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Abstract
Plurality consensus considers a network of n nodes, each having one of k opinions. Nodes execute
a (randomized) distributed protocol with the goal that all nodes adopt the plurality (the opinion
initially supported by the most nodes). Communication is realized via the Gossip (or random
phone call) model. A major open question has been whether there is a protocol for the complete
graph that converges (w.h.p.) in polylogarithmic time and uses only polylogarithmic memory
per node (local memory). We answer this question affirmatively.

We propose two protocols that need only mild assumptions on the bias in favor of the plurality.
As an example of our results, consider the complete graph and an arbitrarily small constant
multiplicative bias in favor of the plurality. Our first protocol achieves plurality consensus in
O (log k · log logn) rounds using log k + Θ (log log k) bits of local memory. Our second protocol
achieves plurality consensus in O (logn · log logn) rounds using only log k+4 bits of local memory.
This disproves a conjecture by Becchetti et al. (SODA’15) implying that any protocol with local
memory log k+ O (1) has worst-case runtime Ω (k). We provide similar bounds for much weaker
bias assumptions. At the heart of our protocols lies an undecided state, an idea introduced by
Angluin et al. (Distributed Computing’08).
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1 Introduction

Reaching plurality consensus is a fundamental problem in distributed computing. We consider
this problem in a networked setting, where a graph is given in which each node initially holds
one of k ∈ N opinions. The objective is the design of an efficient distributed protocol that
ensures that eventually all nodes agree on the initial plurality opinion, which is the opinion
that is initially supported by the most nodes. This problem is also referred to as majority
consensus or proportionate agreement [1, 3, 19]. In accordance with [5] and others, we prefer
to refer to it as plurality consensus, so as to make clear that the opinion eventually to be
attained by all nodes need not initially have been absolute majority. One need not stray too
far from the core of distributed computing to come across direct applications of plurality
consensus: the handling of fault tolerance in parallel computing or the implementation of
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136:2 Efficient Plurality Consensus

majority-based conflict resolution for CRCW PRAMs (and derivative models) are immediate
examples.

Natural metrics for plurality consensus protocols are running time and memory overhead.
The latter is the additional amount of (local) memory needed by each node above and beyond
the bits required to store its current opinion. Results are typically expressed in terms of the
number of nodes, the number of initial opinions, and the initial bias (between plurality and
remaining opinions). Of particular interest, to us and in general, are fast protocols with small
memory overhead. As in [5] we assume a synchronous Pull-based Gossip communication
model on the underlying graph. Here, in each discrete round, every node may contact one
neighbor and query that neighbor’s opinion. We mostly assume the complete graph, but
using a construction of [5] we can easily extend our results to regular expanders. We define
the (relative) plurality gap γ > 1 as the ratio between the plurality opinion and the second
most common opinion. We analyze two protocols in this paper:

A protocol with running time O
(
log k · log logγ n + log logn

)
and memory overhead

Θ (log log k).
A protocol with running time O

(
logn · log logγ n

)
and memory overhead 4.

Plurality consensus is a member of the class of population dynamics, which are of great
interest in fields as varied as epidemiology, physics, statistics, biology, chemistry, or sociology.
All these have in common an initial population of agents with some initial properties and
a protocol (dynamics) that in some manner changes the properties of given agents usually
based on those of other agents. Specific models are as varied as the problems themselves; for
instance, we may or may not have an underlying graph structure, a prescribed timing model,
or restrictions on the amount and nature of communication. Other related dynamics are the
lately en vogue voting protocols and Moran-type processes.

1.1 Related Work
In [3], Aspnes et al. consider k = 2 initial opinions {x, y } and the complete graph as
neighborhood structure. They introduce a third state, referred to as blank, b, which is a
crucial ingredient in their protocol and analysis. Their protocol works such that an activated
node u picks another node v at random. Given the opinions of those two nodes, the transition
now proceeds as follows: If u has a non-blank opinion and sees in v the other non-blank
opinion then it changes to b, if it has a non-blank opinion and sees in v the same non-blank
opinion or b then it maintains its opinion, and if it has the blank opinion then it just copies
whatever it sees in v. The authors show that with high probability all n nodes reach consensus
within O (n logn) many interactions (corresponding to parallel convergence time O (logn)),
and the consensus value is the plurality value provided its (absolute) initial bias is at least
ω (
√
n logn). Each node needs to be able to store one of three values, x, y, or b.

In the case of two opinions the plurality problem can be solved by calculating the median
of the opinions. In [11] the authors present such a protocol that converges in O (logn) rounds
and has constant memory overhead, if the initial difference bias c1−c2 is at least Ω

(√
n logn

)
.

In [2] the authors consider the plurality problem in a sequential setting where only one node
can change its opinion at a time. They present a new protocol called Average and Conquer
(AVC) that solves plurality exactly, in sequential time O (n logn/(sε) + logn log s), where εn
(ε > 1/2) is the size of the plurality opinion and s the number of states. In [7] the authors
generalize the former result to general networks and k opinions. They introduce protocols
that solve the plurality consensus problem that are based on an interesting relationship
between plurality consensus and distributed load balancing.
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In [5] Becchetti et al. take the model of [3] and generalise it to k ≥ 2 initial opinions.
They still use the blank state, which they however refer to as undecided. The authors express
their results in terms of md(c̄), the monochromatic distance of configuration c. Formally,
md(c̄) =

∑k
i=1 ci/c1, where ci is the number of nodes with opinion i and c1 ≥ c2 · · · ≥ ck.

Note that md(c̄) is always between O (1) and O (k). Then authors show almost-tight bounds
on convergence time. Formally, let k = k(n) be any function such that k = O

(
(n/ logn)1/3),

and consider any initial configuration with c1 ≥ (1 + α) · c2, where α ≥ 0 is any arbitrarily-
small constant. Their protocol converges in O (md(c̄) · logn), rounds (w.h.p.) and it has only
constant memory overhead. They also show that for k = O

(
(n/ logn)1/6) and any initial

configuration the convergence time of their protocol is (w.h.p.) linear in the monochromatic
distance. Finally, they show how to adapt their results to regular expanders using random
walks to sample the opinion of nodes. As with [3], they require one state more than is
necessary to store the actual opinion values. They conjecture that any protocol using
log k+ O (1) bits of memory has runtime at least linear in k in the worst case — as discussed
later, we partially refute this conjecture. In [6] the authors consider the 3-majority dynamics.
They show that for k ≤ nα (with constant α) the 3-majority dynamics converges to an
almost-consensus state in time O

(
(k2√logn+ kl logn)(k + logn)

)
. An almost-consensus

state is defined as a state where all but a subset of size O (nγ) (for constant γ < 1) of the
nodes support the same opinion. In [4] the authors consider the undecided dynamics in
complete graphs in an asynchronous setting. They derive the time of convergence and an
upper bound for the probability of error.

A line of research which is related to the plurality consensus problem is the voting
problem. The setting is the same, a network with n nodes is given and initially every node
has one of k opinions. Here the goal is that all nodes agree on one opinion, which is not
necessarily the plurality opinion. A sequential version of the voter model was introduced
in [16]. The parallel voter model was first analyzed in [15]. The authors of [15] bound the
expected consensus time in terms of the expected meeting time Tm of two random walks
and show a bound of O (Tm · logn) = O

(
n3 logn

)
. The authors of [8] provide an improved

upper bound of O
(
1/(1 − λ2) · log4 n + ρ

)
on the expected consensus time for any graph

G, where λ2 is the second eigenvalue of the transition matrix of a random walk on G, and
ρ =

(∑
u∈V (G) d(u)

)2
/
∑
u∈V (G) d

2(u) is the ratio of the square of the sum of node degrees
over the sum of the squared degrees. The authors of [9, 10] consider a modification of the
standard voter model with two opinions, which they call two-sample voting. In every round,
each node chooses two of its neighbors randomly and adopts their opinion only if they both
agree. For regular graphs and random regular graphs, it is shown that two-sample voting
has a consensus time of O (logn) if the initial imbalance between the nodes having the two
opinions is large enough. In [13] the authors consider a 2-choice voting protocol for k opinions
in the complete graph. Their protocol converges to the majority opinion in time O (k · logn),
with high probability, if k=O (nε) for some small ε > 0, and the initial absolute gap between
largest and second-largest opinion is Ω

(√
n logn

)
. They also show that there exist initial

configurations where the Θ (k) bound on the run time is matched. Independently, they also
give a protocol which is similar to our simple, first protocol (cf. Section 3) and has roughly
the same voting time. Other related papers from literature about sensor networks include [12]
(which considers binary interval consensus, which can be used to solve majorization) and [17]
(which considers the plurality problem in a different distributed model and for constant k).

1.2 Our Contribution
In Section 3 we present and analyze protocol RepeatedCleanup, which in a complete graph
of n nodes and k opinions works in O

(
log k · log logγ n+ log logn

)
rounds and has a memory

ICALP 2016
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overhead of O (log log k) bits. The protocol is a synchronized version of the protocol from [6],
in which the nodes “lose” their opinion and adopt the state “undecided” whenever they
sample a node with a different opinion. Then they will adopt the “real” opinion of the next
(i.e., not undecided) node they sample. The nodes keep changing their opinion until all nodes
agree on the plurality opinion. In contrast, our protocol works in O

(
log logγ n

)
many phases,

each of length Θ (log k). In the first round of every phase the nodes sample a node and lose
the opinion if the sampled node has a different opinion. They then use the rest of the phase
to find a new “real” opinion. In [5] the authors show that for k = O

(
(n/ logn)1/6) and any

initial configuration the convergence time of their protocol is linear in the monochromatic
distance, which can be as large as O (k). Hence, our protocol outperforms the lower bound
for the protocol of [5]. Interestingly, the speed-up is reached by synchronizing the protocol,
which can also be regarded as slowing it down. In our protocol a node that just found a real
opinion again waits until the beginning of the next round to sample another node, instead of
doing that immediately.

The drawback of our first protocol is that it uses a counter to determine the end of a
phase. In Section 4 we present a protocol that works in O

(
logn · log logγ n

)
rounds and

has a memory overhead of only 4 bits. The main idea of the protocol is to slow down the
progress in the individual phases by having nodes toss a biased coin with success probability
1/n, basically replacing the deterministic counter by a probabilistic counterpart. Our result
shows that a conjecture by Becchetti et al. [5], implying that any protocol with constant
memory overhead has worst-case runtime Ω (k), does not hold if nodes have access to such
a coin. Note that the coin toss is not necessary if nodes can decide whether they sampled
themselves (or a marked node/leader).

A very recent, independent result by Ghaffari and Parter [14] suggests a protocol for
plurality consensus with similar time and memory bounds as ours. They employ the same
basic idea of cleanup and decision-accumulation rounds (cf. Section 3), which they name
selection and recovery steps. Their final protocol differs in that they use some of the undecided
nodes as clock nodes (which use the log k bits normally used to store the opinion to count
time) to help synchronize other nodes.

2 Model & Notation

We consider protocols in the complete graph with n ∈ N nodes. Each node u has one of
k ∈ N opinions opu ∈ { 1, 2, . . . , k }. We write opu = ⊥ to indicate that node u is undecided.
Time is modelled in synchronous, discrete and parallel rounds and we assume a Pull-based
Gossip model for communication (nodes can request information from one other node chosen
uniformly at random). Note that each node needs at least dlog ke bits of local memory (to
store its current opinion). Any additional number of bits per node needed by a given protocol
is called the protocol’s memory overhead.

Notation. In the following, ‖·‖1 and ‖·‖2 denote the L1 and L2 norms, respectively, that is,
‖x‖1 =

∑n
i=1 |xi| and ‖x‖2 =

√∑n
i=1 |xi|2 for an n-dimensional vector x. For a real value

x > 0, its binary logarithm is denoted by log x and its natural logarithm by ln x. For an
integer i, the shorthand [i] := { 1, 2, . . . , i } denotes the set of the first i integers. The phrase
with high probability (w.h.p.) refers to probabilities of the form 1− n−Ω(1).

At any point in time, the system can be described by a k-dimensional vector x =
(x1, x2, . . . , xk) ∈ { 0/n, 1/n, . . . , 1 }k ⊆ [0, 1]k, where the i-th entry xi ∈ [0, 1] denotes the
current fraction of nodes with opinion i. We call such a vector x a configuration. Note
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that 1 − ‖x‖1 ∈ [0, 1] is the fraction of undecided nodes. Xi(t) is defined as the random
variable that takes as its values the configuration produced by the protocol at the end of
round t ∈ N0. We use x̄ := X(0) to denote the initial (fixed) configuration. The random
variable Y (t) := 1− ‖X(t)‖1 with values in ∈ [0, 1] denotes the fraction of undecided nodes
at the end of round t.

To measure how far we are from plurality consensus, we define two plurality gap notions:
Assuming (w.l.o.g.) that 1 is a most common opinion, let ψ(x) := x1 −maxi 6=1 xi ∈ [0, 1] be
the absolute plurality gap. Similarly, γ(x) := x1/maxi 6=1 xi ≥ 1 is the relative plurality gap.

Assumptions. In order to guarantee convergence, we need some (mild) bias assumptions.
Given the initial configuration x̄, without loss of generality (w.l.o.g.), we assume x̄1 ≥ x̄i for
all i ∈ [k] and refer to (the initially most common) opinion 1 as the plurality opinion. For
most of the analysis we assume

ψ(x̄) = ω

(
(logn)2
√
n

)
(1)

and

k = o
( √

n

(logn)2

)
. (2)

While Condition (1) is essential1, Condition (2) is without loss of generality (it can
be achieved by merging small opinions). We define ρ = ρ(n) := (logn)2/

√
n and call a

configuration x biased if ψ(x) = ω (ρ). Our analysis assumes n to be at least some sufficiently
large constant.

3 Plurality Consensus with log k + Θ (log log k) Bits

We divide time into phases, each consisting of T := 5 + 2 log k rounds. In each round, every
node u uses a Pull operation to sample a random node v and checks its opinion opv. We
distinguish two types of rounds:

Cleanup rounds represent the first round of each phase. Here, u becomes undecided if
opv differs from u’s own opinion opu (and keeps its opinion otherwise).
Decision-accumulation rounds make up the remaining T − 1 rounds of a phase. Here,
only undecided nodes act and simply adopt the pulled opinion opv.

The synchronization of the steps in which nodes lose their opinion and adopt opinions of
sampled nodes is key to the fast convergence. As we will see in the analysis they ensure
that each phase increases the relative plurality gap exponentially. We call this protocol
RepeatedCleanup. See Listing 1 for a formal description. In the remainder of this section
we prove the following theorem.

I Theorem 1. RepeatedCleanup has a local memory overhead of Θ (log log k) bits. If
started on a biased configuration x̄ with relative plurality gap γ := γ(x̄), then (w.h.p.) plurality
consensus is achieved in O

(
log(k) · log logγ n+ log logn

)
rounds.

We use the shorthand X(τ, t) := X((τ − 1) · T + t) to denote the configuration at the
end of round t in phase τ . Similarly, Xi(τ, t) and Y (τ, t) denote the corresponding fractions

1 Our results hold also under the slightly weaker condition ψ(x̄) = ω
(√

log(n)/n
)
. However, Condition (1)

significantly simplifies some parts of the analysis.

ICALP 2016
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1 sample a random node v
2 if t ≡ 0 (mod T ): {cleanup}
3 if opv 6= opu: opu ← ⊥
4 else: {decision−accumulation}
5 if opu = ⊥: opu ← opv

Listing 1 Protocol RepeatedCleanup as executed by node u in round t ∈ N. It works in
phases of length T = Θ (log k) and has memory overhead Θ (log log k).

of nodes. The following definition identifies opinions that are supported by only a small
fraction of nodes (and, thus, are likely to vanish in a cleanup round), and configurations that
do not have too many undecided nodes.

An opinion i in configuration x is negligible if xi ≤ ρ (recall that ρ = (logn)2/
√
n).

A configuration x is alive if ‖x‖1 ≥ 1− e−1.

The following simple observation already hints at the basic change of configurations during
a phase: in expectation, the cleanup round squares the relative plurality gap (but reduces
the absolute support of each opinion), while the decision-accumulation rounds increase the
absolute support of each opinion (not changing the relative plurality gap).

I Observation 2. Consider a configuration x with y := 1 − ‖x‖1. If the configuration X

results from a cleanup round on x and Y = 1− ‖X‖1, then

E [Xi] = x2
i , E [‖X‖1] = ‖x‖22, and E [Y ] = 2y − y2. (3)

Similarly, if X results from a decision-accumulation round, then

E [Xi] = (1 + y) · xi, E [‖X‖1] = 2‖x‖1 − ‖x‖
2
1, and E [Y ] = y2 . (4)

Analysis Overview. The bound on the memory overhead in Theorem 1 immediately follows
from the protocol description. The runtime bound is proven in three steps: Lemma 7 shows
that all non-plurality opinions become negligible during the first O

(
log logγ(x̄) n

)
phases.

Lemma 8 proves that all these negligible opinions vanish within an additional constant number
of phases. Lemma 9 shows that any remaining undecided nodes vanish in another O (log logn)
phases. Before we prove these key lemmas (Section 3.3), we show how configurations evolve
during single rounds (Section 3.1) and single phases (Section 3.2).

3.1 Change During a Single Round
Our first two claims show concentration for the expected configuration change in cleanup and
decision-accumulation rounds we saw in Observation 2. They follow by standard Chernoff
bounds.

I Claim 3 (Cleanup Round). Consider a configuration x at the beginning of phase τ . Let
a > 0 be a constant.
(a) Let i ∈ [k] and δ :=

√
3a · log(n)/n · x−1

i . Then

Pr
[
Xi(τ, 1) ≥ max

(
ρ2, (1 + δ) · x2

i

) ∣∣ X(τ, 0) = x
]
≤ n−a and (5)

Pr
[
Xi(τ, 1) ≤ (1− δ) · x2

i

∣∣ X(τ, 0) = x
]
≤ n−a. (6)

(b) Let δ :=
√

3a · log(n)/n ·‖x‖−1
2 . Then Pr

[
‖X(τ, 1)‖1 ≤ (1− δ) · ‖x‖22

∣∣∣ X(τ, 0) = x
]
≤

n−a.
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I Claim 4 (Decision-accumulation Round). Consider a configuration x at the beginning of
round t + 1 > 1 in phase τ . Let a > 0 be a constant and y := 1 − ‖x‖1 the fraction of
undecided nodes.
(a) Let i ∈ [k], δ′ :=

√
13a · logn/(xiy · n), and δ := max(δ′, δ′2). Then

Pr [Xi(τ, t+ 1) ≥ (1 + δy) · xi · (1 + y) |X(τ, t) = x] ≤ n−a and (7)
Pr [Xi(τ, t+ 1) ≤ (1− δ′y) · xi · (1 + y) |X(τ, t) = x] ≤ n−a . (8)

(b) Assume y ≤ 1− ρ. Then Pr
[
Y (τ, t+ 1) ≥ max

(
ρ2, y3/2) ∣∣ X(τ, t) = x

]
≤ n−a .

3.2 Change During a Single Phase
Next, we use the effects of single rounds to show that (a) the property of being alive is
(w.h.p.) invariant from phase to phase (Claim 5) and (b) the relative plurality gap of a
biased configuration increases (w.h.p.) exponentially during a phase (Claim 6).

I Claim 5. Consider a configuration x at the beginning of phase τ . Let a > 0 be a constant.
Assume ‖x‖1 ≥ 1− e−1 and ‖x‖22 = ω (ρ). Then

Pr
[
‖X(τ + 1, 0)‖1 < 1− e−1 ∣∣ X(τ, 0) = x

]
= n−a . (9)

Proof. Let us first consider the effect of the cleanup round. Claim 3(b) gives

Pr
[
‖X(τ, 1)‖1 ≤ ‖x‖

2
2/2

∣∣∣ X(τ, 0) = x
]
≤ n−a−1 , (10)

where we used ‖x‖22 = ω (ρ) = ω
(√

log(n)/n
)
, such that the involved δ-term becomes o (1).

Next, fix the configuration x̃ = X(τ, 1) after the cleanup round. Let ỹ := 1 − ‖x̃‖1 and
assume ỹ ≤ 1−‖x‖22/2 (this holds with probability at least 1−n−a−1 due to Equation (10)).
With the claim’s assumption ‖x‖22 = ω (ρ), this implies ỹ ≤ 1−ρ and we can apply Claim 4(b)
to get

Pr
[
Y (τ, t+ 1) ≥ max(ρ2, ỹ3/2)

∣∣∣ X(τ, 1) = x̃
]
≤ n−a−1 (11)

for a decision-accumulation round t + 1 > 1. A union bound over the T − 1 = O
(
logn

)
decision-accumulation rounds, combined with Equation (10) via the law of total probability,
gives

Pr
[
Y (τ, T ) ≥ max

(
ρ2,
(

1− ‖x‖22/2
)(3/2)T−1) ∣∣∣∣ X(τ, 0) = x

]
≤ n−a . (12)

The second term of the maximum is at most exp
(
−(3/2)T−1 · ‖x‖22/2

)
. For this to be

at most some value z > 0, we need T − 1 ≥ log3/2
(
2 ln(1/z)/‖x‖22

)
. Choosing z :=

exp
(
−k · ‖x‖22/‖x‖

2
1
)
and remembering our choice of T (see beginning of Section 3), we

calculate

log3/2

(
2 ln(1/z)
‖x‖22

)
= log3/2

(
2/‖x‖21

)
+ log3/2(k) ≤ 4 + 2 log(k) = T − 1 , (13)

where we used the claim’s assumption ‖x‖1 ≥ 1 − e−1 to bound log3/2
(
2/‖x‖21

)
≤ 4.

Thus, Equation (12) implies that with probability at least 1 − n−a we have Y (τ, T ) ≤
max(ρ2, z) ≤ e−1, where we used ρ2 = o (1) and the Cauchy-Schwarz inequality to get
z = exp(−k · ‖x‖22/‖x‖

2
1) ≤ e−1. The claim follows with this from ‖X(τ + 1, 0)‖1 =

‖X(τ, T )‖1 = 1− Y (τ, T ). J

ICALP 2016
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I Claim 6. Consider a configuration x at the beginning of phase τ . Let a > 0 be a constant.
For an opinion i 6= 1 assume x1 − xi = ω (ρ) and let γi := min(x1/ρ, x1/xi). Then

Pr
[
X1(τ + 1, 0)
Xi(τ + 1, 0) ≤ γ

3/2
i

∣∣∣∣ X(τ, 0) = x

]
≤ n−a . (14)

Proof. For a configuration x′ define the shorthands γi(x′) := x′1/x
′
i and ψi(x′) := x′1 − x′i.

We make an inductive argument over γi during the phase (using ψi as an auxiliary tool for
the induction). Applying Claim 3(a) to both opinions (once the upper and once the lower
bound) yields

Pr
[
X1(τ, 1) ≤ (1− δ1) · x2

1
∣∣ X(τ, 0) = x

]
≤ n−a−1 and (15)

Pr
[
Xi(τ, 1) ≥ max

(
ρ2, (1 + δi) · x2

i

) ∣∣ X(τ, 0) = x
]
≤ n−a−1 , (16)

where δj :=
√

3a · log(n)/n · x−1
j for j ∈ { 1, i }. Let δρ :=

√
3a · ln(n)/n · ρ−1 and δ :=

min(δi, δρ). Note that δ1 ≤ δ, since x1 ≥ xi +ω (ρ) by the claim’s assumption. With this, we
bound the right-hand side in the probability of Equation (15) by (1− δ) · x2

1 and, similarly,
the right-hand side in the probability of Equation (16) by (1 + δ) ·max(ρ2, x2

i ). Using a union
bound and the inequality (1− x)/(1 + x) ≥ (1− 2x) for x ∈ [0, 1], with probability at least
1− 2n−a−1 we have γi(X(τ, 1)) ≥ (1− 2δ) · γ2

i . Similarly, we also have ψi(X(τ, 1)) = ω
(
ρ2).

For xi ≤ ρ, this follows immediately from Equations (15) and (16) (since x2
1 = ω

(
ρ2) and

x2
i = O

(
ρ2)). For xi > ρ, we calculate

ψi(X(τ, 1)) = X1(τ, 1)−Xi(τ, 1) ≥ (1− δ1) · x2
1 − (1 + δi) · x2

i

=
(
x2

1 − x2
i − x1 ·

√
3a · logn

n
− xi ·

√
3a · logn

n

)

= (x1 + xi) ·
(
x1 − xi − 2

√
3a · logn

n

)
= ω (ρ) · (ω (ρ)− o (ρ)) = ω

(
ρ2) .

(17)

Next, fix the configuration x̃ = X(τ, t) and let ỹ := 1 − ‖x̃‖1. Assume ψi(x̃) = ω
(
ρ2)

and x̃i ≥ ρ2. Applying Claim 4(a) to both opinions (once the upper and once the lower
bound) yields

Pr
[
X1(τ, t+ 1) ≤ (1− δ̃′1ỹ) · x̃1 · (1 + ỹ)

∣∣ X(τ, t) = x̃
]
≤ n−a−1 and (18)

Pr
[
Xi(τ, t+ 1) ≥ (1 + δ̃iỹ) · x̃i · (1 + ỹ)

∣∣ X(τ, t) = x̃
]
≤ n−a−1 , (19)

where δ̃′j :=
√

13a · logn/(x̃j ỹ · n) and δ̃j := max(δ̃′j , δ̃′2j ) for j ∈ { 1, i }. Note that δ̃′1 ≤ δ̃i,
since x̃1 ≥ x̃i + ω

(
ρ2) by our assumption. Thus, as before we can combine Equations (18)

and (19) via a union bound to get that with probability at least 1 − 2n−a−1 we have
γi(X(τ, t + 1)) ≥ (1 − 2δ̃iỹ) · γi(x̃) and – analogous to the calculation in Equation (17) –
ψi(X(τ, t+ 1)) = ω

(
ρ2). Now, define the error δ̃ := 2δ̃iỹ and note that

δ̃ = max
(√

13a · logn
x̃in

·
√
ỹ,

13a · logn
x̃in

)
≤
√

13a · logn
x̃in

= O
(

(logn)−3/2
)
, (20)

where we used the assumption x̃i ≥ ρ2 = ω (log(n)/n). In particular, this implies that
(w.h.p.) we have γi(X(τ, t+ 1)) ≥ (1− δ̃) ·γi(x̃), ψi(X(τ, t+ 1)) = ω

(
ρ2), and Xi(τ, t+ 1) ≥

Xi(τ, t) = x̃ ≥ ρ2. Moreover, the error δ̃ is non-increasing in t (since x̃i is non-decreasing in
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t), such that we get the largest error for t = 1, such that we can apply the above recursively.
Applying this via the chain rule to the T −1 = O (logn) decision accumulation rounds yields

Pr
[
γi(X(τ, T )) ≥ (1− δ̃)T−1 · x̃1

max(ρ2, x̃i)

∣∣∣∣ X(τ, 1) = x̃

]
≥ 1−O (logn) · 2n−a−1 . (21)

Since δ̃ = O
(
(logn)−3/2), we can bound the error term (1 − δ̃)T−1 ≥ exp(−(T − 1) ·

2δ̃) ≥ 1 − 2T · δ̃. That is, the error due to the decision-accumulation rounds is 1 − δ′ for
δ′ := 2T · δ̃ = O

(
(logn)−1/2). We now combine our result for the cleanup round and the

decision-accumulation rounds via the law of total probability to get that with probability at
least 1− n−a we have γi(X(τ, T )) ≥ (1− 2δ)(1− δ′) · γ2

i .
Using δ̌ := 2 max(2δ, δ′) = O

(
log(n) ·

√
log(n)/n

)
·min(x−1

i , ρ−1), we get γi(X(τ, T )) ≥
(1− δ̌) ·γ2

i . It merely remains to verify that 1− δ̌ ≥ γ−1/2
i . This is equivalent to δ̌ ≤ 1−γ−1/2

i .
If γi = Ω (1), this holds trivially since δ̌ = o (1). So assume γi = 1 + ε for a suitable ε ∈ (0, 1].
For this range, we have 1− γ−1/2

i ≥ ε/4, such that it is sufficient to show δ̌ ≤ ε/4. By the
claim’s assumption x1−xi = ω (ρ), we get ε = γi− 1 = x1/xi− 1 = ω (ρ) ·x−1

i . On the other
hand, we have δ̌ = O

(
log(n)·

√
log(n)/n

)
·min(x−1

i , ρ−1) ≤ O
(√

(logn)3/n
)
·x−1
i = O (ρ)·x−1

i .
This finishes the proof. J

3.3 Wrapping up the Analysis
We now have the tools to prove the three key lemmas mentioned before (which immediately
imply Theorem 1). We first show that after O

(
log logγ(x̄) n

)
phases, (w.h.p.) all opinions

i ≥ 2 are negligible and the configuration is still alive.

I Lemma 7. Consider an initial configuration x̄ that is alive and for which ψ(x̄) = ω (ρ).
Define τ1 := log3/2 logγ(x̄) n. Then

Pr
[
k⋂
i=2

(
Xi(τ1, 0) ≤ ρ

)
∧ ‖X(τ1, 0)‖1 ≥ 1− e−1

∣∣∣∣∣ X(1, 0) = x̄

]
≥ 1− n−2 .

Proof. Fix a phase τ ∈ N and let x denote the configuration at the beginning of phase τ .
Assume x to be alive, biased, and 1 to be the plurality opinion. Let γ := min(x1/ρ, γ(x)).
By Claim 5, with probability at least 1− n−3 we have ‖X(τ + 1, 0)‖1 ≥ 1− e−1. Combined
with Claim 6 via a union bound over all opinions we get

Pr
[
γ(X(τ + 1, 0)) ≤ γ3/2 ∨ ‖X(τ + 1, 0)‖1 < 1− e−1

∣∣∣ X(τ, 0) = x
]
≤ 2n−3 . (22)

Thus, as long as there is at least one non-negligible opinion i ≥ 2, (w.h.p.) the relative
plurality gap increases exponentially and the configuration stays alive. Moreover, note that
X(τ + 1, 0) being alive and the increased relative gap between x1 and max(ρ, xi) for any
other opinion i implies ψ(X(τ + 1, 0)) = ω (ρ). Thus, we can iterate this argument. To this
end, for any τ ∈ N define the event

Eτ+1 :=
(
γ(X(τ + 1, 0)) > γ3/2

τ

)
∧(‖X(τ+1, 0)‖1 ≥ 1−e−1)∧ψ(X(τ+1, 0)) = ω (ρ) , (23)

where γτ := min(X1(τ, 0)/ρ, γ(X(τ, 0))). Above we proved Pr [Eτ+1 | Eτ ,X(τ, 0) = x] ≥
1 − 2n−3. Using the definition of conditional probability, we get Pr[

⋂
τ≤τ1

Eτ ] ≥
(
1 −

2n−3)τ1 ≥ 1−n−2, where we used (by Assumption (1)) τ1 ≤ 2 log logn
log γ(x̄) ≤ 2 log logn

log(1+ψ(x̄)) ≤
2 log 2 logn

ψ(x̄) = o (logn) . Finally, our choice of τ1 guarantees γ(x̄)(3/2)τ1 = n ≥ ρ−1, such that
all opinions are negligible at the start of phase τ1. J

ICALP 2016
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The next lemma shows that once we are in a configuration that is alive and where all opinions
i ≥ 2 are negligible, (w.h.p.) all these negligible opinions vanish within a constant number of
additional phases.

I Lemma 8. Consider a configuration x that is alive and for which xi ≤ ρ for all i 6= 1.
Define τ2 := τ1 + 3. Then Pr

[∑k
i=2Xi(τ2, 0) = 0 ∧ ‖X(τ2, 0)‖1 ≥ 1− e−1

∣∣∣ X(τ1, 0) = x
]
≥

1− n−2 .

Proof. Applying Claim 6 yields Pr
[⋃

i 6=1

(
X1(τ1+1,0)
Xi(τ1+1,0) ≤ γ

3/2
ρ

) ∣∣∣ X(τ1, 0) = x
]
≤ n−3 , where

γρ = x1/ρ as in Claim 6. Since ‖x‖1 ≥ 1 − e−1 but xi ≤ ρ for all i ≥ 2, we must have
x1 = Ω (1) (or ‖x‖1 ≤ k · ρ + o (1) = o (1) would contradict x being alive). In particular,
we get γρ = Ω (1/ρ). Combining this with Claim 5 via a union bound, with probability
at least 1 − 2n−3 configuration X(τ1 + 1, 0) is alive and Xi(τ1 + 1, 0) < γ

−3/2
ρ = O

(
ρ3/2)

for all i ≥ 2. Now consider the cleanup round of phase τ1 + 1 for an opinion i ≥ 2 with
Xi(τ1 + 1, 0) = O

(
ρ3/2). The probability that even one node of such an opinion remains

decided after the cleanup round is at most Xi(τ1 +1, 0) ·n ·Xi(τ1 +1, 0) = O
(
ρ3n
)
. Repeating

this for a constant number of phases (note that we can use our high probability bounds to
guarantee that the configuration stays alive and the plurality gap high enough) and applying
the geometric distribution, we get that the probability for an opinion i ≥ 2 to survive c
more phases is at most O

(
ρ3cn

)
. The probability that even one of the k − 1 ≤

√
n negligible

opinions survives these c phases is O
(
ρ3c · n3/2) = o

(
n−(c−1)·5/4). The claim’s statement

follows for c = 2. J

Our last lemma shows that once we reached a configuration that is alive and only the plurality
opinion is left, (w.h.p.) all nodes adopt the plurality in O (log logn) phases.

I Lemma 9. For x with
∑
i≥2 xi = 0 and ‖x‖1 = x1 ≥ 1− e−1 let τ3 := τ2 + ln logn+ 1 =

τ2 + O (log logn). Then Pr [X1(τ3, 0) = 1 |X(τ2, 0) = x] ≥ 1− n−2 .

Proof. We will show that the number of undecided nodes decreases exponentially from phase
to phase, until their number is so low that (w.h.p.) they vanish within a constant number of
decision-accumulation rounds. To this end, we use two basic high probability bounds: for
cleanup rounds of a phase τ on any configuration x′ with

∑
i≥2 x

′
i = 0 and ‖x′‖1 = x′1 ≥ 2/3,

we use

Pr
[
Y (τ, 1) ≥ max(ρ2, 2.05 · y′)

∣∣ X(τ, 0) = x′] ≤ n−a . (24)

To see this, first note that2 we have Pr [Y (τ, 1) ≥ (1 + δx′1) · y′ · (1 + x′1) |X(τ, 0) = x′] ≤
n−a for δ′ :=

√
13a · logn/(x′1y′ · n) and δ := max(δ′, δ′2). Equation (24) then follows by

distinguishing whether y′ ≥ ρ2/4 or not.
To show the exponential decrease of the undecided nodes, assume we are given a con-

figuration x′′ with y′′ < max(ρ2, 2.05 · y′) after the cleanup round of a phase τ . We apply
Claim 4(b) to the first t∗ := 5 ≤ T − 1 decision-accumulation rounds of phase τ and use a
union bound to get Pr

[
Y (τ, 1 + t∗) ≥ max

(
ρ2, y′′(3/2)t∗

) ∣∣∣ X(τ, 1) = x′′
]
≤ t∗ · n−a . Since

y′ ≤ e−1, we get (2.05 · y′)(3/2)5 ≤ y′2. Combining these observations with Equation (24)

2 This follows exactly like Claim 4(a) when switching xi for y′ and y for x′
1. If only one opinion is left,

undecided nodes in cleanup rounds increase exactly as decided nodes in decision-accumulation rounds.
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Phase τ :

S U, I D, I

U,A D,A

SD, I

D,A

Phase τ + 1:

U, I D, I

U,A D,A

S U, I

U,A

Figure 1 Illustration how nodes transition through phases. Red (thick) state transitions highlight
slow transitions that ensure that nodes do not get out of sync too much.

we get Pr
[
Y (τ + 1, 0) ≥ max

(
ρ2, y′2

) ∣∣ X(τ, 0) = x′] ≤ 6n−a. In particular, the resulting
configuration is still alive at the start of phase τ + 1, so we can iterate to get

Pr
[
Y (τ2 + t, 0) ≥ max

(
ρ2, y2t

) ∣∣∣ X(τ2, 0) = x
]
≤ 6t · n−a . (25)

Since y ≤ e−1, for t = ln logn we get max
(
ρ2, y2t) = ρ2. Now, consider a configuration x′

with y′ < ρ2. Equation (24) yields Pr
[
Y (τ2 + t, 1) ≥ 2.05ρ2

∣∣ X(τ2 + t, 0) = x′] ≤ n−a. If
Y (τ2 + t, 1) < 2.05ρ2, then the probability that even one undecided node remains undecided
after the first decision-accumulation round is at most Y (τ2+t, 1)n·Y (τ2+t, 1) ≤ 5ρ4n ≤ n−3/4.
Similar to the proof of Lemma 8, we boost this probability using a geometric random variable
by considering the first 4 ≤ T − 1 consecutive decision-accumulation rounds, such that
Pr [Y (τ2 + t, 5) ≥ 0 |X(τ2 + t, 0) = x′] ≤ n−a + n−3. Combined with Equation (25), we get
the desired statement. J

4 Plurality Consensus with log k + 4 Bits

The non-constant memory overhead of RepeatedCleanup is due to the round counter
used to synchronize phases. We now present a protocol that avoids this counter. Each
node u stores its opinion opu ∈ [k], a phase counter pu ∈ N, and a state variable su ∈
{S, (U, I), (D, I), (U,A), (D,A) }. Our description and analysis assume pu to be an arbitrary
integer. While this would result in a non-constant memory overhead, we will prove that
(w.h.p.) |pu−pv| ≤ 1 for any two nodes u, v and any round. Thus, the actual implementation
can restrict pu to { 0, 1, 2 }, such that we get a memory overhead of log(3 · 5) ≤ 4 bits. We
call this protocol ConstOverhead. Our main result is the following theorem:

I Theorem 10. ConstOverhead has a local memory overhead of 4 bits (15 states). If
started on a biased configuration x̄ with relative plurality gap γ := γ(x̄), then (w.h.p.) plurality
consensus is achieved in O

(
logn · log logγ n

)
rounds.

The rest of this section describes the protocol as well as the underlying idea and gives a
sketch of the analysis. More details can be found in the full version.

Protocol Overview. Initially, each node u starts with pu = 1 and su = S. We call u
undecided if su = (U, ·), decided if su = (D, ·), inactive if su = (·, I), and active if su = (·, A).
At the start of a round, each node u samples a random node v and uses v’s data to transition
through its phase. Listing 2 gives the formal protocol description and Figure 1 an illustration.

We start with a high level description of the protocol which we gradually refine. Basically,
ConstOverhead mimics the synchronized behavior of RepeatedCleanup. As in our first
protocol, there are two ways to transition through a phase: if a node u samples another

ICALP 2016
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1 sample a random node v
2 if su = S: {cleanup}
3 if pv ≥ pu or (pv = pu − 1 and sv = (D,A)):
4 if opv = opu: su ← (D, I)
5 else: su ← (U, I)
6 elseif su ∈ { (U, I), (D, I) }: {slow transition}
7 if (pv = pu and v active) or pv > pu or Ber(1/n) = 1:
8 become active
9 elseif su = (U,A): {decision−accumulation}

10 if (pv = pu and v decided) or pv > pu:
11 opu ← opv and become decided
12 elseif su = (D,A): {slow transition }
13 if pv > pu or Ber(1/n) = 1: (pu, su)← (pu + 1, S)

Listing 2 Protocol ConstOverhead as executed by node u in round t ∈ N. This description
assumes pu to be an arbitrary integer.

node v of the same opinion, it keeps its opinion and has to wait for the other nodes to catch
up. While RepeatedCleanup implemented this waiting via a counter, ConstOverhead
uses slow transitions (highlighted red/thick in Figure 1). Otherwise, if u samples a node v
of a different opinion, it becomes undecided and keeps sampling nodes until it finds a new
opinion.

Becoming decided or undecided is modeled by entering the inactive decided state (D, I) or
inactive undecided state (U, I), respectively. This transition from S to one of these inactive
states corresponds to cleanup rounds of RepeatedCleanup. Now, there is a slow transition
to the active decided state (D,A) and active undecided state (U,A). This transition from
inactive to active ensures that (a) decided nodes do not enter the next phase too early
(which could require a large phase counter) and (b) undecided nodes do not sample decided
nodes too early (which could result in a skewed distribution, since the number of decided
nodes might be too small). Once an undecided node u becomes active, it keeps sampling
nodes until it finds a new opinion. This corresponds to decision-accumulation rounds of
RepeatedCleanup. Note that the transition from (D,A) to S (at which the phase counter
is increased) is slow. This ensures that not too many nodes enter the next phase before all
undecided nodes found a new opinion (which could, as before, require a large phase counter).

Some Subtleties. While the above reflects the basic behavior of our protocol, we omitted
some details. Let us make a few important and useful observations:

A node u always checks whether the sampled node v is not too far behind.
Nodes do not explicitly forget their opinion when becoming undecided but simply overwrite
their old opinion when they find a new opinion. In particular, if a node from an earlier
state asks for u’s opinion while u is undecided, u answers with its most recent opinion
(the provision of which does not cost us extra in terms of memory as we simply retain
the information where it was; the undecided state is seperately encoded in the already
accounted-for Θ (1) additional bits).
Slow transitions s → s′ between two states s and s′ basically simulate Pull-rumor
spreading [18]: Nodes in state s′ or later are “informed”, while all other nodes are
“uninformed”. When u samples an informed node (a node in s′ or beyond), it can cross
the slow transition (independent of the sampled opinion). The Bernoulli trial Ber(1/n)
in slow transitions ensures that, eventually, at least one node is “informed”. Without it,
no node could cross such a transition.
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Analysis Overview. Given that ConstOverhead is based on the same principle as Re-
peatedCleanup, namely employing synchronized cleanup rounds to increase the relative
plurality gap exponentially from phase to phase, it is natural to use a similar analysis. The
major difficulty stems from the fact that our synchronization primitive is now probabilistic
(slow transitions) instead of deterministic (counter). In particular, in the case of ConstOver-
head there is no guarantee that nodes wait at slow transitions for other nodes to catch up;
in fact, there will typically be a few nodes that proceed early on over slow transitions. This
might disturb our analysis in two ways: (a) if nodes could proceed arbitrarily far ahead, their
phase counter could become arbitrarily high, resulting in a non-constant memory overhead,
and (b) if a small group of nodes with a non-plurality opinion were “lucky” and proceeded
fast, these nodes might cause more and more latecomers to adopt a non-plurality opinion.

The major tool to address both of these issues are two probabilistic synchronization
results. The first shows that (w.h.p.) there is a period/stage of O (logn) consecutive rounds
such that:

If n− polylog(n) nodes are in state (D,A) of phase τ − 1 or state S of phase τ , and all
remaining nodes are in one of the two inactive states (·, I) of phase τ ,
then at the end of this period, n− polylog(n) nodes are in one of the two inactive states
(·, I) of phase τ , and all remaining nodes are in one of the two active states (·, A) of phase
τ .

The second result shows that (w.h.p.) there is a period/stage of O (logn) consecutive rounds
such that:

If n − polylog(n) nodes are in one of the two inactive states (·, I) of phase τ , and all
remaining nodes are in one of the two active states (·, A) of phase τ ,
then at the end of this period, n − polylog(n) nodes are in state (D,A) of phase τ or
state S of phase τ + 1, and all remaining nodes are in one of the two inactive states (·, I)
of phase τ .

Note that the final condition of the first stage fits perfectly into the assumption of the
second stage and vice versa. We call the first stage the cleanup stage and the second stage the
decision-accumulation stage (in the style of the corresponding round in RepeatedCleanup).
Since these stages are well-sparated, we can prove an analogue of Claim 3 and an analogue of
Claim 4. Equipped with these, the remainder of the proof is basically identical to the proof
of RepeatedCleanup (which was completely based on these concentration bounds).
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