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Abstract—According to the requirements of IEC61850-9-2LE, 

digital energy metering devices mainly adopt 80×fr fixed sampling 

rate. When the harmonic analysis is carried out under 

asynchronous sampling, it will produce large errors due to 

spectral leakage. Quasi-Synchronous Algorithm has high 

accuracy, but the calculation process is complicated and the 

hardware overheads are high. Based on the characteristics of 

digital energy metering devices, this paper puts forward a Fast 

Quasi-Synchronous Harmonic Algorithm using weight window 

function combined with Mixed Radix Fast Fourier Transform 

Algorithm. It will reduce the calculation by more than 94%. 

Compared with the Triangle/Hanning/Nuttall4(III)–Windowed 

Interpolated FFT Algorithm, the proposed algorithm will perform 

better in accuracy and has the feature that the more 

asynchronous of the sampling, the more obvious the error will be. 

Keywords—IEC61850-9-2LE; measuring; asynchronous 

sampling; harmonic  

I. INTRODUCTION  

With the continuous construction of digital substations, a 
large number of digital power metering systems composed by 
electronic transformer (ECT/EVT), merging unit (MU) and 
digital watt-hour meter have been put into use[1]. The 
construction of digital substations follows the series standard of 
IEC61850[2]. The IEC61850-9-2[3] standard states 
requirements on sampling rate, data bits and transmission 
frequency, etc. But the requirements are flexible. In practice, the 
lite edition of IEC61850-9-2LE is frequently adopted. It 
requires the voltage and current sampling rate of digital power 
metering devices to be 256×fr or 80×fr (fr is rated frequency 
50Hz)[4]. The 80×fr sampling rate can meet the requirement of 
power system protection in harmonics monitoring, hence the 
adoption of 80×fr (4000Hz) sampling rates in most digital 
substations at present according to the survey results. However, 
the actual power system frequency always fluctuates around the 
fr, while digital energy metering devices mainly adopt 80×fr 
fixed sampling rates. As a result, the complete periodic 
sampling of the voltage and current cannot be guaranteed. 
When the harmonic analysis is carried out, spectral leakage will 
be produced due to asynchronous sampling. To address this 
problem, Professor Dai Xianzhong first put forward the Quasi-
Synchronous Algorithm to improve the accuracy of current 
RMS voltage, active power, harmonic, frequency and other 

electrical parameters in measurement[5]. However, the actual 
application of the Quasi-Synchronous Algorithm is limited for 
its complicated computation, great time-consumption and 
difficult implementation in hardware. In addition, an alternative 
algorithm for harmonic analysis under asynchronous sampling 
based on Newton's interpolation successfully adjusts an actual 
sampling sequence to an ideal one synchronized with the 
original signal. The fundamental period is calculated through 
the zero-crossing method, and then the original sampling 
sequence is reconstructed by the time-domain Newton’s 
interpolation polynomial and is similar to synchronous 
sampling[6][7]. However, in practice, the received data in 
digital watt-hour meters have already been interpolated in MU 
by the synchronous process. The re-interpolation of the data by 
Newton algorithm will result in additional errors and 
complicated calculation. 

This paper is organized as follows. Section II presents the 
basic principles of applying the Quasi-Synchronous Algorithm 
in harmonic analysis. Section III expounds the combination of 
weight window function with Mixed Radix FFT Algorithm and 
introduces the method to simplify the algorithm operation 
structure while guaranteeing accuracy. Section IV gives the 
emulation and experiment results of harmonic amplitude and 
frequency deviation measurement under asynchronous sampling. 
A conclusion is given in Section V. 

II. THE QUASI-SYNCHRONOUS ALGORITHM  

Supposing f(y) is periodic function, period is T and 

frequency is
1
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When f(y) is sampled by a constant time interval T , the 
number of sampling points is N per period, assuming sampling 

period is sT N T  , then the discrete sequence of the signal is 

yi (i=0,1,…,LN+1) in period number L. The average of f(y) in L 
periods is 
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When T=TS, the signal is synchronously sampled, and the 

f(yi)  is a zero-error value. When the sampling is asynchronous, 

the f(yi)  has an error increasing with |Δ| (Δ=T-TS). 

The Quasi-Synchronous Algorithm provides an iterative 
operation to reduce error in asynchronous sampling. In the first 
iteration, an integral formula is used to calculate the averages of 
the corresponding functions of N+1 sampling points with 
beginning points changing from 1 to (L-1)N+1. The formula 
can be defined as 

1

1 1( ) / ( 1,2, , ( 1) 1)
N i N i

i k i k k i

k i k i

F f y i L N 
 

   

 

          (3) 

Here ρ refers to the weight coefficient sequence with a 
length of N+1. Compound rectangular or trapezoidal formulae 
is frequently adopted. The final result can be obtained after L 
times of iterations as follows, 
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Fig.1 presents an example of 3-time iteration. The iteration 
process is as follows [8]. 
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Fig. 1. Iteration computation of Quasi-Synchronization Algorithm 

When the Quasi-Synchronous Algorithm is applied to 
conduct harmonic analysis of discrete sequence yi 

(i=0,1,…,LN+1), 
2
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be inferred that the mth harmonic is 
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It can be inferred from article [5] that if 1N  and 
1

mf
NTs

 ( mf   is the difference between the mth harmonic of 

sampling frequency and real frequency), then 
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In order to get 2

L

mF , only one more sampling point is needed 

(Sampling Point LN+2). When 1

L

mF  and 2

L

mF  are produced, the 

information of the mth harmonic can be obtained. 

The most direct way to correct the error caused by spectral 
leakage is to increase the time of the window. It can keep the 
original information of the discrete sequence as much as 
possible and reduce the percentage of error caused by non-
complete periodic sampling. The Quasi-Synchronous Algorithm 
in fact increases the window time by iterative operation and 
reduces the error from asynchronous sampling. The accurate 
electric parameter values can be obtained even without knowing 
the exact frequency. When the deviation between sampling 
period and the signal cycle deviation is less than half of a cycle, 
deviation can be reduced to a very low level within 3~5 cycles. 
Thus the Quasi-Synchronous Algorithm is suitable for digital 
power metering devices with a fixed sampling rate. However, 
the iterative operation requires a large amount of computation, 
which is not feasible in application. Therefore, the key to apply 
Quasi-Synchronous Algorithms in digital power metering is to 
ensure they can guarantee the accuracy while reducing the 
hardware overheads. 

III.  THE METHOD OF WEIGHT WINDOW COMBINED WITH MIXED 

RADIX FFT 

A. Weight Window Function 

The mechanism of iteration computation in Quasi-
Synchronous Algorithms is to assign different weights to the 
original data in different positions. As long as the sampling 
points N per period and period cycles L are determined, the 
weight parameter for each position is determined. So we can 

use the weight window function to get the final result 1

L

mF  

directly. 

Referring to (5), 
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Where the weight window function 1 2 1[ , , ]LN     , 
2 ( 1)

1 2 1Y [ , , ]m m LN m

N N LN Ny W y W y W 

 , and then 
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Since the iteration computation is too complex, the exact 
expression of  can’t be written out. However, the whole 
window function sequence value can be obtained through 
computer operation. While  is not related to Y, it can be 
calculated in advance, cured to metering devices in the storage 
unit and be used directly.  

Take sampling points from 5 cycles in the digital metering 
system and use trapezoidal integration formula to determine 
weight parameters as follows, 
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We obtained the image of the LN+1 points weight window 
function (Fig.2). 

 

Fig. 2. weight window function  (L=5,N=80) 

When the iteration computation is replaced by the weight 

window function, and since 
( + )=im i kN m

N NW W , i.e. 
im

NW  is N 

periodic, formula (8) can be further simplified as:  
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 Therefore, the Quasi-Synchronous Algorithm for LN+1 

sampling points arithmetic operations 1

L

mF  can be converted to 

an ordinary N-point DFT operation. In this manner, 2

L

mF in (6) 

can be calculated.  

B. Radix-2 and Radix-5 Mixed FFT 

 The spectral analysis using DFT involves N2 complex 
multiplications and N(N-1) complex additions, which are 
complex still. Therefore, further simplification of the 
computation with the fast algorithm is needed. It is commonly 
used in Radix-2 FFT, the basic idea of which is to halve the 
input sequence y(i) according to the parity of position 
successively, so it applies only to cases where N is an integer 

power of 2. When 2MN  , zero-padding or interpolation 

processing is needed. But this calculated spectrum represents 
the waveform after zero-padding and interpolation instead of 
the original signal spectrum, which not only increases the 
amount of calculation, but also leads to obvious error. 

 For the special case of a digital energy measurement, a 
specific mixed radix FFT algorithm is needed. 

 When pi in N=p1p2…pm are primes, assuming q1=p2p3…pm, 
then N=p1q1. Divide x(n) into p1 groups and each group contains 
q1 points, and then 
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Since q1 is still a combinatorial number, it can be further 
decomposed. After this operation, the N-point DFT is gradually 
decomposed into smaller DFTs. With the strict equivalent in the 
process, the accuracy of results is maintained while the amount 
of calculation is greatly reduced.  

There are some articles introducing Mixed radix FFT 
Algorithm which mainly concentrated in the usual sampling 
rates, such as 128 points/period, 256 points/period, etc. A kind 
of the structure of 128-point Mixed Radix FFT is given in [9], 
and [10] proposes a processor which can provide 128-point and 
256-point FFT computations. In the digital metering system, 
N=80=24×5, so it can be calculated through the Radix-2 and 5-
Radix Mixed FFT. Since the 80-point arithmetic structure 
diagram is too large, the smallest structure of the Radix-2 and 
Radix-5 Mixed FFT i.e. N=10 is adopted to demonstrate the 
schematic structure, as shown in Fig.3 

 

Fig. 3. Radix-2 and Radix-5 Mixed FFT structure 

C. The computation analysis 

For the case of (9), after operations in section III.A and 
section III.B, the Quasi-Synchronization Algorithm 
computation will be greatly simplified. 



In III.A, the value of Y1 in (10) is calculated with only 401 
real multiplications and 321 real additions when the weight 
window function method is applied, which is actualized by the 
conversion of the Quasi-Synchronous Algorithm for 401 
sampling points arithmetic operations to ordinary 80-point DFT 
operations.  

In III.B the data of 80 sampling points are divided into 16 
groups containing 5 points each to complete the 16 groups’ 5-
point DFT operation. The results are then processed by Radix-2 
FFT computation. Since N-point DFT involves complex 
multiplications mD= N2 and complex additions aD=N(N-1), and 
N-point(N=2M) Radix-2 FFT involves m2RF=M×N/2=(N/2)log2N 
and a2RF=M×N=Nlog2 N, the amount of calculation for Mixed 
Radix FFT is 
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Therefore, 1( 1,2 80)L

mF m   is obtained after 961 complex 

multiplications and 961 complex additions, and 2

L

mF  can be 

calculated in a similar manner. These operations completed, the 
state of each harmonic wave can be obtained by (6). The total 
amount of calculation is m=1922, a=1922.  

By contrast, if the original iterative operation of Quasi-
Synchronization Algorithm was adopted, it required 
m=(LN+1)×80=32080,a=2L(LN+1)×80=320800 to get 

1 2, ( 1,2 80)L L

m mF F m   even if a recursive method was applied. 

If the Windowed Interpolated FFT Algorithm (hereafter 
abbreviated to WIFFTA) was adopted, 400 points sampling data 
were interpolated to 512 points, it required m=3840, a=5120 to 
calculate harmonics regardless of the refine process. Table I 
compares the amount of calculation for the three methods. 

TABLE I.  THE COMPARISON OF ALGORITHM COMPUTATION 

Type 
Original 

Algorithms 

Proposed 

Algorithm 
WIFFTA  

Complex 
Multiplications 

32080 1922 3840 

Complex 

Additions 
320800 1922 5120 

 

In conclusion, with the application of a weight window 
function combined with a Mixed Radix FFT Algorithm, the 
amount of calculation is greatly reduced more than 94% 
compared with the original Quasi-Synchronous Algorithm, and 
it is also 50% smaller than WIFFTA. Besides, the proposed 

algorithm has the same accuracy with the original algorithms as 
the simplification of calculation process is essentially equivalent. 
Comparing with WIFFTA, the proposed algorithm has higher 
accuracy in digital watt-hour meters in theory, because 
WIFFTA need re-interpolation after the synchronous process in 
digital substation, this will result in additional errors, and the 
proposed algorithm is more suitable under asynchronous 
sampling. Therefore, the proposed Fast Quasi-Synchronous 
Harmonic Algorithm is quite practical and efficient for digital 
metering devices. 

IV. RESULTS OF EMULATION AND EXPERIMENT 

A. Emulation of amplitude and frequency measurement 

To verify the validity of the proposed algorithm, an 
emulation test of harmonic amplitude and frequency deviation 
measurement under asynchronous sampling is carried out in 
MATLAB. The result is compared with that of the original 
Quasi-Synchronous Algorithm and the Triangle/Hanning/ 
Nuttall4(III)-Windowed Interpolated FFT Algorithm (hereafter 
abbreviated to TIFFTA, HIFFTA, N4(III)IFFTA). However, 
because of the spectral leakage and picket-fence effect, the 
accuracy is low when peak spectral lines are used directly to 
calculate parameter estimation through WIFFTAs. In order to 
improve the accuracy of the comparing algorithms, the double-
spectrum-line interpolation[11] is adopted to refine the results. 

Signals in (12) are analyzed through an emulation test, 

where the fundamental frequency f1=49.8Hz. Ai, i  are assigned 

as table II. And sampling frequency is 4000Hz, the number of 
sampling points is 402. 

( ) sin(2 + )i i iy t A f t                    (12) 

TABLE II.  THE HARMONIC COMPONENTS OF TEST SIGNAL 

Emulation 
Signal 

Order of Harmonics 

1 2 3 4 5 6 7 8 9 

Ai 380.0 20.0 50.0 5.0 20.0 6.0 10.0 5.0 1.0 

ψi -23.1 115.6 59.3 52.4 123.8 0 31.8 0 -63.7 

 

The results are shown in table III, and the relative errors of 
amplitude measurement are demonstrated in Fig.4. It can be 
seen that the proposed algorithm has the same results with the 
original algorithm and leads to higher accuracy of both the 
harmonic amplitude and frequency measurement, which is 1-3 
orders higher and 2-6 orders higher than comparing WIFFTAs 
respectively. 

TABLE III.  RESULT OF EMULATION TEST 

Parameter Algorithm 
Order of Harmonics 

1 2 3 4 5 6 7 8 9 

Amplitude 

Ai/kV 

Proposed  380.0000 20.0000 50.0000 5.0000 20.0000 6.0000 10.0000 5.0000 1.0000 

Original  380.0000 20.0000 50.0000 5.0000 20.0000 6.0000 10.0000 5.0000 1.0000 

TIFFTA 380.1880 24.3700 49.7823 4.1565 19.9661 5.8832 9.8849 4.8454 0.9913 

HIFFTA 379.9914 20.0504 49.9995 4.9895 19.9950 6.0138 10.0018 4.9968 0.9996 



N4(III)IFFTA 379.9992 19.9979 50.0001 5.0008 20.0002 5.9994 10.0001 5.0004 1.0001 

Frequency 
fi/Hz 

Proposed  49.8000 99.6000 149.4000 199.2000 249.0000 298.8000 348.6000 398.4000 448.2000 

Original  49.8000 99.6000 149.4000 199.2000 249.0000 298.8000 348.6000 398.4000 448.2000 

TIFFTA 49.8396 100.5623 149.3309 197.9586 249.0943 298.6534 348.4444 398.1671 447.9067 

HIFFTA 49.7995 99.6812 149.3980 199.0661 248.9937 298.8708 348.5926 398.3490 448.1453 

N4(III)IFFTA 49.8000 99.6042 149.3998 199.1913 249.0001 298.8004 348.5990 398.3986 448.1983 

 

Fig. 4. The relative errors of amplitude and frequency 

 

B. Emulation of sensitivity for asynchronous sampling, 

To know the sensitivity of the proposed algorithm for 
asynchronous sampling, the emulation test of harmonic 
amplitude measurement was carried out with the fundamental 
frequency changing gradually from 49.5Hz to 50.5Hz. The 
relative errors of measurement are shown in Fig.5. The 
horizontal axis represents the fundamental frequency f1 of the 
tested signal, and the degree of asynchronous sampling can be 
indicated by the distance between f1 and fr (50Hz). The vertical 
axis represents the number of harmonics, the height exhibiting 
the relative error of amplitude. 

 

Fig. 5. The influnce of asynchronous sampling to amplitude measurement 

As can be seen in Fig.5, the graph is high at the sides while 
low in the center along the horizontal axis. The vertical axis 
shows high insides and low outside, which means the error of 

amplitude measurement increases with the raising degree of the 
asynchronous sampling and the growing number of harmonics. 
However, within the range of 49.8Hz to 50.2Hz, the error 
grows slowly, mostly below 10-5. In addition, as the vertical 
axis shows, the error of even order harmonics is not 
significantly higher than that of the odd harmonics, which is 
different from the windowed interpolated FFT algorithm. 

C. Experimental Results 

To specify the hardware overheads and its accuracy, the 
proposed algorithm is tested on experimental platform with the 
comparing algorithms. The experimental platform consists of 
digital power source(XL-828), MU simulator(XL-805) and 
digital watt-hour meter simulator(ADSP-BF609 integrated in 
XL-805) as Fig.6. Digital power source generates digital 
waveform in FT3 format like EVT in digital substation, the 
parameters are as the same as section IV.A. MU simulator 
converts the data format into IEC61850-9-2LE, digital watt-
hour meter simulator processes the data with the algorithms.  

 

Fig. 6. The experimental platform 

The average computation burdens of ten repeated 
experiments are shown in Fig.7. As the sampling time of 402 
points is 100.5ms, it’s obvious that the original Quasi-
Synchronous Algorithm is not feasible in application, but the 



proposed Fast Quasi-Synchronous Harmonic Algorithm is 
efficient. In addition, It can be seen that the time cost of the 
proposed algorithm is 96% smaller than the original algorithm, 
and nearly 50% smaller than the comparing WIFFTs. This is 
consistent with the theoretical analysis, the computation subtle 
difference is mainly caused by the process of results 
refinements and the hardware programming. 

 

Fig. 7. The comparing of computation burden  

The relative errors of amplitude measurement are shown in 
Fig.8. The general trend of different algorithms’ accuracy is 
consistent with the emulation results.  

 

Fig. 8. Experiment resutls of relative errors of amplitude 

However, there are two obvious differences. Firstly, the 
accuracy of the proposed algorithm, the original algorithm and 
N4(III)IFFTA is reduced nearly one order of magnitude. Due 
to the limitation of data bits and clock precision, the sampling 
data generated by digital power source is not exactly the same 
with theoretical value. In addition, IEC61850-9-2LE requires 
the least significant bit of voltage is 10mV, this brings 
truncation error. As a result, a high accuracy of amplitude 
measurement is difficult to realize. So the algorithms with high 
accuracy are impacted more obviously. Secondly, the results of 
the proposed algorithm and the original are not entirely same 
anymore. This is because of the truncation error caused by 
calculation. 

V. CONCLUSIONS 

Based on the characteristics of sampling data in digital 
power metering systems, this paper puts forward a Fast Quasi-

Synchronous Algorithm, the core mechanism of which is to 
replace iteration computation with a weight window function, 
and convert a Quasi-Synchronization Algorithm to 80-point 
DFT operation that is then divided into short 5-point DFTs and 
Radix-2 FFTs. The calculation is reduced by more than 94%, 
and additional algorithm error caused by zero-padding or 
interpolation is also avoided. Compared with TIFFTA, 
HIFFTA, N4(III)IFFTA, the emulation test and experiment 
results show the proposed algorithm has the following features: 

(1) The computation burden is 50% smaller and the 
accuracy is 1-3 orders higher in amplitude measurement than 
comparing WIFFTs. 

(2) The error of measurement grows with the degree of 
asynchronous sampling and the number of harmonics. 

(3) The accuracy of even-order harmonics measurement is 
basically the same with odd-order harmonics measurement. 

Therefore, the proposed algorithm has the advantages of a 
simple operation structure, small amount of calculation, high 
accuracy and applicability to IEC850-9-2LE specified data. In 
practice, it helps to improve the performance of digital electric 
energy metering devices, and promotes their wide application. 
Future studies may analysis and test the influence of inter-
harmonics to the proposed algorithm and research the effective 
method to reduce it. 
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