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—— Abstract
We introduce a dynamic programming method for solving reconfiguration problems, based on
contracted solution graphs, which are obtained from solution graphs by performing an appropriate
series of edge contractions that decrease the graph size without losing any critical information
needed to solve the reconfiguration problem under consideration. As an example, we consider a
well-studied problem: given two k-colorings a and 3 of a graph G, can a be modified into § by
recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying
our method in combination with a thorough exploitation of the graph structure we obtain a
polynomial-time algorithm for (k — 2)-connected chordal graphs.
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1 Introduction

Given a search problem we may want to find out if one solution for a particular instance is
“close” to another solution of that instance to get more insight into the solution space of the
problem. Studying the solution space from this perspective could, for instance, be potentially
interesting for improving the performance of corresponding heuristics [16]. Searching the
solution space by making small “feasible” moves also turned out to be useful when analyzing
randomized algorithms for sampling and counting k-colorings of a graph or when analyzing
cases of Glauber dynamics in statistical physics (see Section 5 of the survey [19]).

In most general terms, the above situation can be modeled with solution graphs. We
formalize this as follows: A solution graph concept S is obtained by defining a set of
instances, solutions for these instances, and a (symmetric) adjacency relation between pairs
of solutions. For every instance G of the problem, this gives a solution graph S(G), also
called a reconfiguration graph, which has as node set all solutions of G, with edges as defined
by the given adjacency relation. (If G has no solutions then S(G) is the empty graph.) The
adjacency relation usually represents a smallest possible change (or reconfiguration move)
between two solutions of the same instance. For example, the well-known k-Color Graph
concept Cy, related to the k-COLORABILITY search problem, is defined as follows: instances
are graphs G, and solutions are (proper) k-colorings of G. Two colorings are adjacent if and
only if they differ in exactly one vertex. Note however that in general there may be more
than one natural way to define the adjacency relation.
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Solution graphs and their properties have been studied very intensively over the last
couple of years for a variety of search problems, which include amongst others k-COLORING 3,
4,8, 11, 12, 13, 15, 25], SATISFIABILITY [16, 32], INDEPENDENT SET [7, 9, 26], SHORTEST
PATH [5, 6, 26], L1sT COLORING [18], L1sT EDGE COLORING [22, 23], L(2,1)-LABELING [24],
H-COLORING [35] and SUBSET SUM [20]; see also the aforementioned survey [19]. The study
of such solution graphs is commonly called reconfiguration.

Reconfiguration problems. Both algorithmic and combinatorial questions have been con-
sidered in the fast-growing area of reconfiguration. For instance, what is the diameter of S(G)
(in terms of the size of the instance G) or if S(G) is not connected, what is the diameter of
its (connected) components? In particular, is the diameter always polynomially bounded or
not? This led to the introduction of the S-CONNECTIVITY problem, which is that of deciding
whether the solution graph S(G) of a given instance G is connected. Refining this problem
leads to the following problem:

S-Reachability.
Instance: an instance G with two solutions o and S.
Question: is there a path from « to § in S(G)?

The S-REACHABILITY problem is a central problem in the area of reconfiguration,
which has received much attention in the literature. The problem is sometimes called
the a-B-path problem for S [19], whereas the specific case of Cxr-REACHABILITY is also
known as the k-COLOR PATH problem [13]. It is known that S-REACHABILITY is PSPACE-
complete for most of the aforementioned solution graph concepts even for special graph
classes [8, 17, 21, 29, 34, 36]. For instance, Cy-REACHABILITY is PSPACE-complete even if
k = 4 and instances are restricted to planar bipartite graphs [8]. This explains that efficient
algorithms are only known for very restricted classes of instances. Hence, there is still a need
for developing general algorithmic techniques for solving these problems in practice, and for
sharpening the boundary between tractable and computationally hard instance classes. Our
paper can be seen as the next step in these directions.

Method. One important algorithmic technique is dynamic programming (DP). In the
area of reconfiguration, there are only relatively few successful examples of nontrivial DP
algorithms (such as [5, 7, 18, 29]). In this paper, we focus on a DP technique based on
the concept of contracted solution graphs. This method was first used by Bonsma [5] to
obtain an efficient algorithm for a SHORTEST-PATH-REACHABILITY problem restricted to
planar graphs. Recently, Hatanaka, Ito and Zhou [18] used this technique for proving that
LisT-COLORING-REACHABILITY is polynomial-time solvable for caterpillars. We will:

1. generalize the ideas of [5, 18] to a unified dynamic programming method,

2. introduce this method in a broader setting,

3. provide useful notation, terminology and basic lemmas, and

4. illustrate the method by giving a new application.

In Section 2 we give a detailed description of the general method of contracted solution
graphs. Informally speaking, in dynamic programming one first computes the required
information for parts of the instance, and combines/propagates this to compute the same
information for ever larger parts of the instance, until the desired information is known for
the entire instance. In our case, the instance G can be any relational structure on a ground
set, such as (directed) graphs, hypergraphs, satisfiability formulas, or constraint satisfaction
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problems in general (see e.g. [10]). The order in which the information can be computed or
in which parts should be considered is given by a decomposition of G. The elements of the
ground set that are in a processed part H and that have incidences with the unexplored part
are called terminals. The key idea behind the method is that reconfiguration moves in the
processed part H that do not involve terminals are often irrelevant. The information that is
relevant is captured by the notion of a terminal projection. These projections assign labels to
solutions, yielding so-called label components, which are maximally connected subgraphs of
S(H) induced by sets of solutions that all have the same label. A contracted solution graph
is obtained from S(H) by contracting the label components into single vertices. We stress
that the general method can readily be applied to any kind of relational structure, but in our
example we focus on graphs, just as [5] and [18].

Relation to Other Results. In [18] dynamic programming was done over a path decom-
position of the given caterpillar. In [5], a layer-based decomposition of the graph was used
(for every i € N, the subgraph H; consisted of all vertices at distance at most i of the given
shortest path starting from a vertex s), which can also be viewed as a path decomposition.
Here we focus on the more general tree decompositions instead. For our application, we
give full dynamic programming rules for the Cx-REACHABILITY problem. In particular we
introduce a join rule and we allow bags of size larger than 2. Our rules can be used directly
for L1sT-COLORING-REACHABILITY as well and thus generalize the rules of [18].

Many well-studied S-REACHABILITY problems (including Cx-REACHABILITY for an appro-
priate constant k) are PSPACE-complete already for graphs of bounded bandwidth [29, 34],
and therefore also for graphs of bounded treewidth. Recently, the PSPACE-completeness
results from [29, 34] were strengthened to hold even for planar graphs of bounded bandwidth
and low maximum degree [36]. Hence we cannot hope to obtain polynomial-time algorithms
for graphs of treewidth w, for every constant w, and certainly not fixed parameter tractable
(FPT) algorithms parameterized by w, although such results are common when working with
decision problems that are only NP-complete instead of PSPACE-complete.

One way to cope with the above problem is to restrict the problem even further. For
instance, in a number of recent papers [10, 25, 26, 32, 30, 31] the length-bounded version of
the S-REACHABILITY problem was studied, that is the problem of finding a path of length
at most ¢ in the solution graph between two given solutions, in particular with an aim
to determine fixed-parameter tractability (observe that the length of a path between two
solutions is a natural parameter). For instance, although Cp-REACHABILITY is PSPACE-
complete for k > 4, the length-bounded version is FPT when parameterized by the length
¢ [10, 25] (in addition, it is polynomial-time solvable for k£ < 3 [25]). In this restricted context,
other dynamic programming algorithms over tree decompositions for reconfiguration problems
are known: in [29] FPT algorithms are given for various length-bounded reachability problems,
parameterized by both the treewidth and the length bound ¢. In [28], FPT algorithms are
given for the reachability versions of different token reconfiguration problems for graphs of
bounded degeneracy (and thus for bounded treewidth), when parameterized by the number
of tokens.

Since we wish to solve S-REACHABILITY problems in general, we choose a different
approach, and present a generally applicable method. However, because of the aforementioned
PSPACE-completeness, we can obviously not guarantee that it terminates in polynomial time
for all instances. Nevertheless, one can identify restricted instance classes for which it does
yield polynomial-time algorithms, as illustrated by our new application and the two other
examples [5, 18]. Moreover, our initial computational studies indicate that this method, with

20:3

MFCS 2016



20:4

Using Contracted Solution Graphs for Solving Reconfiguration Problems

a few additions, performs well in practice for various instances of reconfiguration problems,
for which the theoretical complexity status is not yet resolved.

Our Application. In Section 3 we illustrate the method by giving dynamic programming
rules for the Cx-REACHABILITY problem, which describe how to compute new (larger)
contracted solution graphs from smaller ones. Recall that similar dynamic programming
rules can be given for other reconfiguration problems, as done already in [5, 18]. The given
rules can be used when a tree decomposition of the graph is given. We emphasize that the
rules solve the Cx-REACHABILITY PROBLEM correctly for every graph G (see e.g. [1, 27| for
information on finding tree decompositions). Nevertheless, the algorithm is only efficient
when the contracted solution graphs stay small enough (that is, polynomially bounded). As
indicated by the PSPACE-hardness of the problem, this is not always the case. In the same
section, we illustrate the DP rules and show that the size of the contracted solution graphs
can grow exponentially, even for 2-connected 4-colorable unit interval graphs.

In Section 4 we apply our method to show that, for all & > 3, Cx-REACHABILITY is
polynomially solvable for (k — 2)-connected chordal graphs. As unit interval graphs are
chordal, the result from Section 3 implies that we need to exploit the structure of chordal
graphs to prove this. This is not surprising: although C3-REACHABILITY can be solved in
polynomial time for all graphs [13], Cx-REACHABILITY is PSPACE-complete even for bipartite
graphs, and if k € {4,5,6} for planar graphs, and if k¥ = 4 for planar bipartite graphs [8]. As
the proof for the PSPACE-completeness result for bipartite graphs from [8] can be easily
modified to hold for (k — 2)-connected bipartite graphs, our result for (k — 2)-connected
chordal graphs cannot be extended to (k — 2)-connected perfect graphs. On the positive
side, Cx-CONNECTIVITY is polynomial-time solvable on chordal graphs. This is due to a
more general result of Bonamy et al. [4], which implies that for a chordal graph G, Cx(G)
is connected if and only if G has no clique on more than k — 1 vertices. Hence, our result
can be seen as an extension of this result if in addition (k — 2)-connectivity is imposed. Our
result on Cx-REACHABILITY on (k — 2)-connected chordal graphs is also the first time that
dynamic programming over tree decompositions is used to solve the general version of a
PSPACE-complete reachability problem in polynomial time for a graph class strictly broader
than trees. In Section 5 we discuss possible directions for future work.

Preliminaries. For a connected graph G, a vertex cut is a set S C V(G) such that G — S is
disconnected. Vertices in different components of G — S are separated by S. For k> 1, a
(connected) graph G is k-connected if |V (G)| > k+1 and every vertex cut S has |S| > k. The
contraction of an edge uv of a graph G replaces v and v by a new vertex made adjacent to
precisely those vertices that were adjacent to u or v in G (this does not create any multi-edges
or loops). A graph is chordal if it has no induced cycle of length greater than 3.

Let G be a graph. A k-color assignment of G is a function « : V(G) — {1,...,k}. For
v € V(G), a(v) is called the color of v. It is a k-coloring if a(u) # a(v) for every edge
wv € E(G). A coloring of G is a k-coloring for some value of k. If « and f8 are colorings of G
and a subgraph H of G, respectively, such that a|y () = § (that is, o and 3 coincide on
V(H)) then « and S are said to be compatible. For an integer k, the k-color graph Ci(G)
has as nodes all (proper) k-colorings of G, such that two colorings are adjacent if and only
if they differ on one vertex. A walk from v to v in G is a sequence of vertices vy, . ..,V
with v = vy, v = v, such that for all i < k, v;v;41 € E(G). A pseudowalk from u to v is a
sequence of vertices vy, ..., v with u = vy, v = v, such that for all i < k, either v; = v;41,
or v;v;4+1 € E(G). A recoloring sequence from a k-coloring v of G to a k-coloring § of G is a
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pseudowalk from a to 8 in Ci(G). A labeled graph is a pair G, ¢ where G = (V| E) is a graph
and £:V — X is a vertex labeling (which may assign the same label to different vertices). A
label preserving isomorphism between two labeled graphs G1,¢; and Gs, {5 is an isomorphism
¢ : V(G1) = V(G3), such that ¢1(v) = l3(é(v)) for all v € V(G1). Informally, two labeled
graphs G1, /1 and Gs, {5 are the same if there exists a label preserving isomorphism between
them.

2 The Method of Contracted Solution Graphs

In this section we define the concept of contracted solution graphs (CSGs) for reconfiguration
problems in general. Consider a solution graph concept S, which for every instance G of S
defines a solution graph that is denoted by S(G). A terminal projection for S is a function p
that assigns a label to each tuple (G,T,~y) consisting of an instance G of S, a set T of
terminals for G and a solution « for G. Terminal projections are used to decide which nodes
are “equivalent” and can be contracted. We remark that G and T can be anything, but in
our example and in previous examples in the literature [5, 18] G is always a graph, and T
is a subset of its vertices. We also note that a terminal projection p can be seen as a node
labeling for the solution graph S(G). So, for every instance G of S, every choice of terminals
T may give a different node labeling for the solution graph S(G). When G and T are clear
from the context, we may write p(y) to denote the label of a node 7y of S(G).

Example. Consider the k-color graph concept Cr. Let G be a graph. We can define a
terminal projection p as follows. Let T be a subset of V(G). The nodes of Ci(G) are
k-colorings and we give each node as label its restriction to 7', that is, for every k-coloring ~
of G, we set p(v) = p(G,T,~) = v|r. Note that |7 is a k-coloring of G[T].

Let p be a terminal projection for a solution graph concept S. For an instance G of S
and a terminal set T, a label component C of S(G) is a maximal set of nodes ~ that all have
the same label p(y) and that induce a connected subgraph of S(G). It is easy to see that
every solution v of G is part of exactly one label component, or in other words: the label
components partition the node set of S(G). The contracted solution graph (CSG) S8¢(G,T) is
a labeled graph that has a node set that corresponds bijectively to the set of label components
of G. For a node z of §S¢(G,T), we denote by S, the corresponding label component. Two
distinct nodes 1 and x5 of S¢(G, T) are adjacent if and only if there exist solutions v1 € Sy,
and 7y € S;, such that vy, and ~, are adjacent in S(G). We define a label function ¢* for
nodes of S¢(G,T) to denote the corresponding label in S(G). More precisely: for a node x
of S¢(G,T), the label £*(x) is chosen such that ¢*(x) = p(v) for all v € S,. Note that the
contracted solution graph S¢(G,T') can also be obtained from S(G) by contracting all label
components into single nodes and choosing node labels appropriately.

Example. Figure 1(c) shows one component of C4(G) for the (4-colorable) graph G from
Figure 1(a). This is the component that contains all colorings of G whose vertices a,b, ¢, d
are colored with colors 4, 3,2, 1, respectively (note that it is not possible to recolor any of
these four vertices if one may recolor only one vertex at a time). So in Figure 1(c) the colors
of the vertices a, b, ¢, d are omitted in the node labels, which only indicate the colors of e, f, g,
in this order. For terminal set T' = {f}, this component contains three label components
(of equal size), and contracting them yields the CSG C5(G, {f}) shown in Figure 1(d). For
T = {g}, there are seven label components, and the corresponding CSG C§(G, {g}) is shown
in Figure 1(e). Note that C§(G, {g}) contains different nodes with the same label.
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Figure 1 (a) A 4-colorable chordal graph G with V(G) = {a,b,c,d,e, f,g}. (b) a 4-coloring «,
and one component of the CSGs of G for four different terminal sets T: (c) C{(G,{e, f,g}), (d)
Ci{(G,{f}), (e) C{(G,{g}) and (f) C5(G,{a,b,c,d}). The G[T]-colorings in the node labels are given
as sequences of colors, for the (ordered version of) T" as indicated below each CSG. Example (c) can
also be seen as the component of C4(G) where vertices a, b, ¢, d receive colors 4, 3,2, 1.

We stress that the CSG S¢(G,T) is a labeled graph that includes the label function £*
defined above. However, to keep its size reasonable, the CSG itself does not include the
solution sets S, for each node that were used to define it. For proving the correctness of
dynamic programming rules for CSGs the following alternative characterization of CSGs
(proof omitted) is useful; note that the sets S, correspond exactly to the label components.

» Lemma 1. Consider an instance G of a solution graph concept S, terminal set T and

terminal projection p. Let H,{ be a labeled graph. Then H, ¢ = S¢(G,T) if and only if one

can define nonempty sets of solutions S, for each node x € V(H) such that the following

properties hold:

1. {S, |z € V(H)} is a partition of the nodes of S(G) (the solutions of G).

2. For every x € V(H) and every solution v € Sy: p(G,T,~) = {(x).

3. For every edge vy € E(H): {(x) # {(y).

4. For every x € V(H): S, induces a connected subgraph of S(G).

5. For every pair of distinct nodes x,y € V(H): zy € E(H) if and only if there exist
solutions a € Sy and B € Sy such that o and B are adjacent in S(G).

A mapping S that assigns solution sets (or label components) S, to each node x of
S8¢(G,T) that satisfies the properties given in Lemma 1 is called a certificate for S¢(G,T).
Given such a certificate S and a solution 7 for G, the y-node of S¢(G,T') with respect to S is
the node x with v € S,. For readability, we will not always explicitly mention this certificate
when talking about vy-nodes in S¢(G,T) (except in Lemma 2 below), but the reader should
keep the following convention in mind: when y-nodes are identified in S¢(G,T') for multiple
solutions vy, these are all chosen with respect to the same certificate.

Example. In Figures 1(c)—(f), the a-node for the coloring o shown in Figure 1(b) is marked.
In particular consider C§(G, {g}) in Figure 1(e). Since the certificate for C{(G, {g}) is not
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actually indicated in the figure, the other leaf with label 2 can also be chosen as the a-node
(considering the nontrivial label-preserving automorphisms of the graph). Similarly, if we
choose a coloring 3 that coincides with a except on nodes e and f, where we choose (e) = 3
and B(f) = 4, then the same two leaves (the ones with label 2) of C{(G,{g}) can be chosen
as the S-node. Nevertheless, if both an a-node and S-node are marked, then this will only
be correct according to the above convention when they are distinct!

The main purpose of our definitions is the following key observation (we omit its proof).

» Lemma 2. Let (G,T) be an instance of a solution graph concept S. Let S¢(G,T) be the
contracted solution graph for some terminal projection p. Let o and B be two solutions and
let x and y be the a-node resp. [-node with respect to some certificate S. Then there is a
path from « to B in S(G) if and only if there is a path from x toy in S¢(G,T).

Lemma 2 implies that for a solution graph concept S and any terminal projection p and
terminal set T', we can decide S-CONNECTIVITY if we know S°(G,T) (the answer is YES if
and only if S¢(G,T) is connected) and the S-REACHABILITY problem if we know S¢(G,T)
and the a-node and the S-node (the answer is YES if and only if these two nodes are in
the same component). However, for obtaining an efficient algorithm using this strategy, we
must choose the terminal projection p smartly: we need to throw away enough irrelevant
information to ensure that S¢(G,T) will be significantly smaller than S(G), yet maintain
enough information to ensure the efficient computation of S¢(G, T'), without first constructing
S(G). Our strategy for doing this is to use dynamic programming to compute S¢(H,T") for
ever larger subgraphs H of G, while ensuring that all of the CSGs stay small throughout the
process. The remainder of this paper shows a successful example of this strategy.

3 Dynamic Programming Rules for Recoloring

The following terminology is based on widely used techniques for dynamic programming over
tree decompositions; see Section 4 and [2, 27, 33] for background information. A terminal
graph (G, T) is a graph G together with a vertex set T C V(G), whose vertices are called
the terminals. If T = V(G), then (G,T) is called a leaf. If v € T, then we say that the
new terminal graph (G, T \ {v}) is obtained from (G, T) by forgetting v (or using a forget
operation). If T # V(G), v € T and N(v) C T then we say that (G,T) can be obtained from
(G — v, T\ {v}) by introducing v (or using an introduce operation). Note that for a terminal
graph (G',T") with T” # (, different graphs can be obtained from (G’,T") by introducing a
vertex v, whereas forgetting a terminal always yields a unique result. As we will see, the
condition that each neighbor of the new vertex v must be in T is necessary. We say that
(G,T) is the join of (G1,T) and (G, T) (or can be constructed using a join operation) if

G and G are induced subgraphs of G,

V(Gl) N V(Gg) =T and V(Gl) U V(G2> = V(G),

V(G1) # T and V(G2) # T, and

for every uv € E(G), it holds that uwv € E(G1) or uwv € E(G2).
We will now focus on CSGs for the k-color graph concept Cy, using the terminal projection
p(G,T,~) = v|lr. We will show how to compute the CSG Cg(G,T) when (G, T) is obtained
using a forget, introduce or join operation from a (pair of) graph(s) for which we know the
CSG(s). We recall that a variant of these CSGs have been considered before by Hatanaka, Ito
and Zhou [18], namely for the case that |T| = 1 in the context of list colorings of caterpillars.
Similar dynamic programming rules were given in [18]: for the case that |T| = 1, they
presented a combined introduce and forget rule, and a restricted type of join rule.

20:7

MFCS 2016



20:8

Using Contracted Solution Graphs for Solving Reconfiguration Problems

We start by stating a trivial rule for computing Ci(G, T for leaves, which follows from
the facts that Cx(G) has k-colorings of G as nodes and that the label ¢(z) of a node z in
Ci(G,T) is a k-coloring of G[T].

» Lemma 3 (Leaf). Let (G,T) be a terminal graph with T = V(G). Then Ci(G,T) is
isomorphic to Ci(G) and its label function { is the isomorphism from C;(G,T) to Cr(G).
Moreover, for every k-coloring v of G, the y-node of Ci(G,T) is the node v with {(v) =~.

We now give the rules for the forget, introduce and join operations. Figure 2 illustrates
the first two rules. We show how Lemma 1 can be applied to prove Lemma 4; the other
proofs are similar.

» Lemma 4 (Forget). Let (G,T) be a terminal graph. For every v € T, it holds that
H' U =Ci(G, T\ {v}) can be computed from H,{ = C;(G,T) as follows:
For every node x in H with £(x) = v, let £'(x) = Y|\ {v}-
Iteratively contract every edge between two nodes x and y with ¢'(x) = ¢'(y) and assign
label V' (z) := '(x) to the resulting node z.
Moreover, for any coloring v of G, the y-node of Ci.(G,T \ {v}) is the node that results from
contracting the set of nodes that includes the y-node of C;(G,T).

Proof sketch: Let S denote the certificate for H, ¢, so for every node x of H, S, denotes
the set of k-colorings of G (or solutions), such that these sets satisfy the properties stated in
Lemma 1. In addition, for every coloring 7 for which a y-node = has been marked in H, we
may assume that v € S,. We will prove the statement using Lemma 1 again, by giving a
certificate S’ for H', ¢, and proving that the five properties hold for these.

The graph H' is obtained by iteratively contracting edges of H, so every node y of H’
corresponds to a connected set of nodes of H, which we will denote by M,. So {M, |y €
V(H')} is a partition of V/(H). For every node y € V(H'), we define S = Uzenr, Sz. For
every k-coloring v of G such that the y-node x € V(H) is marked, we define the y-node of
H' to be the node y with x € M,,. Clearly, v € S} then holds, so this is correct. One can
now verify that the solution sets S/, satisfy the five properties stated in Lemma 1. |

» Lemma 5 (Introduce). Let (G,T) be a terminal graph obtained from a terminal graph
(G —v, T\ {v}) by introducing v. Then H',' = C5(G,T) can be computed as follows from
H(=Ci(G—v,T\{v}):
For every node x of H with label {(x), and every color ¢ € {1,...,k}: if the (unique)
function 6 : T — {1,...,k} with §(v) = ¢ and é|r = €(x) is a coloring of G[T] then
introduce a node x. with label ¢'(x.) = 0.
For every pair of distinct nodes x. and yq: add an edge between them if and only if (1)
x =y or (2) xy is an edge in H and ¢ = d.
Moreover, for every k-coloring v of G, if x is the Y|y (a)\ (v} -node in H and y(v) = ¢, then
Ze 18 the y-node of H'.

» Lemma 6 (Join). Let (G,T) be a terminal graph that is the join of terminal graphs (G1,T)
and (Go,T). Let Hy,4, = C{(G1,T) and Hy, by = C5(Ge,T). Then H, £ = C{(G,T) can be
computed as follows:
For every pair of nodes x € V(Hy) and y € V(Haz): if £1(x) = £2(y) then introduce a
node (x,y) with £((x,y)) = {1(x).
For two distinct nodes (x,y) and (z',y'), add an edge between them if and only if xx' is
an edge in Hy and yy' is an edge in H.
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CSG components:

introduce e forget ¢ introduce f @ @ forget d @ @
® — @) — O —
=(c,d,e) =(d,e)
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f()r(t{’ @ @ @ @
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introduce h

m‘rm( uce g

Figure 2 An example of computing CSGs using forget and introduce operations. A 4-colorable
2-connected chordal graph G with V(G) = {a,b,c,d, e, f, g, h} is shown. Note that G is in fact unit
interval and isomorphic to the graph G% defined in Section 3. Starting with one component of the
CSG Ci(G[{a,b,c,d}],{c,d}), the corresponding component of C5(G, {g, h}) is computed, using four
forget and introduce operations. The G[T]-colorings in the node labels are given as sequences of
colors for the ordered version of T as indicated below each CSG. For instance, for T' = (¢, d), the
node label 12 indicates the coloring v with y(¢) =1 and v(d) = 2.

Moreover, for every k-coloring v of G, if x is the y|y (g, )-node in Hy and y is the v|y (g,)-node
in Hy, then (x,y) is the y-node in H.

Remark 1. The DP rules in this section can be generalized further to capture the rules
of [18] for the list coloring generalization Cy, of C. In this generalization, an instance G, L
consists of a graph G together with color lists L(v) C {1,...,k} for each v € V(G). Solutions
are now list colorings, which are colorings « of G such that a(v) € L(v) for each v € V(G).
Adjacency is defined as before. So the list coloring solution graph Cr(G,L) is an induced
subgraph of C,(G). Hence, it is straightforward to generalize our DP rules to Cj,, namely by
simply omitting all nodes that correspond to invalid vertex colors.

We now show that components of C;(G) can grow exponentially even if G is chordal
and k = 4. First, when considering 4-colorable chordal graphs with cut vertices, it is easy to
obtain CSGs that have exponentially large components: take p copies of the graph shown in
Figure 1(a), and identify the g-vertices of all of these graphs. Call the resulting graph G.
We can show that, for every integer p > 1, C§(G, {g}) has a component with 1+ 3-2? nodes.

We can construct CSGs with exponentially large components for (k — 2)-connected k-
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colorable chordal graphs, or even 2-connected 4-colorable unit interval graphs, as follows.
For p > 4, let the graph GZI, have vertex set {vo,...,vp—1}, and edge set {vovs} U {v;vit1 |
0<i<p-—2}U{vvii2|0<i<p—3}. A graph isomorphic to G} is shown in Figure 2.
Note that each GZI) is unit interval. To state our claim more precisely, for every p = 4q + 4
with ¢ € N, we can show that the CSG CX(GZI), {vp—2,vp—1}) has 4! components on at least
29 nodes.

Both examples show that we need to do more than only computing CSGs to solve the
problem for (k — 2)-connected chordal graphs. Next, we will characterize the CSGs and show
that it suffices to compute only a part of them.

4 Recoloring Chordal Graphs

We will show that CSGs can be used to efficiently decide the Cx-REACHABILITY problem for
(k — 2)-connected chordal graphs. To prove this we use the fact that for a chordal graph G
and any clique T of G, the terminal graph (G,T') can recursively be constructed from simple
cliques using a polynomial number of clique-based introduce, forget and join operations. We
remark that some statements given here are similar to (and can alternatively be deduced
from) well-known facts about tree decompositions [14] and nice tree decompositions [27].
However, for readability, and since we need to prove a new bound on the size of any tree
decomposition, we give a self-contained presentation.

A nice tree decomposition of a terminal graph (G,T) (where G is not necessarily chordal
and T may not be a clique) is a tuple (7, X,r), where T is a tree with root r and X is
an assignment of bags X,, C V(G) for each u € V(T) that can be defined recursively as
follows:

1. If T = V(G), then the tree T consists of one (root) node r with bag X, =T.

2. fv e V(G)\T and (77, X,r’) is a nice tree decomposition of (G, T U {v}), then a nice
tree decomposition for (G,T) can be obtained by adding a new root r with X,. = T, and
adding the edge rr’.

3. If (G, T) can be obtained from (G —v, T\ {v}) using an introduce operation and (77, X, r’)
is a nice tree decomposition of (G —v,T \ {v}), then a nice tree decomposition for (G, T)
can be obtained by adding a new root r with X, = T, and adding the edge rr’.

4. If (G,T) can be obtained from (G1,T) and (G2, T) using a join operation, and (71, X, 71)
and (72, X,72) are nice tree decompositions of (G1,T) and (Gs,T), then a nice tree
decomposition for (G,T') can be obtained by adding a new root r with X,, = T and
adding edges rr1 and r7rs.

We call a node u € V(T) a leaf, forget node, introduce node or join node if u is added as the

root in case (1), (2), (3) or (4), respectively. The width of (T, X,r) is max,cv (1) | Xu| — 1.

» Lemma 7. (proof omitted) Let (T, X,r) be a nice tree decomposition of (G,T) of width
at most w > 1, and let n = |V(G)| > 1. Then |V(T)| < (w+ 4)n.

The bound from Lemma 7 holds for any nice tree decomposition, in contrast to the
(stronger) bound of [27] which states that for any graph G, a nice tree decomposition of G of
width at most 4n can be constructed (for an appropriate choice of the terminal set T). A
nice tree decomposition (7, X,r) of (G,T) is chordal if for every node u € V(T), X, is a
clique of G. If (T, X, r) is a chordal nice tree decomposition of a k-colorable graph G, then
the width of (7, X, ) is at most k — 1. Hence, Lemma 7 shows that any chordal nice tree
decomposition has at most (k + 3)n nodes. This bound is asymptotically sharp.
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» Theorem 8. (proof omitted) There are k-colorable chordal graphs G for which any chordal
nice tree decomposition has at least Q(kn) nodes.

In order to show how to find a chordal nice tree decomposition in polynomial time we
need the following lemma (proof omitted), which tells us how to select the proper type of
root node when constructing such a tree decomposition. A terminal graph (G1,T1) is called
smaller than another terminal graph (G, T) if 2|V(G1)| — |Th| < 2|V (G2)| — |T3|-

» Lemma 9. Let (G,T) be a terminal graph where G = (V, E) is a chordal graph, and T
is a clique with T # V. If G — T is disconnected, then (G,T) can be obtained from a pair
of smaller chordal terminal graphs (G1,T) and (G2, T) using a join operation. Otherwise,
(G, T) can be obtained from a smaller chordal terminal graph (G',T") using either a forget or
introduce operation, where T' is again a clique. For every such (G,T), the relevant operation
and subgraph(s) can be found in polynomial time.

By combining Lemmas 7 and 9 we obtain the following result.

» Corollary 10. Let G be a chordal k-colorable graph on n vertices, and let T be a clique of
G. In polynomial time, we can find a chordal nice tree decomposition of (G,T) on at most
(k + 3)n nodes.

Proof. Lemma 9 shows how we can choose the proper type of root node. We can build
the chordal nice tree decomposition by adding this node to the tree decomposition(s) of (a)
smaller graph(s). The entire chordal nice tree decomposition is constructed by continuing
this process recursively. Lemma 7 shows that the resulting chordal nice tree decomposition
has at most (w+ 4)n nodes, where w+ 1 is the maximum bag size. Since every bag is a clique
of G and the graph is k-colorable, we have w + 1 < k, so there are at most (k + 3)n nodes.
Since we have a polynomial number of nodes, and for every node we spend polynomial time
(Lemma 9), the entire process terminates in polynomial time. |

The precise complexity bound in Corollary 10 depends on implementation details beyond
the scope of this paper.

Using an inductive proof based on Lemma 9, we will now characterize the shape of CSGs
for (k — 2)-connected k-colorable chordal graphs. For integers m, k with 1 < m < k, a labeled
graph H, ¢ is an (m, k)-color-complete graph if there exists a set T with |T'| = m such that:

for all vertices v € V(H), ¢(v) is a k-coloring of a complete graph on vertex set T,

every such k-coloring of T appears at exactly one vertex of H, and

two vertices of H are adjacent if and only if their labels differ on exactly one element

of T.

From this definition it follows that for every pair of integers m and k, there is a unique
(m, k)-color complete graph, up to the choice of T. An (m, k)-color-complete graph has
k!/(k — m)! vertices (this is the number of ways to k-color a complete graph on m vertices),
and every vertex has degree m(k — m). In particular, if m = k then the graph consists of
k! isolated vertices (which is a forest). A labeled graph H,/ is said to satisfy the injective
neighborhood property (INP) if for every vertex u € V(H) and every pair of distinct neighbors
v,w € N(u), it holds that £(v) # ¢(w). Note that (m, k)-color-complete graphs trivially
satisfy the INP. We prove Theorem 12 by first showing that for our graphs the following
invariant (Theorem 11) is maintained by introduce, forget and join operations. This invariant
can be proven by induction based on Lemma 9, using the rules from Section 3.

» Theorem 11. Let k > 3. Let G = (V, E) be a (k — 2)-connected k-colorable chordal
graph, and let T C V(G) be a cliqgue of G with m = |T| > k — 2. Then C(G,T) is an
(m, k)-color-complete graph, or it is a forest that satisfies the injective neighborhood property.
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Remark 2. Figure 1 shows that if we relax the connectivity requirement to (k — 3)-
connectedness, the above property does not necessarily hold anymore: the examples in
Figure 1(c) and (d) are not forests, and the example in Figure 1(e) does not satisfy the INP.

The characterization of C;(G,T) in Theorem 11 does not yet guarantee that simply
keeping track of the (relevant component of the) CSG yields a polynomial-time algorithm, as
shown by the second example in Section 3. However, we will now show that it suffices to
only keep track of the following essential information, which remains polynomially bounded.

Let G = (V, E) be a graph with T"C V', and let « and S be k-colorings of a supergraph of
G. (G should be viewed as a subgraph that occurs during the dynamic programming, while «
and (3 are the colorings of the full graph.) Let o/ = a|y and 8’ = S|v. If C5(G,T) is a forest
with the o’-node x and $’-node ¥ in the same component, then we define the a-3-path to be
the unique path in C;(G,T) with end vertices  and y (together with its vertex labels). Given
the two colorings a and (3, the essential information for C(G,T') consists of the following:

whether the o/ and 3’ nodes appear in the same component,

whether Ci(G,T) is a forest, and

in case the answers to both questions are yes: the a-f-path in C;(G,T).

» Theorem 12. For a k-colorable (k — 2)-connected chordal graph G with two k-colorings o
and B, we can decide in polynomial time whether Ci(G) contains an a-f path.

Proof sketch:  Corollary 10 shows that for every chordal k-colorable graph G on n vertices,
we can find in polynomial time a chordal nice tree decomposition on at most (k + 3)n
nodes. So every node of this tree decomposition corresponds to a (k — 2)-connected chordal
subgraph H of G with terminal set T', such that either H is a clique with "=V (H) (leaf
nodes), or (H,T) can be obtained from the graph(s) corresponding to its child node(s) using
a forget, introduce or join operation. For every one of those terminal subgraphs, we compute
the essential information, bottom up. If at any point, the o’ and 3’ nodes are separated, the
answer is NO. Forget, introduce and join operations maintain a forest. The lemmas from
Section 3 show how the a-S-path can be computed. We return YES if in the root node, a
color-complete graph or an a-S-path is obtained (Lemma 2). The total number of operations
(tree decomposition nodes) is O(kn). For every operation, the essential information can
be computed in polynomial time (in the input size, which includes the path length). One
can show that the maximum length of any «-8 path that occurs during the computation is
O(kn). Hence, the algorithm terminates in polynomial time. |

We stress that (m, k)-color complete graphs, which have k!/(k — m)! nodes, are not
computed explicitly in our algorithm. So indeed, in order to obtain a polynomial-time
algorithm, we do not need to assume that k is a constant.

5 Discussion

An obvious question is whether our polynomial-time algorithm for can be extended to all
chordal graphs, or whether Cp-REACHABILITY is PSPACE-hard for chordal graphs. As
C3-REACHABILITY is polynomial-time solvable in general [13], the first open case is the
complexity of C4-REACHABILITY for chordal graphs (with at least one cut vertex). We refer
to Remark 2 for a discussion on why our current proof technique does not work for this case.
We also note that the complexity of C4~-REACHABILITY is open for proper interval graphs
(initial experimental results for these graphs seem to suggest that even this problem is not
straightforward to solve). The two most important future research goals are the following.
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1. Explore for which other solution graph concepts S the DP method can be used to
obtain polynomial-time algorithms for the S-REACHABILITY problem. The DP method
has now been used to obtain polynomial-time algorithms for several reconfiguration problems,
but its true strength is not always revealed when using the viewpoint of worst-case algorithm
analysis. For instance, when considering randomly generated k-colorable chordal or interval
graphs, we observed that the method performs well on most instances, despite the fact that
specialized examples can be constructed that exhibit exponential growth. As we noticed
when considering other reconfiguration problems, this behavior seems to occur in general.
Because of this, we will write a subsequent paper which will include computational studies,
where we apply extensions of this method to various other reconfiguration problems such as
well-studied variants of independent set reconfiguration problems (see e.g. [9, 26]).

2. Explore which known reconfiguration problems can be solved efficiently using CSGs.
The method of using CSGs can easily be applied to solve the S-CONNECTIVITY problem.
Hence, this well-studied problem is a suitable candidate problem for the second research goal.

—— References

1 H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on computing, 25(6):1305-1317, 1996.

2 H.L. Bodlaender, P. Bonsma, and D. Lokshtanov. The fine details of fast dynamic pro-
gramming over tree decompositions. In Proc. IPEC, volume 8246 of LNCS, pages 41-53.
Springer, 2013.

3 M. Bonamy and N. Bousquet. Recoloring bounded treewidth graphs. Electronic Notes in
Discrete Mathematics, 44:257-262, 2013.

4 M. Bonamy, M. Johnson, I.M. Lignos, V. Patel, and D. Paulusma. Reconfiguration graphs
for vertex colourings of chordal and chordal bipartite graphs. Journal of Combinatorial
Optimization, 27:132-143, 2014. doi:10.1007/s10878-012-9490-y.

5 P. Bonsma. Rerouting shortest paths in planar graphs. In Proc. FSTTCS 2012, volume 18
of LIPIcs, pages 337-349. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

6 P. Bonsma. The complexity of rerouting shortest paths. Theoretical Computer Science,
510:1 — 12, 2013.

7  P. Bonsma. Independent set reconfiguration in cographs and their generalizations. Journal
of Graph Theory, 2015. doi:10.1002/jgt.21992.

8 P. Bonsma and L. Cereceda. Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science, 410(50):5215—
5226, 2009. doi:10.1016/j.tcs.2009.08.023.

9 P. Bonsma, M. Kaminski, and M. Wrochna. Reconfiguring independent sets in claw-free
graphs. In Proc. SWAT 2014, volume 8503 of LNCS, pages 86—97. Springer, 2014.

10 P. Bonsma, A.E. Mouawad, N. Nishimura, and V. Raman. The complexity of bounded
length graph recoloring and CSP reconfiguration. In Proc. IPEC 2014, volume 8894 of
LNCS, pages 110-121. Springer, 2014.

11 L. Cereceda, J. van den Heuvel, and M. Johnson. Connectedness of the graph of vertex-
colourings. Discrete Mathematics, 308(5):913-919, 2008.

12 L. Cereceda, J. van den Heuvel, and M. Johnson. Mixing 3-colourings in bipartite graphs.
European Journal of Combinatorics, 30(7):1593-1606, 2009.

13 L. Cereceda, J. van den Heuvel, and M. Johnson. Finding paths between 3-colorings.
Journal of Graph Theory, 67(1):69-82, 2011.

14 R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin,
fourth edition, 2010.

20:13

MFCS 2016


http://dx.doi.org/10.1007/s10878-012-9490-y
http://dx.doi.org/10.1002/jgt.21992
http://dx.doi.org/10.1016/j.tcs.2009.08.023

20:14

Using Contracted Solution Graphs for Solving Reconfiguration Problems

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

C. Feghali, M. Johnson, and D. Paulusma. A reconfigurations analogue of Brooks’ theorem.
In Proc. MFCS 2014, volume 8635 of LNCS, pages 287-298. Springer, 2014.

P. Gopalan, P.G. Kolaitis, E. Maneva, and C.H. Papadimitriou. The connectivity of boolean
satisfiability: Computational and structural dichotomies. SIAM Journal on Computing,
38(6), 2009.

A. Haddadan, T. Ito, A.E. Mouawad, N. Nishimura, H. Ono, A. Suzuki, and Y. Tebbal.
The complexity of dominating set reconfiguration. In Proc. WADS 2015, volume 9214 of
LNCS, pages 398-409. Springer, 2015.

T. Hatanaka, T. Ito, and X. Zhou. The list coloring reconfiguration problem for bounded
pathwidth graphs. IEICE TRANSACTIONS on Fundamentals of Electronics, Communic-
ations and Computer Sciences, 98(6):1168-1178, 2015.

J. van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013, pages
127-160. Cambridge University Press, 2013.

T. Ito and E.D. Demaine. Approximability of the subset sum reconfiguration problem.
In TAMC 2011, volume 6648 of LNCS, pages 58—69. Springer, 2011. doi:10.1007/
978-3-642-20877-5_7.

T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, and
Y. Uno. On the complexity of reconfiguration problems. Theoretical Computer Science,
412(12-14):1054-1065, 2011.

T. Ito, M. Kaminski, and E.D. Demaine. Reconfiguration of list edge-colorings in a graph.
Discrete Applied Mathematics, 160(15):2199-2207, 2012.

T. Tto, K. Kawamura, and X. Zhou. An improved sufficient condition for reconfiguration
of list edge-colorings in a tree. IEICE TRANSACTIONS on Information and Systems,
95(3):737-745, 2012.

Takehiro Ito, Kazuto Kawamura, Hirotaka Ono, and Xiao Zhou. Reconfiguration of list
L(2,1)-labelings in a graph. Theoretical Computer Science, 544:84-97, 2014.

M. Johnson, D. Kratsch, S. Kratsch, V. Patel, and D. Paulusma. Finding shortest paths
between graph colourings. Algorithmica, 75(2):295-321, 2016. URL: http://dro.dur.ac.
uk/15595/.

M. Kaminski, P. Medvedev, and M. Milani¢. Complexity of independent set reconfigurab-
ility problems. Theoretical Computer Science, 439:9-15, 2012.

T. Kloks. Treewidth: computations and approzimations, volume 842 of LNCS. Springer,
1994.

D. Lokshtanov, A.E. Mouawad, F. Panolan, M.S. Ramanujan, and S. Saurabh. Reconfig-
uration on sparse graphs. In Proc. WADS 2015, volume 9214 of LNCS, pages 506-517.
Springer, 2015.

A. E. Mouawad, N. Nishimura, V. Raman, and M. Wrochna. Reconfiguration over tree
decompositions. In Proc. IPEC 201/, volume 8894 of LNCS, pages 246-257. Springer, 2014.
A.E. Mouawad, N. Nishimura, and V. Raman. Vertex cover reconfiguration and beyond.
In Proc. ISAAC 2014, volume 8889 of LNCS, pages 452-463. Springer, 2014.

A.E. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki. On the parameterized
complexity of reconfiguration problems. In Proc. IPEC 2013, volume 8246 of LNCS, pages
281-294. Springer, 2013.

A E. Mouawad, N. Nishimura, Pathak V., and V. Raman. Shortest reconfiguration paths
in the solution space of boolean formulas. In Proc. I[CALP 2015, volume 9134 of LNCS,
pages 985-996. Springer, 2015.

R. Niedermeier. Invitation to fized-parameter algorithms, volume 31 of Ozford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

M. Wrochna. Reconfiguration in bounded bandwidth and treedepth. arXiv:1405.0847, 2014.
URL: http://arxiv.org/abs/1405.0847.


http://dx.doi.org/10.1007/978-3-642-20877-5_7
http://dx.doi.org/10.1007/978-3-642-20877-5_7
http://dro.dur.ac.uk/15595/
http://dro.dur.ac.uk/15595/
http://arxiv.org/abs/1405.0847

P. Bonsma and D. Paulusma 20:15

35

36

M. Wrochna. Homomorphism reconfiguration via homotopy. In Proc. STACS 2015,
volume 30 of LIPIcs, pages 730-742. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015.

T.C. van der Zanden. Parameterized complexity of graph constraint logic. In Proc. IPEC

2015, volume 43 of LIPIcs, pages 282—293. Schloss Dagstuhl-Leibniz-Zentrum fuer Inform-
atik, 2015.

MFCS 2016



	Introduction
	The Method of Contracted Solution Graphs
	Dynamic Programming Rules for Recoloring
	Recoloring Chordal Graphs
	Discussion

