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Abstract. A cactus is a connected graph in which each edge belongs
to at most one cycle. A graph H is a cactus root of a graph G if H is a
cactus and G can be obtained from H by adding an edge between any
two vertices in H that are of distance 2 in H. We show that it is possible
to test in O(n4) time whether an n-vertex graph G has a cactus root.

1 Introduction

Squares and square roots are well-known concepts in graph theory that have
been studied first from a structural perspective [22, 24] but later also from an
algorithmic perspective, as we will discuss. The square G = H2 of a graph
H = (VH , EH) is the graph with vertex set VG = VH , such that any two distinct
vertices u, v ∈ VH are adjacent in G if and only if u and v are of distance at
most 2 in H. A graph H is a square root of G if G = H2. It is a straightforward
exercise to check that there exist graphs with no square root, graphs with a
unique square root as well as graphs with many square roots.

In this paper we consider square roots from an algorithmic point of view. The
corresponding recognition problem, which asks whether a given graph admits a
square root, is called the Square Root problem. Our research is motivated by
the result of Motwani and Sudan [21] who proved in 1994 that Square Root is
NP-complete. Afterwards, Square Root was shown to be polynomial-time solv-
able for various graph classes, such as K4-free graphs (trivial), planar graphs [18],
or more general, any non-trivial minor-closed graph class [23], block graphs [16],
line graphs [19], trivially perfect graphs [20], threshold graphs [20], graphs of
maximum degree 6 [3], 3-degenerate graphs [11] and (Kr, Pt)-free graphs for any
two integers r, t ≥ 1 [11]. It was also shown that Square Root is NP-complete
for chordal graphs [13]. We refer to [3, 4, 10] for a number of parameterized com-
plexity results on Square Root. The computational hardness of Square Root
also led to the following natural research question:

Is it possible to test in polynomial time whether a given graph has a square root
that belongs to some specified graph class H?
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It has been shown that such a polynomial-time algorithm exists if H is the class
of trees [18], proper interval graphs [13], bipartite graphs [12], block graphs [16],
strongly chordal split graphs [17], graphs with girth at least g for any fixed
g ≥ 6 [9], ptolemaic graphs [14], 3-sun-free split graphs [14] (see [15] for an
extension of the latter result to other subclasses of split graphs). In contrast, NP-
completeness of this problem has been shown if H is the class of split graphs [13],
chordal graphs [13], graphs of girth at least 4 [9] or graphs of girth at least 5 [8].

Our Result. We consider the class of all graphs being a cactus as H. A con-
nected graph is a cactus if every edge of it is contained in at most one cycle.
We give an O(n4)-time algorithm that tests whether an n-vertex graph has a
cactus root. Our result is motivated by the nontrivial question whether squares
of planar graphs can be recognized in polynomial time. The known result that
squares of trees, which form a subclass of the class of cactuses, can be recognized
in polynomial time [18] can be seen as a first step in solving this problem. As
every cactus is planar, our result could be seen as a second step in solving it.
On a side note, cactuses are not a subclass of any of the other aforementioned
classes of which the squares can be recognized in polynomial time.

We prove our result by analyzing, in Section 3, the structure of squares of
cactuses. In this way we are able to recognize vertices of the input graph G
that are cut-vertices in any cactus root (if such a square root exists) together
with a set of compulsory edges and a set of forbidden edges of any cactus root
of G. In this way we can reduce, in Section 4, the graph G to a number of
smaller instances such that G has a cactus root if and only if each of these
smaller instances has a cactus root. Showing that each of the smaller instances
has bounded treewidth and observing that we can solve the problem in linear
time on any graph class of bounded treewidth completes the proof.

We observe that in several variants of the Square Root problem where the
aim is to find some type of sparse square root [1, 8, 9, 18], such a square root is
unique or unique up to isomorphism. This uniqueness can be exploited and as
such is very helpful for finding the square root. However, this is not the case for
cactus roots: Fig. 1 shows a graph that has two non-isomorphic cactus roots.

In Section 5 we discuss some directions of future work.

2 Preliminaries

We consider only finite undirected graphs without loops and multiple edges. We
refer to the textbook of Diestel [7] for any undefined graph terminology.

Basic Graph Terminology. We denote the vertex set of a graph G by VG and
the edge set by EG. The subgraph of G induced by a subset U ⊆ VG is denoted
by G[U ]. The graph G − U is the graph obtained from G after removing the
vertices of U . If U = {u}, we also write G − u. Similarly, we denote the graph
obtained from G after deleting a set of edges S (an edge e) by G − S (G − e
respectively).

Let G be a graph. A connected component of G is a maximal connected
subgraph. The distance distG(u, v) between a pair of vertices u and v of G is



Fig. 1. A graph with non-isomorphic square cactus roots. The edges of the cactus roots
are shown by solid lines, whereas the other edges are shown by dashed lines.

the number of edges of a shortest path between them. The diameter diam(G) ofG
is the maximum distance between two vertices of G. The open neighborhood of a
vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG}, and its closed neighborhood
is defined as NG[u] = NG(u) ∪ {u}. Two (adjacent) vertices u, v are said to
be true twins if NG[u] = NG[v]. A vertex v is simplicial if NG[v] is a clique,
that is, if there is an edge between any two vertices of NG[v]. The degree of
a vertex u ∈ VG is defined as dG(u) = |NG(u)|. The maximum degree of G is
∆(G) = max{dG(v) | v ∈ VG}. A vertex of degree 1 is said to be a pendant
vertex. If v is a pendant vertex, then we say that the unique edge incident to u
is a pendant edge.

A vertex u is a cut vertex of a connected graph G with at least two vertices
if G− u is disconnected. An inclusion-maximal induced subgraph of G that has
no cut vertex is called a block. Recall that a connected graph G is a cactus if
each edge of G is contained in at most one cycle. This implies the following
well-known property.

Observation 1 Each block of a cactus with at least two vertices is either a K2

(an edge) or a cycle.

A tree decomposition of a graph G is a pair (T,X) where T is a tree and
X = {Xi | i ∈ VT } is a collection of subsets (called bags) of VG such that the
following three conditions hold:

i)
⋃

i∈VT
Xi = VG,

ii) for each edge xy ∈ EG, x, y ∈ Xi for some i ∈ VT , and
iii) for each x ∈ VG the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ VT }, T ) is maxi∈VT
{|Xi| − 1}. The

treewidth tw(G) of a graph G is the minimum width over all tree decomposi-
tions of G. If T is restricted to be a path, then we say that (X,T ) is a path
decomposition of G.



Problem Definition. Recall that a graph H is called a cactus root of a graph
G if H is a cactus and a square root of G. We consider the following problem:

Cactus Root
Input: a graph G.
Question: is there a cactus H with H2 = G?

We also need to define the following more general variant introduced in [3]
for general square roots:

Cactus Root with Labels
Input: a graph G and sets of edges R,B ⊆ EG.
Question: is there a cactus H with H2 = G, R ⊆ EH and B ∩ EH = ∅?

By choosing R = B = ∅ we see that Cactus Root is indeed a special case of
Cactus Root with Labels.

3 A Number of Structural Observations and Lemmas

In this section we state three observations and prove seven lemmas. We will use
these results, which are all structural, for the design of our O(n4) time algorithm
for Cactus Root presented in Section 4.

The first observation is known and easily follows from the definition of the
treewidth.

Observation 2 For a cactus G, tw(G) ≤ 2.

The second observation gives an upper bound for the treewidth of the square
of a graph; it follows from the well-known fact that we can transform every tree
decomposition (T,X) of a graph G into a tree decomposition of G2 by adding,
to each bag Xi of T , all the neighbors of every vertex from Xi.

Observation 3 For a graph G, tw(G2) ≤ (tw(G) + 1)∆(G)− 1.

Let H be a square root of a graph G. We say that H is a minimal square root
of G if H2 = G but any proper subgraph of H is not a square root of G. Note that
the two cactus roots displayed in Fig. 1 are both minimal. Since any connected
subgraph of a cactus is a cactus, we can make the following observation.

Observation 4 If a graph G has a cactus root, then G has a minimal cactus
root.

A block of a graph G is called a leaf block if it contains at most one cut vertex
of G. This leads to our first lemma.

Lemma 1. If a cactus H is a minimal square root of a graph G, then H has no
leaf block that is a triangle.



Proof. Suppose that a cactus H is a minimal square root ofG such that a triangle
with vertices x, y, z is a leaf block of H. As a leaf block contains at most one cut
vertex of H by definition, we may assume that y and z are not cut vertices of
H. Let H ′ = H − yz. It is straightforward to verify that H ′2 = G, contradicting
the minimality of H. ut

Suppose that u and v are pendant vertices of a square root H of G and that
u and v are adjacent to the same vertex of H − {u, v}. Then, in G, u and v are
simplicial vertices and true twins. We use this observation in the proof of the
following lemma.

Lemma 2. Let H be a minimal cactus root of a graph G. If G contains at least
six simplicial vertices that are pairwise true twins, then at least one of these
vertices is a pendant vertex of H.

Proof. Let H be a minimal cactus root of a graph G that contains a set X of
six simplicial vertices that are pairwise true twins. The vertices of X cannot all
belong to the same block of H, because such a block would be a cycle with at
least six vertices (by Observation 1) and any two vertices of this block could not
be true twins of G. Hence, there is a cut vertex u of H such that there exist two
vertices x, y ∈ X that are in distinct connected components of H −u. Let H ′ be
a connected component of H − u that contains x. If x is not a pendant vertex
of H then, by the minimality of H and Lemma 1, there exists a vertex z ∈ VH′

that is adjacent to x and that is at distance 2 from u in H. Then, as every path
from y to z in H contains u, we find that yz /∈ EG. This is a contradiction since
x and y are true twins of G and xz ∈ EG. We conclude that x is a pendant
vertex of H. ut

The following definition plays a crucial role in our paper.

Definition 1. Let u be a cut vertex of a connected graph H. We say that

(i) u is important if H − u has three vertices that belong to three distinct con-
nected components of H − u and that are each at distance at least 2 from u
in H;

(ii) u is essential if H − u has two vertices that belong to two distinct connected
components of H − u and that are both at distance at least 2 from u in H.

Definition 1(i) immediately implies the following lemma.

Lemma 3. If u is an important cut vertex of a cactus root H of a graph G,
then there are three vertices x, y, z ∈ NG(u) such that x, y and z are at distance
at least 3 from each other in G− u.

Although we have no implication in the opposite direction, we can show the fol-
lowing (which explains why we need the second and weaker part of Definition 1).

Lemma 4. Let G be a graph with a cactus root H. If u ∈ VG has three neighbors
x, y and z in G that are at distance at least 3 from each other in G− u, then u
is an essential cut vertex of H. Moreover, at least two vertices of {x, y, z} belong
to distinct connected components of H − u.



Proof. Assume that G has a cactus root H. Let u ∈ VG be such that u has three
neighbors x, y and z in G that are at distance at least 3 from each other in
G− u. Notice that because x, y and z are at distance at least 3 from each other
in G− u, these vertices are all at distance 2 from u in H.

For contradiction, assume that u is not a cut vertex of H. Then u has at
most two adjacent vertices in H, since H is a cactus (see Observation 1). Then
at least two vertices of {x, y, z} are adjacent to the same vertex of H (which is
one of the two neighbors of u) implying that these two vertices of {x, y, z} are
adjacent in G and thus in G− u; a contradiction. Hence u is a cut vertex of H.

Now suppose that x, y and z are all in the same connected component H ′

of H − u. Since H is a cactus, we find, by Observation 1, that H ′ contains at
most two vertices that are adjacent to u in H. Again, we obtain that at least
two vertices of {x, y, z} are adjacent to the same vertex of H; a contradiction.
Hence, at least two vertices of {x, y, z} belong to distinct connected components
of H − u. Since x, y and z are at distance 2 from u in H, this implies that u is
an essential cut vertex of H. ut

We now show that we can recognize edges of a cactus root that are incident
to an essential cut vertex.

Lemma 5. Let u be an essential cut vertex of a cactus root H of a graph G.
Then for every x ∈ NG(u), it holds that ux /∈ EH if and only if there exists a
vertex y ∈ NG(u) such that x and y are at distance at least 3 in G− u.

Proof. Let u be an essential cut vertex of a cactus root H of a graph G. Let
x ∈ NG(u). First suppose that ux ∈ EH . Let y ∈ NG(u). If uy ∈ EH , then
xy ∈ EG. If uy /∈ EH , then there exist a vertex z ∈ VH and edges uz, zy ∈ EH ,
as y ∈ NG(u). As zy ∈ EH , we find that zy ∈ EG. As ux, uz ∈ EH , we also
deduce that xz ∈ EG. In both cases x and y are at distance at most 2 in G− u.

Now suppose that ux /∈ EH . Then, as x ∈ NG(u), we find that x is at dis-
tance 2 from u in H. Let H ′ be the connected component of H−u containing x.
Since u is an essential cut vertex of H, H − u has another connected compo-
nent H ′′ containing a vertex y at distance 2 from u in H. It remains to observe
that y ∈ NG(u) and x and y are at distance 3 in G− u. ut

The next lemma is used to recognize vertices adjacent to an essential cut
vertex that belong to the same block of a minimal cactus root.

Lemma 6. Let H be a minimal cactus root of a graph G. For any u ∈ VH , two
distinct vertices x, y ∈ NH(u) are in the same block of H if and only if x and y
are in the same connected component of G′ = G− EG[NH(u)] − u.

Proof. Let x, y ∈ NH(u). First suppose that x and y are in distinct blocks of
H. Then x and y are readily seen to be in distinct connected components of G′.
Now suppose that x and y are in the same block C of H. If xy ∈ EG then x and
y are in the same connected component of G′. Suppose xy /∈ EG. Then C is a
cycle by Observation 1. If C is not a triangle, then C has a unique (x, y)-path
in H (avoiding u) of length at least 2. This path is an (x, y)-path in G′ as well.



Hence x and y are in the same connected component of G′. Suppose that C is
a triangle.Then xy ∈ EH . As H is a minimal cactus root, x or y has at least
one neighbor z 6= u in H due to Lemma 1. Assume without loss of generality
that z is a neighbor of x. Then the edges xy, xz ∈ EH imply that zy ∈ EG. We
establish that xzy is an (x, y)-path in G′, that is, also in this case x and y are
in the same connected component of G′. ut

Finally we show how to determine which neighbors in G of an essential cut
vertex u of a cactus root H are in the same connected component of H − u.

Lemma 7. Let H be a minimal cactus root of a graph G. For any u ∈ VH and
x ∈ NH(u), a vertex y ∈ NG(u) is in the same connected component of H−u as
x if and only if either uy ∈ EH and y in the same block of H as x, or uy /∈ EH

and there is a vertex z ∈ NH(u), such that z is in the same block of H as x and
yz ∈ EG.

Proof. Let y ∈ NG(u). First suppose y is in the same connected component of
H−u as x. If uy ∈ EH , then y is in the same block of H as x. Suppose uy /∈ EH .
As uy ∈ EG, there is a vertex z ∈ NH(u) such that zy ∈ EH . Then z is in the
same block of H as x, as x and y are in the same connected component of H−u.

To prove the reverse implication, if uy ∈ EH and x, y are in the same block
of H, then x and y are in the same connected component of H − u. Suppose
that uy /∈ EH and there is a vertex z ∈ NH(u) such that z is in the same block
of H as x and yz ∈ EG. If yz ∈ EH , then y and z are in the same connected
component of H − u. If yz /∈ EH , then there is a v ∈ VG such that yv, vz ∈ EH .
Since uy /∈ EH , we obtain v 6= u. Therefore, y and z are in the same connected
component of H − u. Because y and z are in the same connected component of
H − u and x, y are in the same block of H, we obtain that x, y are in the same
connected component of H − u. ut

4 The Algorithm

In this section we use the structural results from the previous section to obtain
a polynomial-time algorithm for Cactus Root. The main idea is to reduce a
given instance of Cactus Root to a set of smaller instances of Cactus Root
with Labels, each having bounded treewidth. We therefore need the following
two lemmas which show, together with Observations 2 and 3, that we are done
if we manage to achieve this goal. The first lemma is due to Bodlaender.

Lemma 8 ([2]). For any fixed constant k, it is possible to decide in linear time
whether the treewidth of a graph is at most k.

Lemma 9. Cactus Root with Labels can be solved in time f(t) · n for
n-vertex graphs of treewidth at most t.



Proof. It is not difficult to construct a dynamic programming algorithm for the
problem, but for simplicity we give a non-constructive proof based on Cour-
celle’s [5] theorem. By this theorem, it suffices to show that the existence of a
cactus root can be expressed in monadic second-order logic.

Let (G,R,B) be an instance of Cactus Root with Labels. We observe
that the existence of a cactus H such that G = H2, R ⊆ EH and B ∩ EH = ∅
is equivalent to the existence of a subset X ⊆ EG such that the following four
properties hold:

(i) R ⊆ X and B ∩X = ∅;
(ii) for every uv ∈ EG, uv ∈ X or there exists a vertex w such that uw,wv ∈ X;
(iii) for every two distinct edges uw, vw ∈ X, uv ∈ EG;
(iv) for every uv ∈ X and for every two (u, v)-paths P1 and P2 in G such that

EP1 , EP2 ⊆ X \ {uv}, it holds that P1 = P2.

Each of these properties can be expressed in monadic second-order logic. In
particular, with respect to property (iv), expressing that a subgraph P of G is
a (u, v)-path in G can be done in monadic second-order logic in a standard way
(see, for example, [6]). Hence the lemma follows. ut

Now we are ready to prove the main result.

Theorem 1. Cactus Root can be solved in time O(n4) for n-vertex graphs.

Proof. We first give an overview of our algorithm. As we can consider each
connected component separately, we may assume without loss of generality that
the input graph G is connected. First, we use Lemma 2 to recognize sets of
pendant vertices in a (potential) cactus root adjacent to the same vertex that
have size at least 7. For each of these sets, we show that it is safe to delete
some vertices without changing the answer for the considered instance. After
performing this step, we obtain a graph G′ such that in any cactus root of G′

each vertex is adjacent to at most six pendants. Further, we use Lemmas 3 and 4
to construct a set U of essential cut vertices in a (potential) cactus root such
that U contains all important cut vertices. Next, we apply Lemma 5 to recognize
which edges incident to the vertices of U are in any cactus root and which edges
are not included in any cactus root. We label them red and blue respectively and
obtain an instance of Cactus Root with Labels. Now we can use Lemmas 6
and 7 to determine for each u ∈ U , the partition of the set of vertices of G− u
into the sets of vertices of the connected components of H − u, where H is a
cactus root of G′. This allows us to split G′ via the vertices of U as shown in
Fig. 2. Due to the presence of labeled edges incident to the vertices of U , we
obtain an equivalent instance. Finally, we observe that the obtained graph has
bounded treewidth using Observations 2 and 3, so we can use Lemmas 8 and 9
to solve the problem, as we pointed out already.

Now we formally explain the details of our algorithm. Let G be a connected
graph. First, we preprocess G using Lemma 2 to reduce the number of pendant
vertices adjacent to the same vertex in a (potential) cactus root of G. To do so,
we exhaustively apply the following rule.



Fig. 2. Splitting of a graph; the vertices of U are black, the edges of a square root are
shown by solid lines and the other edges are shown by dashed lines.

Pendants reduction. If G has a set X of simplicial true twins of size at least 7,
then delete an arbitrary u ∈ X from G.

The following claim shows that this rule is safe.

Claim A. If G′ = G − u is obtained from G by the application of Pendant
reduction, then G has a cactus root if and only if G′ has a cactus root.

We prove Claim A as follows. Suppose that H is a minimal cactus root of G. By
Lemma 2, H has a pendant vertex u ∈ X. It is easy to verify that H ′ = H − u
is a cactus root of G′. Assume now that H ′ is a minimal cactus root of G′. By
Lemma 2, H has a pendant vertex w ∈ X \{u}, since the vertices of X \{u} are
simplicial true twins of G′ and |X \ {u}| ≥ 6. Let v be the unique neighbor of w
in H ′. We construct H from H ′ by adding u and making it adjacent to v. It is
readily seen that H is a cactus root of G. This completes the proof of Claim A.

For simplicity, we call the graph obtained by exhaustive application of the pen-
dants rule G again. The following property is important for us.

Claim B. Every cactus root of G has at most six pendant vertices adjacent to
the same vertex.

Now we construct an instance of Cactus Root with Labels together with
a set U of cut vertices of a (potential) cactus root.

Labeling. Set U = ∅, R = ∅ and B = ∅. For each u ∈ VG such that there are
three distinct vertices x, y, z ∈ NG(u) that are at distance at least 3 from each
other in G− u do the following:

(i) set U = U ∪ {u},
(ii) set B′ = {uv ∈ EG | ∃w ∈ NG(u) s.t. distG−u(v, w) ≥ 3},
(iii) set R′ = {uv | v ∈ NG(u)} \B′,
(iv) set R = R ∪R′ and B = B ∪B′,
(v) if R ∩B 6= ∅, then return a no-answer and stop.

Lemmas 3–5 immediately imply the following claim.

Claim C. If G has a cactus root, then Labeling does not stop in Step (v), and
if H is a minimal cactus root of G, then R ⊆ EH and B ∩ EH = ∅. Moreover,



every vertex u ∈ U is an essential cut vertex of any cactus root of G, and any
important cut vertex u of any cactus root of G is contained in U .

For each u ∈ U , let R(u) = {v ∈ NG(u) | uv ∈ R} and B(u) = NG(u) \ R(u)
and construct a partition P (u) = {S1, S2, . . . , Sk(u)} of NG(u) as follows.

Partition. For each u ∈ U ,

(i) put x, y ∈ R(u) in the same set of P (u) if and only if x and y are in the
same connected component of G′ = G− EG[R(u)] − u,

(ii) for each x ∈ R(u), put y ∈ B(y) in the same set with x if xy ∈ EG,
(iii) if at least one of the following holds, then return a no-answer and stop:

• P (u) is not a partition of NG(u),
• there is a set of P (u) with at least three vertices of R(u),
• there is a vertex of B(u) that is not in a set of P (u) with a vertex of
R(u),

• there are distinct S, S′ ∈ P (u) such that for some x ∈ S and y ∈ S′,
xy ∈ R,

• there are distinct S, S′ ∈ P (u) such that for some x ∈ S and y ∈ S′,
xy ∈ EG but ux /∈ R or uy /∈ R,

• there are distinct S, S′ ∈ P (u) such that for some x ∈ S and y ∈ S′,
xy /∈ EG but ux ∈ R and uy ∈ R,

• the graph G−EG[R(u)]−u has a path connecting vertices of distinct sets
of P (u).

By Lemmas 6, 7 and Claim C, we have the following.

Claim D. If G has a cactus root, then Partition does not stop in Step (iii),
and if H is a minimal cactus root of G, then

(i) R ⊆ EH and B ∩ EH = ∅,
(ii) every important cut vertex u of H is in U ,

(iii) for any u ∈ U , x, y ∈ NG(u) are in the same connected component of H − u
if and only if x and y are in the same set of P (u).

Now we split the instance (G,R,B) of Cactus Root with Labels into
several instances of the problem.

Splitting. For each u ∈ U , let P (u) = {S1, . . . , Sk} and do the following:

(i) delete u and introduce k new vertices u1, . . . , uk,
(ii) for each i ∈ {1, . . . , k}, make ui adjacent to all vertices of Si,
(iii) for each i ∈ {1, . . . , k} and v ∈ Si, if uv ∈ R, then replace uv by uiv in R,

and if uv ∈ B, then replace uv by uiv in B,
(iv) for each i, j ∈ {1, . . . , k}, i 6= j, delete the edges xy with x ∈ Si and y ∈ Sj ,
(v) for each i ∈ {1, . . . , k} and v ∈ Si, update P (v) by replacing v by vi in the

sets and deleting the vertices of NG(u) \ Si from the sets.



Let G1, . . . , Gr be the connected components of the obtained graph. For
i ∈ {1, . . . , r}, let Ri = R ∩ EGi

and Bi = B ∩ EGi
. By Claims B and D, we

establish the following crucial claim.

Claim E. The input graph G has a cactus root if and only if (Gi, Ri, Bi) is a
yes-instance of Cactus Root with Labels for each i ∈ {1, . . . , r}. Moreover,
if (Gi, Ri, Bi) is a yes-instance, then Gi has a cactus root H with Ri ⊆ EH and
Bi ∩EH = ∅ such that every cut vertex of H belongs to at most eight blocks and
to at most two blocks not being a K2.

By Claim E, if G has a cactus root, then ∆(Gi) ≤ 10 for i ∈ {1, . . . , k}. By
Observations 2 and 3, we obtain that tw(Gi) ≤ 29 in this case. We use Lemma 8
to check whether this holds for each i ∈ {1, . . . , r}. If the algorithm reports that
tw(Gi) ≥ 30 for some i ∈ {1, . . . , r}, then we return a no-answer and stop.
Otherwise, we solve Cactus Root with Labels for each instance (Gi, Ri, Bi)
using Lemma 9 for i ∈ {1, . . . , r}.

It remains to evaluate the running time of our algorithm. We can find all
simplicial vertices and sort them into the equivalence classes with the true twin
relation in time O(n3). This implies that the exhaustive application of the Pen-
dant reduction rule can be done in time O(n3). For each vertex u ∈ VG, we
can compute the distances between the vertices of G− u in time O(n3). Hence,
the Labeling step can be done in time O(n4). For each u ∈ U the sets R(u)
and B(u) can be constructed in time O(n2). For each u ∈ U , we can construct
G′ = G − EG[R(u)] and find the connected components of G′ in time O(n2). It
follows, that the Partition step can be done in time O(n3). The Splitting step
takes O(n3) time. The algorithm in Lemma 8 runs in O(n) time. We conclude
that the total running time is O(n4). ut

5 Conclusions

We proved that the problem of testing whether a graph has a cactus root is
O(n4)-time solvable. In fact, our algorithm can be modified to find a cactus root
in the same time (if it exists).

We recall that every cactus is planar and that the problem of settling the
complexity of recognizing squares of planar graphs is open. We also recall that
a cactus is a connected graph, in which each block is either a cycle or an edge.
This leads to the following (known) generalization: a cactus block graph is a
connected graph, in which each block is a cycle or a complete graph. Can we
decide in polynomial time whether a given graph has a square root that is a
cactus block graph? In order to answer this question, we need new arguments
as our current proof for cactus roots does not carry over.
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