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Abstract
We consider plurality consensus in networks of n nodes. Initially, each node has one of k opinions.
The nodes execute a (randomized) distributed protocol to agree on the plurality opinion (the
opinion initially supported by the most nodes). In certain types of networks the nodes can be
quite cheap and simple, and hence one seeks protocols that are not only time efficient but also
simple and space efficient. Typically, protocols depend heavily on the employed communication
mechanism, which ranges from sequential (only one pair of nodes communicates at any time) to
fully parallel (all nodes communicate with all their neighbors at once) and everything in-between.

We propose a framework to design protocols for a multitude of communication mechanisms.
We introduce protocols that solve the plurality consensus problem and are, with probability
1 − o (1), both time and space efficient. Our protocols are based on an interesting relationship
between plurality consensus and distributed load balancing. This relationship allows us to design
protocols that generalize the state of the art for a large range of problem parameters.
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1 Introduction

The objective in the plurality consensus problem is to find the so-called plurality opinion
(i.e., the opinion that is initially supported by the largest subset of nodes) in a network G
where, initially, each of the n nodes has one of k opinions. Applications of this problem
include distributed computing [20, 30, 31], social networks [29, 17, 28], as well as modeling
of biological interactions [16, 15]. All these areas typically demand both very simple and
space-efficient protocols. Communication models, however, can vary from anything between
simple sequential communication with a single neighbor (often used in biological settings as
a simple variant of asynchronous communication [5]) to fully parallel communication where
all nodes communicate with all their neighbors simultaneously (like broadcasting models
in distributed computing). This diversity turns out to be a major obstacle in algorithm
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10:2 Plurality Consensus in Arbitrary Graphs

design, since protocols (and their analyses) to a large degree depend upon the employed
communication mechanism.

In this paper we present two simple plurality consensus protocols called Shuffle and
Balance. Both protocols work in a very general discrete-time communication model. The
communication partners are determined by a (possibly randomized) sequence (Mt)t≤N of
communication matrices, where we assume1 N to be some suitably large polynomial in n.
That is, nodes u and v can communicate in round t if and only if Mt[u, v] = 1. In that
case, we call the edge {u, v } active; see [6, 32] for related graph models. Our results allow
for a wide class of communication patterns (which can even vary over time) as long as
the communication matrices have certain “smoothing” properties (cf. Section 2). These
smoothing properties are inspired by similar smoothing properties used by Thomas Sauerwald
and He Sun [32] for load balancing in the dimension exchange model. In fact, load balancing
is the source of inspiration for our protocols. Initially, each node creates a suitably chosen
number of tokens labeled with its own opinion. Our Balance protocol then performs discrete
load balancing on these tokens, allowing each node to get an estimate on the total number of
tokens for each opinion. The Shuffle protocol keeps the number of tokens on every node
fixed, but shuffles tokens between communication partners. By keeping track of how many
tokens of their own opinion (label) were exchanged in total, nodes gain an estimate on the
total (global) number of such tokens. Together with a simple broadcast routine, all nodes
can determine the plurality opinion.

The running time of our protocols is the smallest time t for which all nodes have stabilized
on the plurality opinion. That is, all nodes have determined the plurality opinion and will
not change. This time depends on the network G, the communication pattern (Mt)t≤N , and
the initial bias towards the plurality opinion (cf. Section 2). For both protocols we show a
strong correlation between their running time, the mixing time of certain random walks and
the (related) smoothing time, both of which are used in the analysis of recent load balancing
results [32]. To give some more concrete examples of our results, let T := O (logn/(1− λ2)),
where 1− λ2 is the spectral gap of G. If the bias is sufficiently high, then both our protocols
Shuffle and Balance determine the plurality opinion in time

n · T in the sequential model (only one pair of nodes communicates per time step);
d · T in the balancing circuit model (communication partners are chosen according to d
(deterministic) perfect matchings in a round-robin fashion); and
T in the diffusion model (all nodes communicate with all their neighbors at once).

To the best of our knowledge, these match the best known bounds in the corresponding
models. For an arbitrary bias (in particular, arbitrarily small bias), the protocols differ in
their time and space requirements. More details of our results can be found in Section 1.2.

1.1 Related Work

There is a diverse body of literature that analyzes consensus problems under various models
and assumptions. Results differ in the considered topology (e.g., arbitrary or complete), the
restrictions on model parameters (e.g., the number of opinions or the initial bias2), the time
model (synchronous or asynchronous), or the required knowledge (e.g., n, maximal degree,

1 For simplicity and without loss of generality; our protocols run in polynomial time in all considered
models.

2 The bias is α := (n1 − n2)/n, n1 and n2 being the support of the most and second most common
opinions.
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Table 1 Summary of plurality consensus results.

Arbitrary
Graph

Number
of Opinions

Required Bias α
O-notation

Time
O-notation Model Space

O-notation

Shuffle 3 arbitrary arbitrary T · tmix
T · log(n)/(1− λ2) (d-reg graph) sync & async see Theorem 2

Balance 3 arbitrary arbitrary τ

log(n)/(1− λ2) (d-reg graph) sync & async k · log(n)

[26] 3 arbitrary arbitrary D + F2
n2

1
· log(k) broadcast –

[27] 3 2 arbitrary n5 async 1
[21] 3 2 arbitrary logn/δ(G,n1/n) async 1
[19] expander 2 vol(1)− vol(2) ≥ 4λ2

2 · |E| log(n) sync 1

[18] random
d-reg 2

√
1/d+ d/n log(n) sync 1

[9] 7 ≤ n

√
min

{
k, 3
√

n
log(n)

}
· log(n)

n min
{
k, 3
√

n
log(n)

}
· logn sync log(k)

[8] 7 O(( n
log(n) )1/3) ε · n2/n md(c) · log(n) sync log(k)

[23] 7 O(nε)
√

logn/n k + log(n) sync log(k)
[13] 7 o(

√
n/ log(n)) �

√
logn/n log(n) · log log(n) sync log(k)

[2] 7 2 arbitrary log2(n)
sα + log2(n) async s = O(n) states

[3] 7 2 � log(n)/
√
n log(n) async 1

Shuffle assumes rough bounds on tmix and n. Bounds on α can reduce the space requirements of our pro-
tocols. [26] requires a spanning tree and a common set of quasi-random hash functions. Time in the async
model use parallel time. All results, except for [21], hold w.p. 1 − o (1). [2] also gives an expected time of
o (log(n)/(sα) + log(n) · log(s)).

or spanning tree). To capture this diverse spectrum, we classify3 results into population
protocols, sensor networks, and pull voting. A condensed form of this discussion is given
in Table 1. We will not discuss work whose focus is too far away from this paper’s, e.g.,
consensus on some arbitrary opinion, leader election, robustness concerns, or Byzantine
models.

Population Protocols. The first line of work considers population protocols for consensus
and models interactions between large populations of very simple entities (like molecules).
Entities are modeled as finite state machines with a small state space and communicate
asynchronously. In each step, an edge is chosen uniformly at random and only the two
connected nodes communicate. We refer to this communication model as the sequential model.
See [5, 4] for detailed introductions. Dana Angluin, James Aspnes, and David Eisenstat
[3] propose a 3-state population protocol for majority voting (i.e., k = 2) on the clique. If
the initial bias α is ω (logn/

√
n), their protocol agrees (w.h.p.) on the majority opinion in

O (n · logn) steps. George B. Mertzios, Sotiris E. Nikoletseas, Christoforos Raptopoulos,
and Paul G. Spirakis [27] suggest a 4-state protocol for exact majority voting, which always
returns the majority opinion (independent of α) in time O

(
n6) in arbitrary graphs and in

time O
(
n2 · log(n)/α

)
in the clique. This is optimal in that no population protocol for exact

majority can have fewer than four states [27]. Dan Alistarh, Rati Gelashvili, and Milan
Vojnovic [2] gives a protocol for k = 2 in the clique that allows for a speed-memory trade-off.
It solves exact majority and has expected parallel running time4 O

( logn
s·α + logn · log s

)
and

(w.h.p.) O
( log2 n
s·α + log2 n

)
.

Here, s is the number of states and must be in the range s = O (n) and s =
Ω (logn · log logn).

3 This classification is neither unique nor injective but merely an attempt to make the overview more
accessible.

4 The number of steps divided by n. A typical measure for population protocols, based on the intuition
that each node communicates roughly once in n steps.
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10:4 Plurality Consensus in Arbitrary Graphs

In contrast to these population results, our protocols consider the case of arbitrary k ≥ 2.
Also, with the notable exception of [27], the above results are restricted to the complete
graph. These restrictions are not surprising, given that these protocols operate on a very
constrained state space. Our protocols work in arbitrary, even dynamic graphs. Balance
can be seen as a slightly simplified and generalized version of [2], and Shuffle uses a similar
idea for a speed-memory trade-off.

Sensor Networks. Another line of work has a background in sensor networks. Quantized
interval consensus draws its motivation from signal processing. Initially, nodes measure
quantized values (signals) and then communicate through a network to agree on the quantized
values that enclose the average. This can be used to solve majority consensus (k = 2). The
communication model is typically sequential. Florence Bénézit, Patrick Thiran, and Martin
Vetterli [10] propose a protocol that is equivalent to the 4-state population protocol of [27]
and prove that with probability 1 it converges in finite time, but without bounds on that
convergence time. A more recent result by Moez Draief and Milan Vojnovic [21] shows that
this protocol (and thus [27]) needs O

( logn
δ(QS ,α)

)
steps in expectation. Here, δ(QS , α) depends

on the bias α and on the spectrum of a set of matrixes QS related to the underlying graph.
The authors give concrete bounds for several specific graphs (e.g., in the complete graph the
consensus time is of order5 O (logn/α)). The only related result for k > 2 we are aware of
is [11] which again proves only convergence in finite time.

Another consensus variant is mode computation. For example, Fabian Kuhn, Thomas
Locher, and Stefan Schmid [26] consider a graph of diameter D where each node has one or
several of k distinct elements. The authors use a protocol based on a complex hashing scheme
to compute the mode (the most frequent element) w.h.p. in time O

(
D+ F2/n

2
1 · log k

)
. Here,

F2 =
∑
i n

2
i is the second frequency moment and ni the frequency of the i-th most common

element. F2/n
2
1 ∈ [1, k] can be seen as an alternative bias measure. Nodes communicate via

synchronous broadcasts and need a precomputed spanning tree and hash functions. [26] can
also be used for aggregate computation as done by David Kempe, Alin Dobra, and Johannes
Gehrke [25] (where the authors provide an elegant protocol to compute sums or averages in
complete graphs).

Overall, [21] and [26] are probably most closely related to our work, as they consider
arbitrary graphs. However, we cover more general communication models, including dynamic
graphs. Similar to [21], our results for k = 2 rely on spectral properties of the underlying
graph (and are asymptotically the same for their concrete examples). However, our bounds
are related to well-studied load balancing bounds and mixing times of random walks (which
we believe are easier to get a handle on than their δ(QS , α)).

Gossip Protocols. The third major research line on plurality consensus has its roots in
gossiping and rumor spreading. Here, communication is typically restricted to synchronous
pull requests (nodes query other nodes’ opinions and use simple rules to update their own).
See [30] for a slightly dated but thorough survey. Colin Cooper, Robert Elsässer, and Tomasz
Radzik [18] consider a voting process for k = 2 opinions on d-regular graphs. They pull
two random neighbors and, if they have the same opinion, adopt it. For random d-regular
graphs and α = Ω

(√
1/d+ d/n

)
, all nodes agree (w.h.p.) in O (logn) rounds on the plurality

opinion. For an arbitrary d-regular graph G, they need α = Ω (λ2) (where 1 − λ2 is the
spectral gap of G). In the follow up paper Colin Cooper, Robert Elsässer, Tomasz Radzik,

5 We state their bound in terms of our α = (n1 − n2)/n; their definition of α differs slightly.



P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn, and C. Wastell 10:5

Nicolas Rivera, and Takeharu Shiraga [19] extend these results to expanders: The run time
is O (logn) for a bias of vol(1) − vol(2) ≥ 4λ2

2 · |E|, where vol(1) and vol(2) denote the
sum of degrees over nodes having Opinion 1 and 2, respectively. Luca Becchetti, Andrea E.
F. Clementi, Emanuele Natale, Francesco Pasquale, Riccardo Silvestri, and Luca Trevisan
[9] consider a similar update rule on the clique for k opinions. Here, each node pulls the
opinion of three random neighbors and adopts the majority among those. They need O (log k)
memory bits and prove (w.h.p.) a tight running time of Θ (k · logn) (given a sufficiently
high bias α). Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and
Riccardo Silvestri [8] build upon the idea of the 3-state population protocol from [3] (but
in the gossip model) and generalize it to k opinions. Nodes pull the opinion of a random
neighbor in each round. If n1 ≥ (1 + ε) · n2 for a constant ε > 0 and if k = O

(
(n/ logn)1/3),

they agree (w.h.p.) on the plurality opinion in time O (md · logn) on the clique and need
log k + 1 bits. The monochromatic distance md ∈ [1, k] is an alternative bias measure (based
on an idea similar to the frequency moment in [26]). Petra Berenbrink, Tom Friedetzky,
George Giakkoupis, and Peter Kling [13] build upon [3] and design a protocol that reaches
plurality consensus (w.h.p.) in time O (logn · log logn) and uses log k + 4 bits.

The running times of gossip protocols are relatively good when compared to other
protocols, like population protocols or those introduced here (cf. Table 1). In particular,
these results do typically not show a linear dependency on the bias, as our Shuffle protocol
or [2, 21, 27] do. This efficiency however comes at the expense of parameter constraints.
In particular, results like [8, 13] do not seem to easily extend to arbitrary graphs and have
inherent constraints on both k and α. Comparing these results seems to indicate that, at
least for arbitrary graphs, there is a jump in complexity depending on whether or not one
allows the protocol to fail for small absolute bias values.

1.2 Our Contribution
We introduce two protocols for plurality consensus, called Shuffle and Balance. Both
solve plurality consensus under a diverse set of (randomized or adversarial) communication
patterns in arbitrary graphs for any positive bias. We continue with a detailed description of
our results.

Shuffle. Our main result is the Shuffle protocol. In the first time step each node generates
γ tokens labeled with its initial opinion. During round t, any pair of nodes connected by
an active edge (as specified by the communication pattern (Mt)t≤N ) exchanges tokens. We
show that Shuffle solves plurality consensus and allows for a trade-off between running time
and memory. More exactly, let the number of tokens be γ = O

(
logn/(α2 · T )

)
, where T is a

parameter to control the trade-off between memory and running time6. Moreover, let tmix
be such that any time interval [t, t+ tmix] is ε-smoothing7 (cf. Section 2). Given knowledge
of the maximum number of communication partners ∆ and the mixing time tmix of the
underlying communication pattern8, Shuffle lets all nodes agree on the plurality opinion
in O (T · tmix) rounds (w.h.p.), using O

(
logn/(α2T ) · log k + log(T · tmix)

)
memory bits per

6 The protocol works for any integral choice of γ (this fixes the trade-off parameter T ).
7 Intuitively, this means that the communication pattern has good load balancing properties during any

time window of length tmix. This coincides with the worst-case mixing time of a lazy random walk on
active edges.

8 For static graphs, ∆ is the maximal degree which can be easily computed in a distributed way, see for
example [14]. For tmix, good bounds are known for many static graphs [1, Chapter 5].
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10:6 Plurality Consensus in Arbitrary Graphs

node. This implies, for example, that plurality consensus on expanders in the sequential
model is achieved in O (T · n logn) time steps and with O (logn · log k/T + log(Tn)) memory
bits (assuming a constant initial bias). For arbitrary graphs, arbitrary bias, and many
natural communication patterns (e.g., communicating with all neighbors in every round or
communicating via random matchings), the time for plurality consensus is closely related to
the spectral gap of the underlying communication network (cf. Corollary 3).

While our protocol is relatively simple, the analysis is quite involved. The idea is to
observe that after tmix time steps, each single token is on any node with (roughly) the same
probability; the difficulty is that token movements are not independent. The main ingredients
for our analysis are Lemmas 6 and 7, which generalize a result by Thomas Sauerwald and He
Sun [32] (we believe that this generalization is interesting in its own right). These lemmas
show that the joint distribution of token locations is negatively correlated, allowing us to
derive a suitable Chernoff bound. Once this is proven, nodes can “count” tokens every tmix
time steps, building up over time an estimate of the total number of tokens labeled with their
own opinion. By broadcasting these estimates, all nodes determine the plurality opinion.

Balance. The previous protocol, Shuffle, allows for a nice trade-off between running time
and memory. If the number of opinions is relartively small, our much simpler Balance
protocol gives better results. In Balance, each node u maintains a k-dimensional load
vector. If j denotes u’s initial opinion, the j-th dimension of this load vector is initialized
with γ ∈ N (a sufficiently large value) and any other dimension is initialized with zero. In
each time step, all nodes perform a simple, discrete load balancing on each dimension of
these load vectors. Our results imply, for example, that plurality consensus on expanders in
the sequential model is achieved in only O (n · logn) time steps with O (k) memory bits per
node (assuming a constant initial bias).

Balance can be thought of as a (slightly simplified) version of [2] or [25] that generalizes
naturally to k ≥ 2 and arbitrary (even dynamic) graphs. In the setting of [2] (but as
opposed to [2] for arbitrary k), it achieves plurality consensus with probability 1− o (1) in
parallel time O (logn) and uses O (k · log(1/α)) = O (k · logn) bits per node (Corollary 13),
an improvement by a log(n) factor.

2 Model & General Definitions

We consider an undirected graph G = (V,E) of n ∈ N nodes and let 1 − λ2 denote the
eigenvalue (or spectral) gap of G. Each node u is assigned an opinion ou ∈ { 1, 2, . . . , k }.
For i ∈ { 1, 2, . . . , k }, we use ni ∈ N to denote the number of nodes which have initially
opinion i. Without loss of generality (w.l.o.g), we assume n1 > n2 ≥ · · · ≥ nk, such that 1 is
the opinion that is initially supported by the largest subset of nodes. We also say that 1 is
the plurality opinion. The value α := n1−n2

n ∈ [1/n, 1] denotes the initial bias towards the
plurality opinion. In the plurality consensus problem, the goal is to design simple, distributed
protocols that let all nodes agree on the plurality opinion. Time is measured in discrete
rounds, such that the (randomized) running time of our protocols is the number of rounds it
takes until all nodes are aware of the plurality opinion. As a second quality measure, we
consider the total number of memory bits per node that are required by our protocols. All
our statements and proofs assume n to be sufficiently large.

Communication Model. In any given round, two nodes u and v can communicate if
and only if the edge between u and v is active. We use Mt to denote the symmetric
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communication matrix at time t, where Mt[u, v] = Mt[v, u] = 1 if {u, v } is active and
Mt[u, v] = Mt[v, u] = 0 otherwise. We assume (w.l.o.g) Mt[u, u] = 1 (allowing nodes to
“communicate” with themselves). Typically, the sequence M = (Mt)t∈N of communication
matrices (the communication pattern) is either randomized or adversarial, and our statements
merely require that M satisfies certain smoothing properties (see below). For the ease of
presentation, we restrict ourselves to polynomial number of time steps and consider only
communication patterns M = (Mt)t≤N where N = N(n) is an arbitrarily large polynomial.
Let us briefly mention some natural and common communication models covered by such
patterns:

Diffusion Model: All edges of the graph are permanently activated.
Random matching model: In every round t, the active edges are given by a ran-
dom matching. We require that random matchings from different rounds are mutu-
ally independent9. Results for the random matching model dependent on pmin :=
mint∈N,{u,v }∈E Pr (Mt[u, v] = 1).
Balancing Circuit Model: There are d perfect matchings M0,M1, . . . ,Md−1 given. They
are used in a round-robin fashion, such that for t ≥ d we have Mt = Mt mod d.
Sequential Model: In each round t an uniformly random edge {u, v } ∈ E is activated.

Notation. We use ‖x‖` to denote the `-norm of vector x, where the ∞-norm is the vector’s
maximum absolute entry. In general, bold font indicates vectors and matrices, and x(i) refers
to the i-th component of x. The discrepancy of x is defined as disc(x) := maxi x(i)−mini x(i).
For i ∈ N we define [i] := { 1, 2, . . . , i } as the set of the first i integers. We use log x to
denote the binary logarithm of x ∈ R>0. We write a | b if a divides b. For any node u ∈ V ,
we use d(u) to denote u’s degree in G and dt(u) :=

∑
vMt[u, v] to denote its active degree

at time t (i.e., its degree when restricted to active edges). Similarly, N(u) and Nt(u) refer
to u’s (active) neighborhood. Moreover, ∆ := maxt,u dt(u) is the maximum active degree
of any node. We assume knowledge of ∆. On static graphs it can be computed efficiently
in a distributed manner [14] and it is given by many dynamic graph models (e.g., 1 for the
sequential model, d for balancing circuits). We say an event happens with high probability
(w.h.p.) if its probability is at least 1− 1/nc for c ∈ N.

Smoothing Property. The running time of our protocols is closely related to the runnig
time (“smoothing time”) of diffusion load balancing algorithms, which in turn is a function
of the mixing time of a random walk on G (see also [6, 32]). More exactly, we consider a
random walk on G that is restricted to the active edges in each time step. As indicated in
Section 1.2, this random walk should converge towards the uniform distribution over the
nodes of G. This leads to the following definition of the random walk’s transition matrices
Pt based on the communication matrices Mt:

Pt[u, v] :=


1

2∆ if Mt[u, v] = 1 and u 6= v,
1− dt(u)

2∆ if Mt[u, v] = 1 and u = v,
0 if Mt[u, v] = 0.

(1)

Obviously, Pt is doubly stochastic for all t ∈ N. Moreover, note that the random walk is
trivial in any matching-based model, while we get Pt[u, v] = 1

2d for every edge {u, v } ∈ E in

9 Note that there are several simple, distributed protocols to obtain such matchings [24, 14].
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the diffusion model on a d-regular graph. We are now ready to define the required smoothing
property.

I Definition 1 (ε-smoothing). Consider a fixed sequence (Mt)t≤N of communication matrices
and a time interval [t1, t2]. We say [t1, t2] is ε-smoothing (under (Mt)t≤N ) if for any non-
negative vector x with ‖x‖∞ = 1 it holds that disc(x ·

∏t2
t=t1 Pt) ≤ ε. Moreover, we define

the mixing time tmix(ε) as the smallest number of steps such that any time window of length
tmix(ε) is ε-smoothing. That is, tmix(ε) := min { t′ | ∀t ∈ N : [t, t+ t′] is ε-smoothing }.

The mixing time can be seen as the worst-case time required by a random walk to get
“close” to the uniform distribution. If the parameter ε is not explicitly stated, we consider
tmix := tmix(n−5). Note that Shuffle assumes knowledge of a bound on tmix (cf. Section 1.2).

3 Protocol Shuffle

Our main result is the following theorem, stating the correctness as well as the time-/space-
efficiency of Shuffle. The protocol is described in Section 3.1, followed by its analysis in
Section 3.2.

I Theorem 2. Let α = n1−n2
n ∈ [1/n, 1] denotes the initial bias. Consider a fixed commu-

nication pattern (Mt)t≤N and an arbitrary parameter T ∈ N. Protocol Shuffle ensures
that all nodes know the plurality opinion after O (T · tmix) rounds (w.h.p.) and requires(
12 · log(n)

α2·T + 4
)
· log(k) + 4 log

( 12·log(n)
α2

)
+ log(T · tmix) memory bits per node.

The parameter T in the statement serves as a lever to trade running time for memory. Since
tmix depends on the graph and communication pattern, Theorem 2 might look a bit unwieldy.
The following corollary gives a few concrete examples for common communication patterns
on general graphs.

I Corollary 3. Let G be an arbitrary d-regular graph. Shuffle ensures that all nodes agree
on the plurality opinion (w.h.p.) using

(
12 · log(n)

α2·T + 4
)
· log(k) + 4 log

( 12·log(n)
α2

)
+ log(T · tmix)

bits of memory in time
O
(
T · log(n)

1−λ2

)
in the diffusion model,

O
(

T
d·pmin

· log(n)
1−λ2

)
in the random matching model,

O
(
T · d · log(n)

1−λ2

)
in the balancing circuit model, and

O
(
T · n · log(n)

1−λ2

)
in the sequential model.

3.1 Protocol Description
We continue to explain the Shuffle protocol given in Listing 1. Our protocol consists of
three parts that are executed in each time step: the shuffle part, the broadcast part, and the
update part.

Every node u is initialized with γ ∈ N tokens labeled with u’s opinion ou. Our protocol
sends 2∆ tokens chosen uniformly at random (without replacement) over each edge {u, v } ∈
E. Here, γ ≥ 2∆2 is a parameter depending on T and α to be fixed during the analysis10.
Shuffle maintains the invariant that, at any time, all nodes have exactly γ tokens. In
addition to storing the tokens, each node maintains a set of auxiliary variables. The variable

10 Shuffle needs not to know α, it works for any choice of γ; such a choice merely fixes the trade-off
parameter T .
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1 for {u, v } ∈ E with Mt[u, v] = 1: {shuffle part}
2 send 2∆ tokens chosen u.a.r. (without replacement) to v
3
4 for {u, v } ∈ E with Mt[u, v] = 1: {broadcast

part}
5 send (domu, eu)
6 receive (domv, ev)
7 v := w with ew ≥ ew′ ∀w,w′ ∈ Nt(u) ∪ {u }
8 (domu, eu) := (domv, ev)
9

10 if t ≡ 0 (mod tmix): {update part}
11 increase cu by the number of tokens labeled ou held by u
12 pluu := domu {plurality guess: last broadcast’s dom. op.}
13 (domu, eu) := (ou, cu) {reset broadcast}

Listing 1 Protocol Shuffle as executed by node u at time t. At time zero, each node u creates
γ tokens labeled ou and sets cu := 0 and (domu, eu) := (ou, cu).

cu is increased during the update part and counts tokens labeled ou. The variable pair
(domu, eu) is a temporary guess of the plurality opinion and its frequency. During the
broadcast part, nodes broadcast these pairs, replacing their own pair whenever they observe
a pair with higher frequency. Finally, the variable pluu represents the opinion currently
believed to be the plurality opinion. The shuffle and broadcast parts are executed in each
time step, while the update part is executed only every tmix time steps

Waiting tmix time steps for each update gives the broadcast enough time to inform all
nodes and ensures that the tokens of each opinion are well distributed. The latter implies
that, if we consider a node u with opinion ou = i at time T · tmix, the value cu is a good
estimate of T · γni/n (which is maximized for the plurality opinion). When we reset the
broadcast (Line 13), the subsequent tmix broadcast steps ensure that all nodes get to know
the pair (ou, cu) for which cu is maximal. Thus, if we can ensure that cu is a good enough
approximation of T · γni/n, all nodes get to know the plurality.

3.2 Analysis of Shuffle
Fix a communication pattern (Mt)t≤N and an arbitrary parameter T ∈ N. Remember that
tmix = tmix(n−5) denotes the smallest number such that any time window of length tmix
is n−5-smoothing under (Mt)t≤N . We set the number of tokens stored in each node to
γ := dc · logn

α2T e, where c is a suitable constant. The analysis of Shuffle is largely based on
Lemma 11, which states that, after O (T · tmix) time steps, the counter values cu can be used
to reliably separate the plurality opinion from any other opinion. The main technical difficulty
is the huge dependency between the tokens’ movements, rendering standard Chernoff-bounds
inapplicable. Instead, we show that certain random variables satisfy the negative regression
condition (Lemma 6), which allows us to majorize the token distribution by a random walk
(Lemma 7) and to derive the Chernoff type bound in Lemma 10. This Chernoff type bound
can be used to show that all counter values are concentrated which is the main pillar of the
proof of Theorem 2.

Majorizing Shuffle by Random Walks

While our Shuffle protocol assumes that 2∆ divides γ, here we assume the slightly weaker
requirement that Pt[u, v] · γ ∈ N for any u, v ∈ V and t ∈ N. Let us first introduce some
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10:10 Plurality Consensus in Arbitrary Graphs

notation for the shuffle part at time t of our protocol. To ease the discussion, we consider u
as a neighbor of itself and speak of dt(u) + 1 neighbors. For i ∈ [dt(u) + 1], let Nt(u, i) ∈ V
denote the i-th neighbor of u (in an arbitrary order). Fix a node u and let u’s tokens be
numbered from 1 to γ. Our assumption on γ allows us to partition the tokens into dt(u) + 1
disjoint subsets (slots) Si ⊆ [γ] of size Pt[u, v] ·γ each, where v = Nt(u, i). Let πt,u : [γ]→ [γ]
be a random permutation. Token j with πt,u(j) ∈ Si is sent to u’s i-th neighbor. To ease
notation, we drop the time index t and write πu instead of πt,u (and, similarly for d(u) and
N(u, i)).

A configuration c describes the location of all γn tokens at a given point in time. For a
token j ∈ [γn] we use uj ∈ V to denote its location in configuration c (which will always be
clear from the context). For each such token j we define a random variable Xj ∈ [d(uj) + 1]
with Xj = i if and only if πuj

(j) ∈ Si. In other words, Xj indicates to which of uj ’s neighbors
token j is sent. Our key technical lemma (Lemma 6) establishes the negative regression
condition for these (Xj)j∈[γn] variables. Negative regression is defined as follows:

I Definition 4 (Neg. Regression [22, Def. 21]). A vector (X1, X2, . . . , Xn) of random variables
is said to satisfy the negative regression condition if E [f(Xl, l ∈ L) | Xr = xr, r ∈ R] is non-
increasing in each xr for any disjoint L,R ⊆ [n] and for any non-decreasing function f .

I Lemma 5 ([22, Lemma 26]). Let (X1, X2, . . . , Xn) satisfy the negative regression condition
and consider an arbitrary index set I ⊆ [n] as well as any family of non-decreasing functions
fi (i ∈ { I }). Then, we have

E

[∏
i∈I

fi(Xi)
]
≤
∏
i∈I

E [fi(Xi)] (2)

I Lemma 6 (NRC). Fix a configuration c and consider the random variables (Xj)j∈[γn].
Then (Xj)j∈[γn] satisfies the negative regression condition (NRC).

Proof. Remember that uj is the location of token j in configuration c and thatXj ∈ [d(uj)+1]
indicates where token j is sent in the next step. We show for any u ∈ V that (Xj)j : uj=u
satisfies the NRC. The lemma’s statement follows since the πu are chosen independently (if
two independent vectors (Xj) and (Yj) satisfy the NRC, then so do both together).

Fix a node u and disjoint subsets L,R ⊆ { j ∈ [γn] | uj = u } of tokens on u. Define
d := d(u) and let f : [d+ 1]|L| → R be an arbitrary non-decreasing function. We have to show
that E [f(Xl, l ∈ L) | Xr = xr, r ∈ R] is non-increasing in each xr (cf. Definition 4). That is,
we need

E [f(Xl, l ∈ L) | Xr = xr, r ∈ R] ≤ E [f(Xl, l ∈ L) | Xr = x̃r, r ∈ R] , (3)

where xr = x̃r holds for all r ∈ R \ { r̂ } and xr̂ > x̃r̂ for a fixed index r̂ ∈ R. We prove
Inequality (3) via a coupling of the processes on the left-hand side (LHS process) and
right-hand side (RHS process) of that inequality. Since xr̂ 6= x̃r̂, these processes involve two
slightly different probability spaces Ω and Ω̃, respectively. To couple these, we employ a
common uniform random variable Ui ∈ [0, 1). By partitioning [0, 1) into d+ 1 suitable slots
for each process (corresponding to the slots Si mentioned above), we can use the outcome of
Ui to set the Xj in both Ω and Ω̃. We first explain how to handle the case xr̂ − x̃r̂ = 1. The
case xr̂ − x̃r̂ > 1 follows from this by a simple reordering argument.

So assume xr̂ − x̃r̂ = 1. We reveal the yet unset random variables Xj (i.e., j ∈ [γn] \ R)
one by one in order of increasing indices. To ease the description assume (w.l.o.g.) that the
tokens from R are numbered from 1 to |R|. When we reveal the j-th variable (which indicates
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LHS

Tj,1 Tj,2 Tj,3 Tj,4

RHS
T̃j,1 T̃j,2 T̃j,3 T̃j,4

×

LHS

Tj+1,1 Tj+1,2 Tj+1,3 Tj+1,4

RHS
T̃j+1,1 T̃j+1,2 T̃j+1,3 T̃j+1,4

Figure 1 Illustration showing the d+ 1 = 4 different slots for the LHS and RHS process and how
they change. In this example, xr̂ = 3 and x̃r̂ = 2. On the left, the uniform random variable Uj falls
into slot [T1, T2) for the LHS process (causing j to be sent to node N(u, 2)) and into slot [T̃2, T̃3) for
the RHS process (causing j to be sent to node N(u, 3)).

the new location of the j-th token), note that the probability pj,i that token j is assigned to
N(u, i) depends solely on the number of previous tokens j′ < j that were assigned to N(u, i).
Thus, we can consider pj,i : N→ [0, 1] as a function mapping x ∈ N to the probability that j
is assigned to N(u, i) conditioned on the event that exactly x previous tokens were assigned
to N(u, i). Note that pj,i is non-increasing. For a vector x ∈ Nd+1, we define a threshold
function Tj,i : Nd+1 → [0, 1] by Tj,i(x) :=

∑
i′≤i pj,i′(xi′) for each i ∈ [d+ 1]. To define our

coupling, let βj,i := |{ j′ < j | Xj′ = i }| denote the number of already revealed variables
with value i in the LHS process and define, similarly, β̃j,i := |{ j′ < j | X̃j′ = i }| for the RHS
process. We use βj , β̃j ∈ Nd+1 to denote the corresponding vectors. Now, to assign token
j we consider a uniform random variable Uj ∈ [0, 1) and assign j in both processes using
customized partitions of the unit interval. To this end, let Tj,i := Tj,i(βj) and T̃j,i := Tj,i(β̃j)
for each i ∈ [d+ 1]. We assign Xj in the LHS and RHS process as follows:

LHS Process: Xj = xj = i if and only if Uj ∈ [Tj,i−1, Tj,i),
RHS Process: Xj = x̃j = i if and only if Uj ∈ [T̃j,i−1, T̃j,i).

See Figure 1 for an illustration. Our construction guarantees that, considered in isolation,
both the LHS and RHS process behave correctly.

At the beginning of this coupling, only the variables Xr corresponding to tokens r ∈ R

are set, and these differ in the LHS and RHS process only for the index r̂ ∈ R, for which we
have Xr̂ = xr̂ (LHS) and Xr̂ = x̃r̂ = xr̂ − 1 (RHS). Let ι := xr̂. For the first revealed token
j = r̂+ 1, this implies βj,ι = β̃j,ι + 1, βj,ι−1 = β̃j,ι−1− 1, and βj,i = β̃j,i for all i 6∈ { ι, ι− 1 }.
By the definitions of the slots for both processes, we get Tj,i = T̃j,i for all i 6= ι − 1 and
Tj,ι−1 > T̃j,ι−1 (cf. Figure 1). Thus, the LHS and RHS process behave different if and only
if Ui ∈ [T̃j,ι−1, Tj,ι−1). If this happens, we get xj < x̃j (i.e., token j is assigned to a smaller
neighbor in the LHS process). This implies βj+1 = β̃j+1 and both processes behave identical
from now on. Otherwise, if Ui 6∈ [T̃j,ι−1, Tj,ι−1), we have βj+1 − βj+1 = βj − βj and we
can repeat the above argument. Thus, after all Xj are revealed, there is at most one j ∈ L

for which xj 6= x̃j , and for this we have xj < x̃j . Since f is non-decreasing, this guarantees
Inequality (3). To handle the case xr̂− x̃r̂ > 1, note that we can reorder the slots [Tj,i−1, Tj,i)
used for the assignment of the variables such that the slots for xr̂ and x̃r̂ are neighboring.
Formally, this merely changes in which order we consider the neighbors in the definition of
the functions Tj,i. With this change, the same arguments as above apply. J

Before proving the majorization of tokens with random walks (Lemma 7) we require
further notation. Let S denote our random Shuffle process, and W the random walk
process in which each of the γn tokens performs an independent random walk according
to the sequence of random walk matrices (Pt)t∈N (i.e., a token on u uses Pt(u, ·) for the
transition probabilities). We use wP

j (t) to denote the position of token j after t steps of a
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10:12 Plurality Consensus in Arbitrary Graphs

process P. We assume (w.l.o.g.) wS
j (0) = wW

j (0) for all j. While there are strong correlations
between the tokens’ movements in S (e.g., not all tokens can move to the same neighbor),
Lemma 7 shows that these correlations are negative.

I Lemma 7 (Majorizing RWs). Consider a time t ≥ 0, a token j, and node v. Let B ⊆ [γn]
and D ⊆ V be arbitrary subsets of tokens and nodes, respectively. The following holds:
1. Pr

(
wS
j (t) = v

)
= Pr

(
wW
j (t) = v

)
and

2. Pr
(⋂

j∈B
(
wS
j (t) ∈ D

))
≤ Pr

(⋂
j∈B

(
wW
j (t) ∈ D

))
=
∏
j∈B Pr

(
wW
j (t) ∈ D

)
.

Proof. The first statement follows immediately from the definition of our process. For the
second statement, note that the equality on the right-hand side holds trivially, since the
tokens perform independent random walks in W. To show the inequality, we define the
intermediate process SW(t′) (t′ ≤ t) that performs t′ steps of S followed by t− t′ steps of
W. By this definition, SW(0) is identical to W restricted to t steps and, similar, SW(t) is
identical to S restricted to t steps. Define

Et′ :=
⋂
j∈B

(
w

SW(t′)
j (t) ∈ D

)
(4)

(the event that all tokens from B end up at nodes from D under process SW(t′)). The lemma’s
statement is equivalent to Pr (Et) ≤ Pr (E0). To prove this, we show Pr (Et′+1) ≤ Pr (Et′) for
all t′ ∈ { 0, 1, . . . , t− 1 }. Combining these inequalities yields the desired result.

Fix an arbitrary t′ ∈ { 0, 1, . . . , t− 1 } and note that SW(t′) and SW(t′ + 1) behave
identical up to and including step t′. Hence, we can fix an arbitrary configuration (i.e., the
location of each token) c(t′) = c immediately before time step t′ + 1. Remember that uj ∈ V
denotes the location of j in configuration c. The auxiliary functions hj : [d(uj) + 1]→ [0, 1]
describe the probability that a random walk starting at time t′ + 1 from uj ’s i-th neighbor
ends up in a node from D. Formally,

hj(i) := Pr
(
wW
j (t) ∈ D

∣∣ wW
j (t′ + 1) = N(uj , i)

)
. (5)

We can assume (w.l.o.g.) that all hj are non-decreasing (by reordering the neighborhood of
uj).

Now, by Lemma 6 the variables (Xj)j∈B satisfy the negative regression condition. Thus,
we can apply Lemma 5 (a well-known characterization of negative regression) to the func-
tions hj . Using another simple auxiliary result (Claim 8) we can relate the (conditioned)
probabilities of the events Et′ and Et′+1 to the expectations over the different hj(Xj). That
is, for p := Pr (Et′+1 | c(t′) = c) we compute

p
Clm. 8(a)= E

∏
j∈B

hj(Xj)

∣∣∣∣∣∣ c(t′) = c

 Lem. 5
≤

∏
j∈B

E [hj(Xj) | c(t′) = c]

Clm. 8(b)= Pr (Et′ | c(t′) = c) .

Using the law of total probability, we conclude Pr (Et′+1) ≤ Pr (Et′), as required. J

I Claim 8. Fix a time t′ ∈ { 0, 1, . . . , t− 1 } and consider an arbitrary configuration c. Then
the following identities hold:
(a) Pr (Et′+1 | c(t′) = c) = E

[∏
j∈B hj(Xj)

∣∣∣ c(t′) = c
]
, and

(b) Pr (Et′ | c(t′) = c) =
∏
j∈B E [hj(Xj) | c(t′) = c].
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Proof. Remember the definitions from Lemma 7 and its proof. We use the shorthand
d(uj) = dt′+1(uj). Remember that each Xj indicates to which of the d(uj) + 1 neighbors
of uj (where uj is considered a neighbor of itself) a token j moves during time step t′ + 1.
Thus, given the configuration c(t′) = c immediately before time step t′ + 1, there is a
bijection between any possible configuration c(t′ + 1) and outcomes of the random variable
vector X = (Xj)j∈[γn]. Let cx denote the configuration corresponding to a concrete outcome
X = x ∈ [d(uj)+1]γn. Thus, we have Pr (c(t′ + 1) = cx | c(t′) = c) = Pr (X = x | c(t′) = c),
and conditioning on c(t′ + 1) is equivalent to conditioning on X and c(t′). For the claim’s
first statement, we calculate

Pr
(
Et′+1

∣∣ c(t′) = c
)

=
∑
cx

Pr
(
Et′+1

∣∣ c(t′ + 1) = cx

)
· Pr

(
c(t′ + 1) = cx

∣∣ c(t′) = c
)

=
∑
cx

∏
j∈B

Pr
(
w

SW(t′+1)
j (t) ∈ D

∣∣∣ X = x, c(t′) = c
)
· Pr

(
X = x

∣∣ c(t′) = c
)

=
∑
cx

∏
j∈B

hj(xj) · Pr
(
X = x

∣∣ c(t′) = c
)

=
∑

x

∏
j∈B

hj(xj) · Pr
(
X = x

∣∣ c(t′) = c
)

= E

[∏
j∈B

hj(Xj)

∣∣∣∣∣ c(t′) = c

]
.

Here, we first apply the law of total probability. Then, we use the bijection between c(t′+ 1)
and X (if c(t′) is given) and that the process SW(t′ + 1) consists of independent random
walks if c(t′+ 1) is fixed. Finally, we use the definition of the auxiliary functions hj(i), which
equal the probability that a random walk starting at time t′ + 1 from uj ’s i-th neighbor
reaches a node from D.

For the claim’s second statement, we do a similar calculation for the process SW(t′). By
definition, this process consists already from time t′ onward of a collection of independent
random walks. Thus, we can swap the expectation and the product in the last term of the
above calculation, yielding the desired result. J

Separating the Plurality via Chernoff

I Lemma 9 ([7, Lemma 3.1]). Let X1, X2, . . . , Xn be a sequence of random variables with
values in an arbitrary domain and let Y1, Y2, . . . , Yn be a sequence of binary random variables
with the property that Yi = Yi(X1, . . . , Xi). If Pr (Yi = 1 | X1, . . . , Xi−1) ≤ p, then

Pr
(∑

Yi ≥ `
)
≤ Pr (Bin(n, p) ≥ `) (6)

and, similarly, if Pr (Yi = 1 | X1, . . . , Xi−1) ≥ p, then

Pr
(∑

Yi ≤ `
)
≤ Pr (Bin(n, p) ≤ `) . (7)

Here, Bin(n, p) denotes the binomial distribution with parameters n and p.

We are finally able to prove the following Chernoff-like bound.

I Lemma 10 (Token Concentration). Consider any subset B of tokens, a node u ∈ V , and
an integer T . Let X :=

∑
t≤T

∑
j∈B Xj,t, where Xj,t is 1 if token j is on node u at time

t · tmix. With µ := (1/n+ 1/n5) · |B| · T , we have Pr (X ≥ (1 + δ) · µ) ≤ eδ2µ/3.

Proof. Let vj,t denote the location of token j at time (t− 1) · tmix. For all t ≤ T and ` ∈ N
define the random indicator variable Yj,t to be 1 if and only if the random walk starting at
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vj,t is at node u after tmix time steps. By Lemma 7 we have for each B′ ⊆ B and t ≤ T that

Pr
( ⋂
i∈B′

Xj,t = 1
)
≤
∏
j∈B′

Pr (Yj,t = 1) . (8)

Hence for all t ≤ T and ` ∈ N we have Pr
(∑

j∈B Xj,t ≥ `
)
≤ Pr

(∑
j∈B Yj,t ≥ `

)
and

Pr (X ≥ `) = Pr

∑
t≤T

∑
j∈B

Xj,t ≥ `

 ≤ Pr

∑
t≤T

∑
j∈B

Yj,t ≥ `

 . (9)

Let us define p := 1/n + 1/n5. By the definition of tmix, we have for all j ∈ B and t ≤ T

that

Pr
(
Yj,t = 1

∣∣ Y1,1, Y2,1, . . . , Y|B|,1, Y1,2, . . . , Yj−1,t
)
≤ p. (10)

Combining our observations with Lemma 9 (see above), we get Pr (X ≥ `) ≤ Bin(T · |B|, p).
Recall that µ = T · |B| · p. Thus, by applying standard Chernoff bounds we get

Pr (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
≤ eδ

2µ/3, (11)

which yields the desired statement. J

Together, these lemmas generalize a result given in [32] to a setting with considerably
more dependencies. Equipped with this Chernoff bound, we prove concentration of the
counter values.

I Lemma 11 (Counter Seperation). Let c ≥ 12. For every time t ≥ c · T · tmix there exist
values `> > `⊥ such that
(a) For all nodes w with ow ≥ 2 we have (w.h.p.) cw ≤ `⊥.
(b) For all nodes v with ov = 1 we have (w.h.p.) cv ≥ `>.

Proof. For two nodes v and w with ov = 1 and ow ≥ 2, µi := (1/n+ 1/n5)c · T · γ · nk for all
i ∈ [k], and µ′ := (1/n+ 1/n5)c · T · γ · (n− n1). For i ∈ [k] define

`⊥(i) := µi +
√
c2 · logn · T · γ ni

n
and `> := Tγ − µ′ −

√
c2 · logn · T · γ n− n1

n
.

We set `⊥ := `⊥(2). It is easy to show that `⊥ < `>. Now, let all γn tokens be labeled from
1 to γn. It remains to prove the lemma’s statements:

For the first statement, consider a node w with ow ≥ 2 and set λ(ow) := `⊥(ow)− µow
=√

c2 · logn · T · γ · now
/n. Set the random indicator variable Xi,t to be 1 if and only if i is

on node w at time t and if i’s label is ow. Let cw =
∑
i∈[γn]

∑
j≤T Xi,j·tmix . We compute

Pr (cw ≥ `⊥) ≤ Pr (cw ≥ µow + λ(ow)) = Pr
(
cw ≥

(
1 + λ(ow)

µow

)
· µow

)
≤ exp

(
−λ

2(ow)
3µow

)
≤ exp

(
− c6 logn

)
,

(12)

where the last line follows by Lemma 10 applied to cw =
∑
i∈[γn]

∑
j≤T Xi,j·tmix and

setting B to the set of all tokens with label ow. Hence, the claim follows for c large
enough after taking the union bound over all n− n1 ≤ n nodes w with ow ≥ 2.
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For the lemma’s second statement, consider a node v with ov = 1 and set λ′ := µ′ − `>.
Define the random indicator variable Yi,t to be 1 if and only if token i is on node v at
time t and if i’s label is not 1. Set Y =

∑
j≤T

∑
i∈[γn] Yi,j·tmix and note that cv = Tγ−Y .

We compute

Pr (cv ≤ `>) = Pr (Tγ − Y ≤ `>) = Pr (Tγ − Y ≤ Tγ − µ′ − λ′) = Pr (Y ≥ µ′ + λ′)

= Pr
(
Y ≥

(
1 + λ′

µ′

)
· µ′
)
≤ exp

(
− λ
′2

3µ′

)
≤ exp

( c
6 logn

)
,

where the first inequality follows by Lemma 10 applied to Y and using B to denote the
set of all tokens with a label other than 1. Hence, the claim follows for c large enough
after taking the union bound over all n1 ≤ n nodes v with ou ≥ 2. J

We now give the proof of our main theorem.

Proof of Theorem 2. Fix an arbitrary time t ∈ [c · T · tmix, N ] with tmix | t, where c is the
constant from the statement of Lemma 11. From Lemma 11 we have that (w.h.p.) the node
u with the highest counter cu has ou = 1 (ties are broken arbitrarily). In the following we
condition on ou = 1. We claim that at time t′ = t+ tmix all nodes v ∈ V have pluv = 1. This
is because the counters during the “broadcast part” (Lines 4 to 8) propagate the highest
counter received after time t. The time τ until all nodes v ∈ V have pluv = 1 is bounded by
the mixing by definition: In order for [t, t′] to be 1/n5-smoothing, the random walk starting
at u at time t is with probability at least 1/n − 1/n5 on node v and, thus, there exists a
path from u to v (with respect to the communication matrices). If there is such a path
for every node v, the counter of u was also propagated to that v and we have τ ≤ tmix.
Consequently, at time t′ all nodes have the correct majority opinion. This implies the desired
time bound. For the memory requirements, note that each node u stores γ tokens with a
label from the set [k] (γ ·O (log k) bits), three opinions (its own, its plurality guess, and the
dominating opinion; O (log k) bits), the two counters cu and eu and the time step counter.
The memory to store the counter cu and eu is O (γT ). Finally, the time step counter is
bounded by O (log(T · tmix)) bits. This yields the claimed space bound. J

4 Protocol Balance

Protocol Description. The idea of our Balance protocol is quite simple: Every node u
stores a k-dimensional vector `t(u) with k integer entries, one for each opinion. Balance
performs an entry-wise load balancing on `t(u) according to the communication pattern
M = (Mt)t≤N and the corresponding transition matrices Pt (cf. Section 2). Once the load is
properly balanced, the nodes look at their largest entry and assume that this is the plurality
opinion (stored in the variable pluu).

In order to ensure a low memory footprint, we must not send fractional loads over active
edges. To this end, we use a rounding scheme from [12, 32], which works as follows: Consider
a dimension i ∈ [k] and let `i,t(u) ∈ N denote the current (integral) load at u in dimension i.
Then u sends b`i,t(u) · Pt[u, v]c tokens to all neighbors v with Mt[u, v] = 1. This results in
at most dt(u) remaining excess tokens (`i,t(u) minus the total number of tokens sent out).
These are then randomly distributed (without replacement), where neighbor v receives a
token with probability Pt[u, v]. In the following we call the resulting balancing algorithm
vertex-based balancing algorithm. The formal description of protocol Balance is given in
Listing 2.
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1 for i ∈ [k]:
2 for {u, v } ∈ E with Mt[u, v] = 1:
3 send b`i,t(u) · Pt[u, v]c tokens from dimension i to v
4 x := `i,t(u)−

∑
v : Mt[u,v]=1b`i,t(u) · Pt[u, v]c {excess tokens}

5 randomly distribute x tokens such that:
6 every v 6= v with Mt[u, v] = 1 receives 1 token w.p. Pt[u, v]
7 (and zero otherwise)
8 pluu := i with `i,t(u) ≥ `j,t(u) ∀1 ≤ i, j ≤ k {plurality guess}

Listing 2 Protocol Balance as executed by node u at time t. At time zero, each node initializes
`ou,0(u) := γ and `j,0(u) := 0 for all j 6= ou.

Analysis of Balance. Consider initial load vectors `0 with ‖`0‖∞ ≤ n5. Let τ := τ(g,M)
be the first time step when Vertex-Based Balancer under the (fixed) communication
pattern M = (Mt)t≤N is able to balance any such vector `0 up to a g-discrepancy. With
this, we show:

I Theorem 12. Let α = n1−n2
n ∈ [1/n, 1] denote the initial bias. Consider a fixed communi-

cation pattern M = (Mt)t≤N and an integer γ ∈ [3 · gα , n
5]. Protocol Balance ensures that

all nodes know the plurality opinion after τ(g,M) rounds and requires k · log(γ) memory bits
per node.

Proof. Recall that γ ≥ 3 gα = 3g · n
n1−n2

. For i ∈ [k] let ¯̀
i := ni · γ/n. The definition of

τ(g,M) implies `1,t(u) ≥ ¯̀1 − g and `i,t(u) ≤ ¯̀
i + g for all nodes u and i ≥ 2. Consequently,

we get

`1,t(u)− `i,t(u) ≥ ¯̀1 − ¯̀
i − 2g = 3g · n1 − ni

n1 − n2
− 2g > 0 . (13)

Thus, every node u has the correct plurality guess at time t. J

The memory usage of Balance depends on the number of opinions (k) and on the
number of tokens generated on every node (γ). The algorithm is very efficient for small values
of k but it becomes rather impractical if k is large. Note that if one chooses γ sufficiently
large, it is easy to adjust the algorithm such that every node knows the frequency of all
opinions in the network. The next corollary gives a few concrete examples for common
communication patterns on general graphs.

I Corollary 13. Let G be an arbitrary d-regular graph. Balance ensures that all nodes
agree on the plurality opinion with probability 1− e−(log(n))c for some constant c
(a) using O (k · logn) bits of memory in time O

( logn
1−λ2

)
in the diffusion model,

(b) using O (k · logn) bits of memory in time O
( 1
d·pmin

· logn
1−λ2

)
in the random matching model,

(c) using O
(
k · log(α−1)

)
bits of memory in time O

(
d · logn

1−λ2

)
in the balancing circuit model,

and
(d) using O

(
k · log(α−1)

)
bits of memory in time O

(
n · logn

1−λ2

)
in the sequential model.

Proof. Part (a) follows directly from [33, Theorem 6.6] and Part (c) follows directly from [33,
Theorem 1.1]. To show Part (b) and (d) we choose τ such that M1,M2, . . . ,Mτ enable
Vertex-Based Balancer to balance any vector `0 (with initial discrepancy of at most
n5) up to a g-discrepancy. The bound on τ then follows from [33, Theorem 1.1]. J
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