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ABSTRACT

Real-time classification of vehicles into sub-category
types poses a significant challenge within infra-red im-
agery due to the high levels of intra-class variation in
thermal vehicle signatures caused by aspects of design,
current operating duration and ambient thermal condi-
tions. Despite these challenges, infra-red sensing offers
significant generalized target object detection advan-
tages in terms of all-weather operation and invariance
to visual camouflage techniques. This work investigates
the accuracy of a number of real-time object classifica-
tion approaches for this task within the wider context of
an existing initial object detection and tracking frame-
work. Specifically we evaluate the use of traditional
feature-driven bag of visual words and histogram of ori-
ented gradient classification approaches against modern
convolutional neural network architectures. Further-
more, we use classical photogrammetry, within the con-
text of current target detection and classification tech-
niques, as a means of approximating 3D target position
within the scene based on this vehicle type classifica-
tion. Based on photogrammetric estimation of target
position, we then illustrate the use of regular Kalman
filter based tracking operating on actual 3D vehicle tra-
jectories. Results are presented using a conventional
thermal-band infra-red (IR) sensor arrangement where
targets are tracked over a range of evaluation scenar-
ios.

Keywords: vehicle sub-category classification, ther-
mal target tracking, bag of visual words, histogram of
oriented gradient, convolutional neural network, sensor
networks, passive target positioning, vehicle localiza-
tion

1. INTRODUCTION

We address the problem of the real-time classification
of vehicles into sub-category types within infra-red im-
agery. Due to the high levels of intra-class variation
in thermal vehicle signatures caused by aspects of de-
sign, current operating duration and ambient thermal
conditions this poses a significant challenge. However,
aspects of all-weather operation, invariance to visual

camouflage techniques and accepted suitability for the
the analogous task of pedestrian detection make sens-
ing within thermal-band infra-red (IR) imagery very
attractive.

Within the context of automated visual surveillance
from infra-red imagery, our prior work on pedestrians
[1, 2] demonstrated that reasonable performance can
practically be achieved through the combined use of
infra-red imagery (thermal-band, spectral range: 8-
12pm) and the application of real-time photogram-
metry. A key advantage of such thermal-band infra-
red (IR) imagery for pedestrian localization is robust
detection of human shape signatures within the scene
[3-5]. As such, the principles of photogrammetry can
be used to recover 3D pedestrian position within the
scene based on a known camera projection model and
an assumption that variance in human height is in fact
quite small (statistically supported by [6, 7]). In [1]
we experimentally investigated the accuracy of classical
photogrammetry, within the context of current target
detection and classification techniques [3-5], as a means
of recovering the true 3D position of pedestrian targets
within the scene. A real-time approach for the detec-
tion, classification and localization of pedestrian tar-
gets via thermal-band (infra-red) sensing was presented
with supporting statistical evidence underpinning the
key photogrammetric assumptions. Subsequent work in
[2] explicitly addressed the remaining issue of correct-
ing for pedestrian posture variation within this localiza-
tion context. By contrast, here we present an approach
for the automatic classification of vehicles by sub-type,
such that a similar photogrammetric localization and
tracking strategy can be employed. Identifying vehicle
sub-type is a key governing factor in determining the
suitable height assumption for use in such photogram-
metric localization (supported by prior work of [8]) in
addition to providing a higher granularity of target re-
porting within a deployed multi-sensor network.

Overall, despite extensive work in ground-based sen-
sor networks [9-12], the use of photogrammetry within
this context has received only limited attention [1, 13,
14]. The visible-band work of [14] uses a similar ap-
proach within a Bayesian 3D tracking framework but
does not explicitly address issues of accuracy or its use



within a detection filtering framework such as [1].

Prior work on vehicle type classification is dominated
by work in visible-band imagery [15] where colour and
texture features most often provide the primary con-
duit to classification by vehicle type [16, 17] and of-
ten make/model [18]. Recent work uses a range of
feature driven classification approaches [16, 17| and
the topic is well established within the domain of
urban traffic surveillance [15]. Within this context,
the consistency of vehicle appearance (shape outline,
colour, texture) albeit under varying illumination con-
ditions is a contrasting challenge to the thermal vari-
ations within our task. However, in many contexts it
is desirable to perform both pedestrian detection, to
which thermal-band sensing is highly suited, and vehi-
cle detection/classification from the same deployed all-
weather sensor, operating passively with strong invari-
ance to visual camouflage, within a wider automated
surveillance sensor network [19].

Prior work explicitly dealing with thermal-band (IR)
imagery within an automated surveillance context is
presently largely focused upon pedestrian detection
[3, 5, 20-22] and tracking [23, 24]. The work pre-
sented in this paper is a direct extension of [1, 2]
that demonstrated photogrammetric pedestrian local-
ization within thermal-band imagery incorporating a
lightweight tracking solution akin to that of [4]. Build-
ing directly on this framework presented in [1]|, here
we present a method that additionally facilitates the
passive localization of vehicles within thermal-band
(IR) imagery based on prior classification vehicle type.
Specifically we evaluate a range of feature detec-
tor/descriptor combinations with a traditional feature-
driven bag of visual words architecture (akin to [1]), the
use of histogram of oriented gradient features within a
similar classification framework (building on [2]) and fi-
nally two modern convolutional neural network (CNN)
architectures (AlexNet [25], GoogLeNet [26]).

A number of classification approaches are compared
for this challenging subcategory classification task with
results presented within a wider context of photogram-
metric target localization and tracking as an enabler
to spatio-temporal target reporting in an operational
context [19, 27].

2. APPROACH

Our approach is illustrated against the backdrop of clas-
sical two stage automated visual surveillance [1]. First
we detect initial candidate regions within the scene
(Section 2.1), thus facilitating efficient feature extrac-
tion over isolated scene regions, to which an identified

target type is assigned via secondary object classifica-
tion (Section 2.2) [3].

2.1 Candidate Region Detection

In order to facilitate overall real-time performance, ini-
tial candidate region detection identifies isolated re-
gions of interest within the scene facilitating localized
feature extraction and classification. By leveraging the
stationary position of our sensor, this is achieved us-
ing a combination of two adaptive background model-
ing approaches [28, 29] working in parallel to produce
a single robust foreground model over varying environ-
mental conditions and notably within varying ambient
thermal/infra-red illumination conditions within com-
plex, cluttered environments.

Within the first model, a Mixture of Gaussian (MoG)
based adaptive background model, each image pixel is
modeled as a set of Gaussian distributions, commonly
termed as a Gaussian mixture model, that capture both
noise related and periodic (i.e. vibration, movement)
changes in pixel intensity at each and every location
within the image over time [28, 30]. This background
model is adaptively updated with each frame received
and each pixel is probabilistically evaluated as being ei-
ther part of the scene foreground or background follow-
ing this methodology. The second model comprises the
use of Bayesian classification in a closed feedback loop
with Kalman filtered predictions of foreground compo-
nent position [29]. Within this model, each pixel is sim-
ilarly probabilistically classified as either foreground or
background but this is further reinforced via Kalman
predictions for the positions of foreground objects (i.e.
connected component foreground regions [31]) present
in the previous time-step. This object-aware model
significantly aids in the recovery of fast moving fore-
ground objects under varying illumination conditions
such as the thermal gradients inherent within infra-red
imagery. Overall this combined approach provides a
slowly-adapting background model in the traditional
sense [28], that can be robust to rapid illumination
gradients, whilst similarly providing foreground consis-
tency to fast moving scene objects [29]. The binary
output of each foreground, based on a probabilistic clas-
sification threshold, is combined conjunctively to pro-
vide robust detection of both static and active scene
objects. For illustrative examples and further discus-
sion the reader is directed to [1].

2.2 Vehicle Classification

We evaluate several variations for the initial ve-
hicle target classification (i.e.  vehicle vs.  non-
vehicle) and subsequent type classification as one of
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Figure 1. Examples of real-time vehicle detection, type classification and tracking in infra-red imagery with associated
geo-referenced 3D track (based on using HOG features with SVM classification).



type = {car, SUV, LGV, HGV} such that car covers
city /small/family type saloon cars, Sports Utility Vehi-
cle (SUV) covers conventional (4 x 4) capable (includ-
ing pickups) and similarly styled vehicles, Light Goods
Vehicle (LGV') covers vans (including small wheelbase
trucks) and Heavy Goods Vehicle (HGV') covers articu-
lated trucks (lorries). Based on our detected candidate
region (from Section 2.1), we specifically evaluate the
use of sparse feature point descriptors using a bag of
visual words encoding (Section 2.2.1), the use of dense
Histogram of Oriented Gradient (HOG) features (Sec-
tion 2.2.2) and an end-to-end deep Convolutional Neu-
ral Network (CNN) based on the use of transfer learning
[25, 32].

2.2.1 Bag of Visual Words

Following a bag of visual words (or code-book) method-
ology [33], which has been empirically shown to be
suited towards thermal infra-red imagery [1, 3, 22, 34],
we evaluate a number of feature point detection and de-
scriptor approaches as multi-dimensional features. Im-
age representations based on local feature descriptors
are widely applied in image classification and object
recognition frameworks due to their robustness to par-
tial occlusion and variations in object layout and view-
point. Distinctive features of objects are detected at
interest point locations which generally correspond to
local maxima of a saliency measure calculated at each
location in an image. The intensity patterns around
these interest points are encoded using a descriptor vec-
tor. The most widely followed work in the area of local
feature extraction has been Lowe’s method of the Scale
Invariant Feature Transform (SIFT) [35] which intro-
duced a feature descriptor that is invariant to trans-
lation, scale and rotation and robust to image noise.
Bay et al.’s later work [36] proposed the Speeded Up
Robust Features (SURF) algorithm for feature detec-
tion and description that is loosely based on SIFT. The
computational cost associated with SIFT is dramati-
cally reduced without significant deterioration in per-
formance (as used in prior work on infra-red pedestrian
detection [1-3, 22, 34]).

More recently, research in this area led to industri-
ous efforts to optimize sparse feature stability against
computational performance leading to a range of local
feature and detector variants. A standalone feature de-
tector FAST (Features from Accelerated Segment Test)
[37] provides significant number of candidate points
for extraction while maintaining low computational
cost. The detector-extractor frameworks BRIEF (Bin-
ary Robust Independent Elementary Features) [38], and
BRISK (Binary Robust Invariant Scalable Key-points)

[39] offer integer-space representations, avoiding the
floating point operation of earlier SURF /SIFT variants,
for faster extraction and subsequent computation on
embedded platforms. ORB [40] (Oriented FAST and
Rotated BRIEF) extends such methods to address is-
sues of rotation invariance. A recent pairing of floating-
point and integer space feature frameworks KAZE [41]
and AKAZE [42] aim to improve uniqueness and ro-
bustness of features by describing them based on a
non-linear model of an image. More recently FREAK
(Fast Retina Key-point) [43], following from the earlier
DAISY [44], represent feature extractors specifically in-
spired by retinal sampling in the human visual system
originally designed for multiple image matching (i.e.
image registration, stereo matching and alike).

Following the bag of visual words methodology, we
perform feature extraction and clustering over all of
the example training imagery (for all object classes) to
produce a set of general feature descriptor clusters that
characterise the overall feature space. Commonly this
set of feature clusters is referred to as a code-book or
vocabulary as it is subsequently used to encode the fea-
tures detected on specific object instances (vehicle or
non-vehicle) as fixed length vectors for input to both
the initial off-line classifier training and on-line clas-
sification phase of such machine learning driven clas-
sification approaches. Here we perform clustering us-
ing the common-place k-means clustering algorithm in
N-dimensional space (e.g. SURF feature descriptor
length, N = 128 [36]) into k, clusters. A given ob-
ject instance is encoded as a fixed length vector based
on the membership of the features detected within the
object to a given feature cluster based on nearest neigh-
bour (hard) cluster assignment. Essentially the original
variable number of features detected over each training
image or candidate region is encoded as a histogram,
of fixed length k, representing the membership of these
features to each of these clusters. This fixed length
distribution of features forms a feature vector that is
then used to differentiate between labeled instances of a
given class based on a trained classifier. Specifically we
evaluate a range of such feature point detection and de-
scriptor approaches of varying complexity for this task
(namely: FREAK [43], DAISY [44], BRISK [39], ORB
[40], KAZE [41], AKAZE [42]) against the mainstay of
prior work in the field (i.e. SIFT [35] / SURF [36])
with the default parameter settings from the original
works. From this bag of visual words feature encod-
ing of feature descriptors, we have an overall feature
vector, ¥ goyvw of dimension k, (the number of visual
code words used in our earlier bag of visual words vo-
cabulary) which forms the input to our classification



approach (Section 2.2.3).

2.2.2 Histogram of Oriented Gradient

The Histogram of Oriented Gradient (HOG) feature
descriptor [45] is based on histograms of oriented gradi-
ent responses in a local region around a given pixel of
interest. A rectangular block, pixel dimension b X b,
is first divided into n x n (sub-)cells and for each
cell a histogram of gradient orientation is computed
(quantised into H histogram bins for each cell, weighted
by gradient magnitude). The histograms for all cells
are then concatenated and normalised to represent the
HOG descriptor as a feature vector, ¥ gog, for a given
block (i.e. associated pixel location). For image gradi-
ent computation centred gradient filters [—1,0,1] and
[—1,0,1]T are used as per [45]. To construct our HOG
descriptor, the localized vehicle region (from Section
2.1) is first zero-padded to form a square image region
and subsequently re-sampled to a uniform 128 x 64
pixel image size, (h x w). We then compute the
global HOG descriptor of this localized region using
a block stride, s = 8 (H = 9,n = 2,b = 16 from
[45]), to form a 3780 dimensional vector, ¥ gog, (i-e.
H xn?x (% —1) x (% —1)) as an input to subsequent
classification (Section 2.2.3).

2.2.3 Feature Classification

Support Vector Machine (SVM) [46] classifiers are
trained using each of these feature vector representa-
tions (Sections 2.2.1 and 2.2.2) over a corpus of ex-
emplar imagery (see training examples in Figure 2).
We use 7122 images for initial vehicle target classi-
fication (i.e. wvehicle vs. non-vehicle) and 3410 im-
ages for subsequent type classification as one of type =
{car, SUV, LGV, HGV'} using a randomized 66% to
33% training set to validation set split for training and
validation. The distribution of vehicle types within the
data set used is {car = 2158, SUV = 315, LGV =
431, HGV = 506} representing a basic a priori like-
lihood of occurrence. SVM are trained using Radial
Basis Function (RBF) kernel {SV Mgrpr} with a grid
search over kernel parameter, v = 2% : x € {—15,3},
and model fitting cost, ¢ = 2* : & € {5,15}, using
k—fold cross validation (k = 5). The results for the best
performing parameter set are reported for each feature
configuration in Section 3. Two stages of classification
are performed on each feature vector:- primary clas-
sification as {vehicle, non — vehicle}, with non-vehicle
encompassing both pedestrians (as per [1, 2]) and other
scene objects, then secondary vehicle type classification
as one of type = {car, SUV, LGV, HGV'}. Examples
of the training images used for this task are shown in
Figure 2.

2.2.4 Convolutional Neural Network

Motivated by the work of [25] and current trends in con-
volutional neural networks (CNN), we evaluate a full
CNN pipeline for this task. Unlike traditional feature-
driven approaches (Section 2.2.1 & 2.2.2) that rely on a
secondary stage of generic classification (Section 2.2.3)
(so called “shallow architectures”), we employ a CNN
approach for the entire feature extraction, representa-
tion and classification process (denoted as “deep archi-
tectures”). More specifically, with the use of a trans-
fer learning approach [47], we optimize the CNN struc-
tures designed by Krizhevsky et al. [25] and Szegedy
et al. [26] Dby fine-tuning its convolutional and fully-
connected layers for the full end-to-end feature extrac-
tion to classification pipeline within this problem do-
main.

Unlike the traditional neural networks with conven-
tionally one or two hidden layers, modern CNN can
include many more hidden layers [26, 48, 49] compris-
ing varying characteristics: convolutional layers (fea-
ture extraction), fully connected layer (intermediate
representation), pooling layer (dimensionality reduc-
tion) and non linear operators (sigmoid, hyperbolic
functions and rectified linear units). This complex of
parametrization, and hence representational capacity,
make CNN susceptible to over-fitting in the traditional
sense. To overcome this issue, a number of techniques
are employed to ensure generality of the learned pa-
rameterization of the target problem. Within the net-
work, convolutional layers are usually interleaved by
pooling layers which down-sample the current represen-
tation (image) and hence reduces the number of param-
eters in-addition to improving overall computational ef-
ficiency. Furthermore the use of drop out, whereby hid-
den neurons are randomly removed during the train-
ing process, and shared weights are used to avoid over-
fitting such that performance dependence on individual
network elements is reduced in favor of collective error
reduction. In addition, with the use of the generalized
technique called transfer learning, initial CNN parame-
terization (training) towards a generalized object classi-
fication task can then be further optimized (fine tuned)
towards a domain specific classification task.

Presently, such CNN are designed manually with the
resulting parametrization of the networks performing
training using a stochastic gradient descent approach
with varying parameters such as batch size, weight de-
cay, momentum and learning rate over a huge data
set (typically 10% in size). Current state of the art
CNN models as such designed by Krizhevsky et. al.

[25], Zeiler and Fergus [50], Szegedy et. al. [26],



Simonyan and Zisserman [49] are trained on a huge
data-set such as ImageNet [51] which contains approxi-
mately a million of data samples and 1000 distinct class
labels. However, the limited applicability of such train-
ing and parameter optimization techniques to problems
where such large data sets are not available gives rise
to the concept of transfer learning [52, 53]. The work
of [54] illustrated that that each hidden layer in a CNN
has distinct feature representation related characteris-
tics among of which the lower layers provide general
features extraction capabilities (akin to Gabor filters
and alike), whilst higher layers carry information that
is increasingly more specific to the original classifica-
tion task. This finding facilitates the verbatim re-use of
the generalized feature extraction and representation of
the lower layers in a CNN, whilst higher layers are fine
tuned towards secondary problem domains with related
characteristics to the original. Using this paradigm,
we can leverage the a priori CNN parametrization of
an existing fully trained network, on a generic 1000+
object class problem (from [55]), as a starting point
for optimization towards to the specific problem do-
main of limited vehicle type classification. Instead of
designing a new CNN with random parameter initial-
ization we instead adopt a pre-trained CNN and fine
tune its parameterization towards our specific classifi-
cation domain. Specifically, we make use of the CNN
configuration designed by Krizhevsky et al. [25], hav-
ing 5 convolutional layers, 3 fully-connected layer with
~60 million parameters, ~650,000 neurons, and trained
over the ImageNet data set on an image classification
problem in the ILSVRC-2012 competition (denoted as
AlexNet). We also employ the network structure pro-
posed by Szegedy et al. [26], which won the ILSVRC
2014 competition (denoted as GoogLeNet). This sec-
ond network is designed using many more layers (22)
but with 12 times fewer network parameters compared
to AlexNet to reduce the computational complexity
of training a wide and deep network, while achieving
promising performance results. Their approach is to

first convolve each input by 1 x 1, 3 x 3, 5 x 5 filters in
parallel (named as the inception module) to perform di-
mensionality reduction before being fed into subsequent
more computationally expensive convolutional layers.
From this point we then perform the fine-tuning (trans-
fer learning) approach to both networks to train over
the infra-red vehicle type data set (as detailed in Sec-
tion 2.2.3) using backpropagation via stochastic gradi-
ent descent [25].

2.3 Photogrammetric Position Estimation

Firstly, we present a brief recap of our baseline local-
ization approach as presented in [1] and subsequently
show how this can be extended to address type varia-
tion within detected vehicle targets.

Based on automated detection (Section 2.2), target
position is initially known within “sensor space” (i.e.
pixel position within the image). Consequently, target
position is estimated based on the principles of pho-
togrammetry together with knowledge of the perspec-
tive transform under which targets are imaged and an
assumption on the physical (real-world) dimension of a
target in one plane [1]. All targets are imaged under a
standard perspective projection [31] as follows:

v=1 =1 (1)

where real-world object position, (X,Y,Z), in 3D
scene co-ordinate space is imaged at image pixel posi-
tion, (x,y), in pixel co-ordinate space for a given cam-
era focal length, f. We assume both positions are the
centroid of the object with (z,y) being the centre of
the bounding box, of the image sub-region, for a target
(object) detected in the scene (Section 2.1, e.g. Figure

1).

With knowledge of the camera focal length, f, the
original object (target) position, (X,Y, Z), can be re-
covered based on (assumed) knowledge of either ob-



ject width, AX, or object height, AY (i.e. the differ-
ence in minimum and maximum positions in each of
these dimensions for the object). From the bounds of
the detected targets (Section 2.2) we can readily re-
cover the corresponding object width, Az, and object
height, Ay, in the image. Based on this knowledge, re-
arranging and substituting into Eqn. 1 we can recover
the depth (distance to target, Z) of the object position
as follows:

LAY
7-1'% 2)
Knowing Z via Eqn. 2, we can now substitute back
into Eqn. 1 and with knowledge of the object cen-
troid in the image, (x,y), we can recover both X and
Y resulting in full recovery of real-world target position,
(X,Y, Z), relative to the camera. In Eqn. 2, f’ repre-
sents focal length, f, translated from standard units,
mm, to focal length measured in pixels:-

widthimage - f
widthsensor

= (3)
where widthimage represents the width of the im-
age (pixels), widthsensor represents the camera digital
(CCD) sensor width (mm).

Crucially, if we now assume a fixed width, AX, or
height, AY, for our object we can recover complete 3D
scene position relative to the camera. For vehicle tar-
gets we can assume an average height for a given vehicle
type determined from earlier vehicle type classification
(as projected vehicle height,Ay, does not varying with
viewing angle of the vehicle in the plane). Despite
commonly held beliefs, empirical study has shown
height variation within a given type classification of
vehicle to be minimal [8]. In this study we use AY =
{heightcar, heightsyy, heightrav, heightyav } for
{heightcqr = 1.5m, heightsyy = 1.8m, heightrgy =
2.1m, heightggy = 2.9m} based on statistical eval-
uation of a moderate pool of vehicles. Following in
a similar vein to the argument presented in [1] with
regard to human height for pedestrians, this translates
into a Z position error, attributable to vehicle height
variation within a given type class, that is within GPS
error tolerances (+£5m, [56]) for at least ranges up to
60m from the sensor.

2.4 3D Tracking

Unlike conventional tracking approaches that track 2D
position, (z,y), within the image itself [57], our pho-
togrammetric recovery of target position within the
scene, (X,Y,Z) (Section 2.3) facilitates 3D tracking

within scene space. This can be accomplished as track-
ing “within the plane” based on horizontal target posi-
tion within the scene, X, and distance to target, Z, or
full 3D scene space tracking including target elevation
(vertical position), Y.

For each candidate region identified as a new fore-
ground object (Section 2.1), we initially created a new
2D track-let based on localized frame to frame connec-
tivity derived from sparse optic flow [58, 59]. If one
of the frame samples for this object is subsequently
classified as vehicle (via the approach outlined in Sec-
tion 2.2), this target transitions from a 2D tracked
instance within image space to a 3D tracked vehicle
within scene space. The tracked position, based on pho-
togrammetric position recovery (Section 2.3) can then
be propagated, over earlier instances of the same ob-
ject similarly transitioning the motion history of this
instance from 2D image position to 3D scene position.
If an identified foreground object is not classified as
being a vehicle its tracking remains within 2D image
space until either its spatio-temporal filtered classifi-
cation returns a vehicle classification (as per [1, 3| or
it leaves the scene. Tracking within 3D scene space
is performed using Kalman filter based tracking [60]
on either a state vector comprising position and veloc-
ity “within the plane”, 5§ = (X, Z,vX,vZ)T, or within
R? scene space, 5= (X,Y, Z,vX,vY,vZ)T. Scene and
measurement noise within the Kalman formulation are
estimated empirically.

3. EVALUATION

Our results are presented using both quantitative mea-
sures of classification accuracy (Table 1 and 2) and
qualitative assessment classification performance over
a range of exemplar scenarios (Figures 1, 4). All evalu-
ation imagery is captured using an un-cooled infra-red
camera ( Thermotekniz Miricle 307k, spectral range: 8-
12pm) with statistical performance measured using val-
idation test set of 2351 vehicle/non-vehicle images and
1126 vehicle sub-type images drawn from the same vari-
ation and environmental conditions as used for train-
ing (random 33% validation, as detailed in Section
2.2.3). Evaluation was performed around a variety
of urban/industrial (cluttered) and suburban environ-
ments as part of work carried out in [19]. Within the
feature detector, descriptor and classification variants
outlined, we consider the comparison of True Positives
Rate (TP), False Positives Rate (FP) (as percentages)
together with the Precision (P), accuracy (A) and F-
score (F) (harmonic mean of precision and true positive
rate) for primary vehicle target classification (Table 1)



and mean average precision (mAP) (mean of precision
across all possible class labels) in addition to both mean
accuracy (A) and F-score (F) for secondary vehicle type
classification (type = {car, SUV, LGV, HGV}, Table
2).

From Table 1 we can see that CNN offer the best per-
formance for primary vehicle classification (GoogLeNet,
F-score of 0.993 and FP of only 1.0% followed closely
by AlexNet with slightly higher FP, 1.3%). Traditional
HOG with SVM classification also gives very strong re-
sults (F-Score of 0.98, FP of 2.2%) with the best bag of
visual words approach (FAST feature detection with
(slow) SIFT feature descriptor) coming in 4% lower
across all vocabulary sizes (k) explored. The next best
bag of visual words approach, FAST feature detection
with DAISY feature descriptor, gives a 2.5% lower score
despite the density of DAISY features. It can be ob-
served that variation in vocabulary size generally ap-
pears to make negligible difference to performance.

From Table 2 we can see that the more difficult
task of recognizing vehicle sub-types leads to a greater
spread of performance between varying approaches.
Again, we see that CNN offer the best performance
(GoogLeNet, mAP of 0.94 / accuracy of 0.95) but
that traditional HOG with SVM classification (mAP of
0.94 / accuracy of 0.93 / F-score of 0.88) outperforms
the CNN AlexNet architecture (mAP of 0.85). How-
ever, all three approaches (GooglLeNet, HOG-SVM and
AlexNet) significantly outperform the best bag of visual
words approach (FAST feature detection with SIFT fea-
ture descriptor, mAP of 0.78). Within this bag of vi-
sual words approach (and some other) we can see that
increasing vocabulary size appears to make notable dif-
ference to performance. The normalized inter-class con-
fusion matrices presented in Figure 3 show the greatest
cross-label confusion for the {SUV, LGV} type vehicles
against the car vehicle type and additionally between
the LGV and HGV vehicle types with the CNN ap-
proach (Figure 3 left) notably outperforming the HOG-
SVM combination (Figure 3 right) in these cases.

Overall we see the prevalence of dense features (i.e.
CNN, HOG) over the traditional bag of visual words
approaches for these two classification tasks with the
best performing bag of visual words approach also us-
ing FAST feature detection which is known to produce
a higher density of feature points within the image.
Within the two stage automated visual surveillance
framework used here (Section 2.1), with features ex-
tracted only within the isolated candidate regions of the
scene, all are achievable within the bounds of real-time
operation [19, 27] (~10fps+) based on CPU computa-

tion for the bag of visual words / HOG techniques and
GPU-based computation for CNN based techniques.

This quantitative statistical evaluation (Table 1 and
2) is further supported by the qualitative results pre-
sented in Figures 1, 4-6 which illustrate extracts from
vehicle type classification using HOG features with
SVM classification and subsequent tracking sequences
(using only the CPU computation available with the
deployed sensor nodes [27]). These images are sequen-
tially sub-sampled from the test scenarios with tracking
and spatio-temporal detection performed as outlined in
[1]. Within each sub-figure (Figures 1, 4-6 A-H) we
present the detected vehicle(s) using a bounding box,
associated 2D image projection of the track (A-H in-
sets, right), the planar view of the {Y/Z} tracked po-
sition relative to the camera (A-H insets, left) and the
resulting temporally filtered vehicle type classification
distribution (A-H, inset bottom).

From Figures 1 and 4 we can see that the accuracy
and continuity of the {Y/Z} position localization of the
vehicle from standard photogrammetric techniques [1]
(shown in A-H left, Figures 1 & 4) is consistent over
varying vehicle types. Variation in vehicle viewing an-
gle to the sensor in Figure 1 (e.g. transitions A —B, C
—F and G —H) and Figure 4 (e.g. transitions A —D,
E —F) show no significant erroneous jumps in the spa-
tial locality of vehicle target when the planar view of
the {Y/Z} tracked position history is considered. This
is further illustrated in Figures 5 and 6 where we see
two sequences of consistent HGV type vehicle track-
ing from differing viewpoints (Figure 5, transitions A
—E, F —»H) and consistent tracking of a larger HGV
over an extended distance including change in view-
point (Figure 5, transitions A —E, F). As shown in
Figure 4 (transition E —F, G) and Figure 6 (G, H) ve-
hicle type miss-classification (confusion) largely occurs
between the {car, SUV, LGV} vehicle types dependent
on viewpoint and distance to target in the scene. Intra-
class variation between these classes is clearly visible in
the vehicle configurations of Figure 4 (transition E —F,
G) and Figure 6 (G, H) where the configuration of the
vehicle type is either ambiguous due to viewpoint (Fig-
ure 4) or unusual to any such vehicle type (Figure 6).

Overall, our use of a vehicle classification by type is
shown to facilitate effective compensation for variations
in both vehicle dimension and viewing angle for the pur-
poses of photogrammetric based localization (Figuresl,
4-6). Under evaluation conditions GPS accuracy lo-
cally was found to be +£5m, based on a consumer GPS
unit [56] and secondary verification of vehicle position
from a concurrently deployed active range sensor [61]



SVMgrgr, k, = 500 SVMgrer, k, = 1000 | SVMgrpr, k, = 1500 | SVMgrgr, k, = 2000
Detector | Descriptor | TP [FP[ P [ A [ F [Te[rP|[ P [ A [ F [tp|rp[ P [ A [ F [TP|[FP[ P [A]F
SURF [36] | SURF [36] |81.8]18.0]0.81]0.82]0.8183.8]19.0/0.80|0.82|0.82[85.3]23.7[ 0.77] 0.81 ] 0.81 [ 82.0]15.3] 0.83] 0.83 | 0.83
SIFT [35] | SIFT [35] |86.6|17.5]0.82]0.85|0.84|86.3]19.5/0.80]0.83]0.83|88.7|18.9]0.81|0.85|0.85|91.2|18.4[0.82]0.86 | 0.86
ORB [40] | ORB [40] |66.2(19.6]0.76 |0.74]0.71 | 69.8 |18.9]0.77 | 0.76 | 0.73 | 68.1 [20.1] 0.76 | 0.74 | 0.72 ] 69.3[20.4 0.76 | 0.75 | 0.72
KAZE [41] | KAZE [41] |87.3|12.4] 0.87 | 0.88 | 0.87 | 85.4|15.8] 0.83] 0.85 ] 0.84 | 87.0|12.6| 0.86 | 0.87 | 0.87 | 89.2 [13.6] 0.86 | 0.88 [ 0.88
FAST [37] | SURF [36] |89.4|13.8]0.86|0.88|0.88|89.6[15.6(0.84]0.87]0.87]89.7]14.5| 0.85 | 0.88 | 0.87 | 89.1 [15.7] 0.84 | 0.87 | 0.87
FAST [37] | SIFT [35] |95.8|7.5|0.92]0.94]0.94]96.6] 8.9 |0.91]0.94]0.94]95.6] 8.5 [0.91|0.94]0.93|95.9] 8.8 [0.91]0.94]0.93
FAST [37] | ORB [40] |87.416.9]0.83]0.85]0.85|87.9]16.5/0.83]0.86]0.85]86.5]17.4| 0.82] 0.84 | 0.84 | 88.0 [14.0] 0.85 | 0.87 | 0.87
FAST [37] |FREAK [43]|65.7 [20.8] 0.75 | 0.73 | 0.70 | 65.9 [24.0] 0.72] 0.71] 0.69 | 64.0 |24.1] 0.71 | 0.70 | 0.67 | 62.2 [ 19.6 [ 0.75 [ 0.72 ] 0.68
FAST [37] | DAISY [44] [91.2 |15.2] 0.85 | 0.88 | 0.88 [ 94.2[12.4] 0.88 ] 0.91 ] 0.91 [94.2]11.2] 0.80 | 0.91 [ 0.91 [ 93.1 | 9.9 [0.90 [ 0.92 [ 0.01
FAST [37] | BRISK [39] | 84.9 [12.4] 0.86 | 0.86 | 0.86 | 85.5[10.9] 0.88] 0.87] 0.87 | 83.7]|11.8| 0.87 | 0.86 | 0.85 | 84.5 [ 12.0{ 0.87 | 0.86 | 0.86
BRISK [39] | BRISK [39] | 78.7|18.2] 0.80]0.80] 0.79 | 75.8]17.5] 0.80 | 0.79 | 0.78 [ 77.5 [18.2] 0.80 [ 0.80 [ 0.79 | 79.3[15.9] 0.82] 0.82 0.81
AKAZE [42]| AKAZE [42]| 44.5 |10.6] 0.80 | 0.68 [ 0.57 [ 47.0] 9.9 [ 0.81]0.69] 0.60 [ 45.3] 7.8 | 0.84 | 0.70 [ 0.50 | 48.5 | 9.7 [ 0.82 | 0.70 [ 0.61
SVMrBF
] HOG [45] 97.9] 2.2 [0.98]0.98]0.98
AlexNet [25] GoogLeNet [26]
] CNN 99.9] 1.3 [0.99]0.99[0.99[99.7] 1.0 [0.99]0.99[0.99

Table 1. Results of feature and classification variants for primary vehicle classification.
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Figure 3. Normalized inter-class confusion matrices for vehicle type classification for both CNN (GoogLeNet, left) and

HOG features with SVM classification (right).

(as part of [27]) showed the photogrammetric localiza-
tion recovered to be within this bound in the majority
of test cases.

4. CONCLUSIONS

Overall we have shown that the use of Convolutional
Neural Networks (CNN) or Histogram of Oriented Gra-
dient (HOG) feature based classification facilitate the
most effective determination of vehicle type to enable
improved 3D localization and tracking within infra-red
imagery based on the principles of photogrammetry.
This directly advances the generality of prior work in
field for pedestrian localization in the presence of pos-

ture variation [1-3] by additionally facilitating vehicle
localization from the same infra-red sensing modality
within a deployed sensor network [19]. Within the con-
text of passive target localization in infra-red thermal
imagery, and the general use of passive sensing for geo-
located target tracking in wide-area sensor networks
[19], this work similarly extends the argument in favour
of passive sensor utilization within the bounds of ac-
ceptable accuracy. This is supported by a strong statis-
tical evaluation over a number of variations on current
state of the art classification approaches with CNN and
HOG features outperforming traditional bag of visual
words based approaches for this task. This work further
strengthens the application of generalized target track-
ing within 3D scene-space that facilitates the ready dis-
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Figure 4. Examples of real-time vehicle detection, type classification and tracking in infra-red imagery with associated
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geo-referenced 3D track (based on using HOG features with SVM classification).
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Figure 5. Examples of real-time vehicle detection, type classification and tracking in infra-red imagery with associated
geo-referenced 3D track (based on using HOG features with SVM classification).
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Figure 6. Examples of real-time vehicle detection, type classification and tracking in infra-red imagery with associated
geo-referenced 3D track (based on using HOG features with SVM classification).
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SV MrBr, kv = 500|SV Mgrpr, k, = 1000|SV MrpFr, k., = 1500|SV MrBF, kv = 2000
| Detector | Descriptor mAPf A [ F mAP[A[] F [mAPfA| F [mAP[A | F
SURF [36] | SURF [36] |0.67(0.74| 0.54 |0.66|0.75| 0.55 |0.68(0.75| 0.57 |0.64(0.74| 0.54
SIFT [35] | SIFT [35] |0.59]0.71| 0.50 |0.63|0.73| 0.53 |0.63|0.72| 0.53 [0.67|0.74| 0.56
ORB [40] | ORB [40] |0.36|0.40| 0.34 [0.38]0.46| 0.37 [0.40|0.44| 0.37 |0.36]|0.43| 0.35
KAZE [41] | KAZE [41] |0.72(0.78| 0.63 |0.71]0.79| 0.65 |0.72|0.78| 0.65 |0.64|0.75| 0.61
FAST [37] | SURF [36] | 0.52|0.69| 0.49 |0.53(0.69| 0.52 |0.50(0.68| 0.49 ]0.53|0.70] 0.50
FAST [37] | SIFT [35] |0.78]|0.84| 0.74 |0.83|0.86] 0.75 |0.80|0.85| 0.75 |0.84(0.87| 0.78
FAST [37] | ORB [40] |0.43|0.50| 0.42 |0.41(0.51| 0.41 |0.41(0.49| 0.41 1]0.39|0.43| 0.37
FAST [37] [FREAK [43]{0.33/0.32| 0.28 |0.31]0.32| 0.26 |0.33]0.32| 0.28 |0.33]0.33| 0.28
FAST [37] | DAISY [44][0.61[0.71| 0.49 |0.71]0.74] 0.54 |0.66]0.76] 0.61 |0.66|0.74] 0.54
FAST [37] | BRISK [39]]0.38|0.46| 0.38 {0.39(0.47| 0.38 |0.38]0.44| 0.37 |0.39]0.45| 0.38
BRISK [39] | BRISK [39]]0.34|0.38| 0.31 |0.35(0.39| 0.33 |0.38]0.43] 0.36 [0.37(0.40] 0.34
AKAZE [42]|AKAZE [42]0.35 [0.31] 0.27 |0.36]0.34] 0.30 |0.40[0.33] 0.32 [0.41[0.38] 0.35
SVMrBF
y HOG [45] 0.94]0.93] 0.88
AlexNet [25] GoogLeNet [26]
y CNN 0.85[0.89] 0.83 [0.94[0.95] 0.92

Table 2. Results of feature and classification variants for vehicle type classification.

ambiguation of multiple target tracking scenarios using
low-complexity approaches with reduced computational
overheads [1]. Our approach is demonstrated over mul-
tiple scenarios in cluttered environments where a clear
capability in vehicle type classification is clearly illus-
trated as an enabler to the passive localization of vehi-
cles.

Future work will look to investigate the extension of
this approach to the recovery of vehicle and pedestrian
interactions for inform human/vehicle activity classifi-
cation [4, 59, 62] and also the applicability within the
context of mobile platform navigation [63-66|, driver
assistance systems [67, 68] and for multi-platform,
multi-modal wide-area search and surveillance tasks
[5, 69, 70].
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