆ EH ; and
(iii) B ∩ EH = ∅.

We use Lemmas 2 and 4 to preprocess instances of Square Root with Labels. Our edge
reduction algorithm takes as input an instance (G, R, B) of Square Root with Labels
and either returns an equivalent instance with no recognizable edges or answers no.

Edge Reduction

1. Find a recognizable edge uv together with corresponding (u, v)-partition (X, Y ), X =
{x1, . . . , xp} and Y = {y1, . . . , yq}. If such an edge uv does not exist, then return the
obtained instance of Square Root with Labels and stop.

2. If uv ∈ B then return no and stop. Otherwise let B1 = {wu | w ∈ NG(u) \ NG[v]} ∪
{wv | w ∈ NG(v) \NG[u]}. If R ∩B1 6= ∅, then return no and stop.

3. If u and v are not true twins then set R2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vyq} and B2 =
{uy1, . . . , uyq} ∪ {vx1, . . . , vxp}. If R2 ∩B 6= ∅ or B2 ∩R 6= ∅, then return no and stop.

4. If u and v are true twins then do as follows:
a. If ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩ R 6= ∅ or ({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩

B 6= ∅ then set R2 = {uy1, . . . , uyq} ∪ {vx1, . . . , vxp} and B2 = {ux1, . . . , uxp} ∪
{vy1, . . . , vyq}. If R2 ∩B 6= ∅ or B2 ∩R 6= ∅, then return no and stop.

b. If ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩ R = ∅ and ({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩
B = ∅ then set R2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vuq} and B2 = {uy1, . . . , uyq} ∪
{vx1, . . . , vxp}. (Note that R2 ∩B = ∅ and B2 ∩R = ∅.)

5. Delete the edge uv and the edges of B1 from G, set R := (R \ {uv}) ∪ R2 and B :=
(B \B1) ∪B2, and return to Step 1.

I Lemma 5. For an instance (G, R, B) of Square Root with Labels where G has n

vertices and m edges, Edge Reduction in time O(n2m2) either correctly answers no or
returns an equivalent instance (G′, R′, B′) with the following property: for any square root H

of G′, every edge of H is either a pendant edge of H or is included in a cycle of length at
most 6 in H. Moreover, (G′, R′, B′) has a solution H if and only if (G, R, B) has a solution
that can be obtained from H by restoring all recognizable edges.

Proof. It suffices to consider one iteration of the algorithm to prove its correctness. If we
stop at Step 1 and return the obtained instance of Minimum Square Root with Labels,
then by Lemma 2, for any square root H of G′, every non-pendant edge of H is included in
a cycle of length at most 6 in H.

To show the correctness of Step 2, we note that by Lemma 4 i), uv is included in any
square root and the edges of B1 are not included in any square root. Hence, if what we do in
Step 2 is not consistent with R and B, there is no square root of G that includes the edges
of R and excludes the edges of B, thus returning output no is correct.

To show the correctness of Step 3, suppose u and v are not true twins. Then by
Lemma 4 iv) it follows that ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH , uy1, . . . , uyq /∈ EH and
vx1, . . . , vxp /∈ EH for any square root H. Hence, we must define R2 and B2 according to
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this lemma. If afterwards we find that R2 ∩ B 6= ∅ or B2 ∩ R 6= ∅, then R2 or B2 is not
consistent with R or B, respectively, and thus, retuning no if this case happens is correct.

To show the correctness of Step 4, suppose that u and v are true twins. Then by
Lemma 4 iv) we have two options. First, if ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩ R 6= ∅ or
({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩B 6= ∅, then we are forced to go for the option as defined
in Step 4(a). If afterwards R2 ∩ B 6= ∅ or B2 ∩ R 6= ∅, then we still need to return no
as in Step 3. Second, if ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩ R = ∅ and ({ux1, . . . , uxp} ∪
{vy1, . . . , vyq}) ∩ B = ∅, then we may set without loss of generality (cf. Remark 1) that
R2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vuq} and B2 = {uy1, . . . , uyq} ∪ {vx1, . . . , vxp}. Note that
in this case R2 ∩B = ∅ and B2 ∩R = ∅.

Finally, to show the correctness of Step 5, let G′ be the graph obtained from G after
deleting the edge uv and the edges of B1. Let R′ = (R \ {uv}) ∪R2 and B′ = (B \B1) ∪B2.
Then the instances (G, R, B) and (G′, R′, B′) are equivalent: a graph H is readily seen to be
a solution for (G, R, B) if and only if H − uv is a solution for (G′, R′, B′). This completes
the correctness proof of our algorithm.

It remains to evaluate the running time. We can find a recognizable edge uv together
with the corresponding (u, v)-partition (X, Y ) in time O(mn2). This can be seen as follows.
For each edge uv, we find Z = NG(u) ∩ NG(v). Then we check conditions a) and b) of
Definition 1, that is, we check whether Z is the union of two disjoint cliques with no edges
between them. Finally, we check conditions c) and d) of Definition 1. For a given uv, this
can all be done in time O(n2). As we need to check at most m edges, one iteration takes
time O(mn2). As the total number of iterations is at most m, the whole algorithm runs in
time O(n2m2). J

5 The Linear Kernel

For proving that Square Root with Labels restricted to planar+kv graphs has a linear
kernel when parameterized by k, we will use the following result of Harary, Karp and Tutte
as a lemma.

I Lemma 6 ([11]). A graph H has a planar square if and only if
i) every vertex v ∈ VH has degree at most 3,
ii) every block of H with more than four vertices is a cycle of even length, and
iii) H has no three mutually adjacent cut vertices.

We need the following additional terminology. A block is trivial if it has exactly one
vertex; note that this vertex must have degree 0. A block is small if it has exactly two
vertices and big otherwise. We say that a block is pendant if it is a small block with a vertex
of degree 1.

We need two more structural lemmas. We first show the effect of applying our Edge
Reduction Rule on the number of vertices in a connected component of a planar graph.

I Lemma 7. Let G be a planar graph with a square root. If G has no recognizable edges,
then every connected component of G has at most 12 vertices.

Proof. Let G be a planar square with no recognizable edges. We may assume without loss
of generality that G is connected and |VG| ≥ 2. Let H be a square root of G. Recall that H

is a connected spanning subgraph of G. Hence, it suffices to prove that H has at most 12
vertices.
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X

F

Y

Figure 2 An example of a planar+2v graph G = H2 (left side) and a square root H of G (right
side). The thick edges in H denote the edges of A.

First suppose that H does not have a big block, in which case every edge of H is a bridge.
As G has no recognizable edges, Corollary 3 implies that every block of H is pendant. By
Lemma 6, every vertex of H degree at most 3. Hence, H has at most four vertices.

Now suppose that H has a big block F . If F contains no cut vertices of H, then H = F

has at most six vertices due to Corollary 3 and Lemma 6. Assume that F contains a cut
vertex v of H. Lemma 6 tells us that dH(v) ≤ 3; therefore v is a vertex of exactly two blocks,
namely F and some other block S. Because F is big, v has two neighbours in F . Hence, v can
only have one neighbour in S, thus S is small. As G has no recongizable edges, Corollary 3
implies that S is a pendant block. Hence, we find that |VG| ≤ 2|VF | (with equality if and
only if each vertex of F is a cut vertex).

If F has at least seven vertices, then it follows from Lemma 6 that F is a cycle of even
length at least 8, which is not possible due to Corollary 3. We conclude that |VF | ≤ 6 and
find that |VG| = |VH | ≤ 2|VF | ≤ 12. J

We now prove our second structural lemma.

I Lemma 8. Let G be a planar+kv graph with no recognizable edges, such that every
connected component of G has at least 13 vertices. If G has a square root, then |VG| ≤ 137k.

Proof. Let H be a square root of G. By Lemma 7, G cannot have any planar connected
components (as these would have at most 12 vertices). Hence, every connected component of
G is non-planar.

Since G is planar+kv, there exists a subset X ⊆ VG of size at most k such that G−X

is planar. Let F = H −X. Note that F is a spanning subgraph of G−X and that F 2 is
a (spanning) subgraph of G−X; hence F 2 is planar. Let Y be the set that consists of all
those vertices of F that are a neighbour of X in H, that is Y = NH(X) ∩ VF . Since every
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connected component of G−X is non-planar, every connected component of F contains at
least one vertex of Y . Let A be the set that consists of all edges between X and Y in H,
that is, A = {uv ∈ E(H) | u ∈ X, v ∈ Y }. See Figure 2 for an example.

Consider a vertex v ∈ X. By Kuratowski’s Theorem, the (planar) graph G−X has no
clique of size 5. Since NH(v)∩(VG\X) is a clique in G−X, we find that |NH(v)∩(VG\X)| ≤ 4.
Hence, |Y | ≤ 4|X| ≤ 4k.

We now prove three claims about the structure of blocks of F .

Claim A. If R is a block of F that is not a pendant block of H, then VR is at distance at
most 1 from Y in F .

We prove Claim A as follows. Let R be a block of F that is not a pendant block of H. To
obtain a contradiction, assume that VR is at distance at least 2 from Y in F . Let u be a
vertex of R such that distF (u, Y ) = min{distF (u, v) | v ∈ VR}, so u is a cut vertex of F that
is of distance at least 2 from Y in F . Note that R is not a trivial block of F , since all trivial
blocks are isolated vertices of F that are vertices of Y .

First suppose that R is a small block of F and let v be the second vertex of R. Then the
edge uv is a bridge of F . Since R is not pendant, it follows from Corollary 3 that uv is in
a cycle of length C at most 6 in H. Observe that C must contain at least two edges of A,
which implies that u or v is at distance at most 1 from Y . This is a contradiction.

Now suppose that R is a big block of G. Let v be the neighbour of u in a shortest path
between u and Y in F . By Lemma 6, u has degree at most 3 in F . As R is big, u has at
least two neighbours in F . Hence, uv is a bridge of F . As v has at least two neighbours in
F as well, uv is not a pendant edge of H. Then it follows from Corollary 3 that uv is in a
cycle C of length at most 6 in H. Observe that C must contain at least two edges of A and
at least one edge uw of R for some vertex w 6= u in R. Hence, w is at distance at most 1
from Y , which is a contradiction. This completes the proof of Claim A.

By Lemma 6, every vertex of F has degree at most 3 in F . Hence the following holds:

Claim B. For every u ∈ Y , F has at most three big blocks at distance at most 1 from u.

Let Z be the set of vertices of F at distance at most 3 from X in H.

Claim C. If R is a block of F with VR \ Z 6= ∅, then |VR| ≤ 6.

We prove Claim C as follows. Suppose R is a block of F with VR \ Z 6= ∅. For contradiction,
assume that |VR| ≥ 7. Then, by Lemma 6, R is a cycle of F of even size. As VR \ Z 6= ∅ and
R is connected, there exists an edge uv of F with u /∈ Z. By Corollary 3, we find that uv is
in a cycle C of H of length at most 6. Since u is at distance at least 4 from X in H, we find
that C contains no vertex of X and therefore, C is a cycle of F . Then R = C must hold,
which is a contradiction as |VR| ≥ 7 > 6 ≥ |VC |. This completes the proof of Claim C.

We will now show that the diameter of F is bounded. We start with proving the following
claim.

Claim D. Every vertex of every block R of F that is non-pendant in H is at distance at
most 5 from X in H. Moreover,
i) if R has a vertex at distance at least 4 from X in H, then R is a big block,
ii) R has at most three vertices at distance at least 4 and at most one vertex at distance 5

from X in H.

We prove Claim D as follows. Let R be a block of F that is non-pendant in H. Claim A
tells us that VR is at distance at most 1 from Y in F .
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If R is a small block, then every vertex of R is at distance at most 2 from Y . Hence,
every vertex of R is at distance at most 3 from X in H and the claim holds for R.

Let R be a big block. If R has at most four vertices, then the vertices of R are at distance
at most 3 from Y in F and at most one vertex of R is at distance exactly 3. Hence, the
vertices of R are at distance at most 4 from X in H and at most one vertex of R is at
distance exactly 4. Assume that |VR| > 4. Then either VR ⊆ Z, that is, all the vertices are at
distance at most 3 from X in H, or, by Lemma 6 and Claim C, we find that R has at most
six vertices. As |VR| > 4, we find that R is a cycle on six vertices by Lemma 6. Hence, in the
latter case every vertex of R is at distance at most 4 from Y , that is, at distance at most 5
from X in H. Moreover, at most three vertices are at distance at least 4 and at most one
vertex is at distance 5 from X in H as R is a cycle. This completes the proof of Claim D.

By combining Claim B with the fact that |Y | ≤ 4k, we find that F has at most 12k big blocks
at distance at most 1 from Y . By Claims A and D, this implies that H has at most 36k

vertices of non-pendant blocks at distance at least 4 from X in H and at most 12k vertices at
distance at least 5 from X in H. Let v be a vertex H of degree 1 in H. If v is at distance at
least 5 from X, then v is adjacent to a vertex u of a non-pendant block and u is at distance
at least 4 from X in H. Notice that v is a unique vertex of degree 1 adjacent to u, because by
Claim D, u is in a big block and dF (u) ≤ 3 by Lemma 6. Since H has at most 36k vertices
of non-pendant blocks at distance at least 4 from X in H, the total number of vertices of
degree 1 at distance at least 5 from X in H is at most 36k. Taking into account that there
are at most 12k vertices at distance at least 5 from X in H in non-pendant blocks, we see
that there are at most 48k vertices in H at distance at least 5 from X and all other vertices
in F are at distance at most 4 from X. Using the facts that |Y | ≤ 4k and that dF (v) ≤ 3 for
v ∈ VF by Lemma 6, we observe that H has at most k + 4k + 12k + 24k + 48k = 89k vertices
at distance at most 4 from X. It then follows that |VG| = |VH | ≤ 48k + 89k = 137k. J

We are now ready to prove our main result.

I Theorem 9. Square Root with Labels has a kernel of size O(k) for planar+kv graphs
when parameterized by k.

Proof. Let (G, R, B) be an instance of Square Root with Labels. First we apply Edge
Reduction, which takes polynomial time due to Lemma 5. By the same lemma we either
solve the problem in polynomial time or obtain an equivalent instance (G′, R′, B′) with the
following property: for any square root H of G′, every edge of H is either a pendant edge of
H or is included in a cycle of length at most 6 in H. In the latter case we apply the following
reduction rule exhaustively, which takes polynomial time as well.

Component Reduction. If G′ has a connected component F with |VF | ≤ 12, then use
brute force to solve Square Root with Labels for (F, R ∩ VF , B ∩ VF ). If this yields
a no-answer, then return no and stop. Otherwise, return (G′ − VF , R′ \ VF , B′ \ VF ) or if
G′ = F , return yes and stop.

It is readily seen that this rule either solves the problem correctly or returns an equivalent
instance. Assume we obtain an instance (G′′, R′′, B′′). Our reduction rules do not increase
the deletion distance, that is, G′′ is a planar+kv graph. Then by Lemma 8, if G′′ has more
than 137k vertices then G′′, and thus G, has no square root. Hence, if |V ′′

G | > 137k, we have
a no-instance, in which case we return a no-answer and stop. Otherwise, we return the kernel
(G′′, R′′, B′′). J
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6 Conclusions

We proved a linear kernel for Square Root with Labels, which generalizes the Square
Root problem, for planar+kv graphs using a new edge reduction rule. It would be interesting
to research whether our edge reduction rule can be used to obtain other results for Square
Root. We could prove that this rule can be used to show the known result [2] that Square
Root is polynomial-time solvable for graphs of maximum degree at most 6. We conclude
our paper by showing that there exists at least one other application.

The average degree of a graph G is ad(G) = 1
|VG|

∑
v∈VG

dG(v) = 2|EG|
|VG| . Then the

maximum average degree of G is defined as mad(G) = max{ad(H) | H is a subgraph of G}.
We use our rule Edge Reduction to prove the following result (proof omitted).

I Theorem 10. Square Root can be solved in time O(n4) for n-vertex graphs G with
mad(G) < 46

11 .

We pose the problem as to whether Theorem 10 can be strengthened to hold for graphs
of higher maximum average degree as an open problem.
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