

A Semi-automatic Approach to Identifying and Unifying Ambiguously

Encoded Arabic-Based Characters

Sardar Jaf

School of Engineering and Computer Sciences

The University of Durham

Durham, United Kingdom

sardar.jaf@durham.ac.uk

Abstract—In this study, we outline a potential problem

in normalising texts that are based on a modified version

of the Arabic alphabet. One of the main resources

available for processing resource-scarce languages is

raw text collected from the Internet. Many less-

resourced languages, such as Kurdish, Farsi, Urdu,

Pashtu, etc., use a modified version of the Arabic writing

system. Many characters in harvested data from the

Internet may have exactly the same form but encoded

with different Unicode values (ambiguous characters).

The existence of ambiguous characters in words leads to

word duplication, thus it is important to identify and

unify ambiguous characters during the normalisation

stage. Here, we demonstrate cases related to ambiguous

Kurdish and Farsi characters and propose a semi-

automatic approach to identifying and unifying them.

Keywords-Kurdish; Sorani; Unicode; lexicography

I. INTRODUCTION

The main challenges in processing less-resourced
languages is the lack of natural language processing
(NLP) tools and resources.

Large numbers of languages, such as Kurdish,
Farsi, Urdu, Pasthtu, etc., use a modified version of the
Arabic writing system. We have observed that some
characters of these languages have exactly the same
form but are encoded differently. The problem with
the inconsistent encoding of some characters
(ambiguous characters) is that they are treated as
different characters. This makes large numbers of
similar words, which are similar in meaning and form,
to be treated as completely different words. In this
paper, we attempt to shed light on ambiguous
characters, which results in generating multiple
instances of words of similar forms but different
encodings. Moreover, we will show an approach for
identifying ambiguous characters and correcting them
by appropriately unifying their Unicode values. In this
work, we will mainly focus on Kurdish, but we will
show the applicability of our work to other related
languages such as Farsi.

The rest of the paper is organised as follows: in
section II we highlight some of the general challenges
in processing Kurdish. In section III we describe our
dataset and in sections IV and V we describe our
approach to identifying and unifying Unicode values
of characters of equal form and pronunciation. In
section VI we briefly describe the applicability of our

approach to processing other related languages and we
will conclude our paper in section VII.

II. THE CHALLENGES OF PROCESSING KURDISH

There are several dialects in Kurdish, such as
Sorani, Kurmanji, Zazaki, Hawrami, Gorani, etc.
However, the main two dialects are Sorani and
Kurmanji. These two dialects differ in many ways, one
of the main differences is the writing style. Sorani uses
a modified version of Arabic while Kurmanji uses a
modified version of Latin [2, 3, 4, 5, 7].

The use of a modified version of the Arabic
alphabet poses an interesting challenge in processing
Sorani text, which is identifying multiple Unicode
values that are assigned to Arabic-based letters that
have the same form and to appropriately unifying
them. From Table I we can see that the letter {ە}
constitutes one letter (H, h, E, e) which is pronounced
as either /ha/ or /a/, depending on its location in a
word. If it appears at the start of a word it forms {هـ}
and if it appears in the middle it forms {ـهـ}. In both
cases, it is pronounced as /ha/ but it may be assigned
different Unicode values. If it appears at the end of a
word it forms {ـه}, if it appears in isolation it forms {ە}
but in both cases it constitutes /E/ or /e/. In addition to
these two cases, in most electronic texts, it may appear
as a zero-width non-joiner (zwnj) character, which
prevents joining a character from its follower [2]. For
example, in the word {بارههڵگرەکه} (barHelgreke, “The
goods carrier”) it constitutes /H/ in the fourth position,
it constitutes /e/ in the fifth position, and it constitutes
a zwnj character in position nine in the word. For the
same letter (i.e., the letter {ە}), different Unicode
values are often used. For example, when it appeared
in position four in the word its Unicode value was
u06BE, but in some cases it is assigned u0647. When
it appeared in position five and nine, its Unicode value
is either u0647, u06BE, or u06D5. This inconsistent
encoding makes large numbers of words lose their
unique forms. Table II contains examples of different
words that have the same form but different Unicode
values. This kind of ambiguity has also been observed
in Urdu [1, 6]. The problem that we are going to
address is related to identifying ambiguous characters
(i.e., characters that have the same form but different
Unicode values) and unify their Unicode values. The
solution to this problem is essential during the
normalisation process of Sorani text because ignoring

this problem will lead to incorrectly treating large
numbers of words as unique words.

The difficulty in processing Kurdish is further
aggravated by the lack of gold-standard dataset.
Although there are several dictionaries available for
Kurdish annotated corpus but large datasets are still
unavailable [5]. It is possible to use the large data that
is available on the Internet for developing a corpus of
raw text. However, due to the existence of ambiguous
characters in the harvested data from the Internet, this
problem should be solved during normalisation stage.

III. DATASET COLLECTION

Fortunately, there is a large number of Kurdish news
websites, where we can harvest data. We have
collected various data from several websites. The
collected dataset contains about 1,000,000 words,
which is large enough to capture a large variety of
word forms.

In the first step of the process we collected over
21,000 news articles from a large number of websites.
Then, we parsed each web page and removed various
unwanted data, such as mark-up text, numbers,
punctuations, foreign words, etc. A small challenge in
this step is that although it is easy to identify Latin-
based scripts in the pages, detecting Arabic or Farsi
words is hard because they share the same writing
system as Kurdish Sorani. A simple way to tackle this
issue is to extract all unique words from the data with
a specific frequency threshold. We have intentionally
removed words that have occurred less than 0.0001%
in the data. These words were either Arabic or Farsi
words, which are occasionally used in Kurdish news
articles; words with incorrect spelling; and words that
are accidentally merged with some other words during
the parsing process of the web pages.

IV. IDENTIFYING UNIQUE CHARACTERS

Once a set of clean text is retrieved we processed
all the data and generated a lexicon, which contained
unique words, and manually inspected the top 1000
most frequently occurred words. At this stage, a large
number of words were treated as unique words even
though they had similar forms and meanings with
some other words. For example, as we have mentioned
previously, some Arabic-based characters are
ambiguous, these ambiguous characters may appear in
many words that are exactly the same in terms of
meaning and form. Table II contains examples of
some of the most ambiguously occurring words in the
lexicon. Also, we can note from Table II the frequency
of most ambiguous words is high.

The identification of ambiguous characters in
words is performed by manually inspecting the
encoding values of characters in many frequently
occurring words. Using the identification of unique
words is time consuming and does not give an
accurate account of the level of character ambiguity in
the data and it is neither efficient nor easy to locate
ambiguous characters in large numbers of words.

An efficiency improvement can be achieved by
processing every character in every word in the
lexicon and record all the unique characters along with
their Unicode values. Then manually inspect the
encoding of the recorded characters. However, the
inefficiency aspect of this approach is it requires
processing very large numbers of characters. For
example, our dataset contained 1,983,579 words and
the average word length was 6 characters, which
yielded approximately 12 million characters to
process. The time taken to process all the words was
56 seconds. This approach can be improved using a
very simple technique. That is, recording all the
unique words in a second lexicon. Then, process the
characters of the recorded unique words. The total
number of unique words was dramatically reduced to
42,987 words and the processing time was reduced to
26 seconds, which includes the time for creating the
second lexicon.

TABLE I. AMBIGUOUS ARABIC-BASE CHARACTERS

TABLE II. AMBIGUOUS WORDS WITH THEIR FREQUENCY AND

UNICODE VALUES

Unicode value Latin-based

letters

Arabic-based

letters

Unicode

value

u0048 H
 ه

u06BE
u06D5

or

u0647 u0068 h

u0049 I

-

-
u0069 i

u0055 U

 و

u0648

u0075 u

u0057 W
 و

u0648

u0077 w

u0059 Y

 ی

u06CC
u0079 y

Total words Frequency Unicode value

 125881 u0643 u06D5 (”ke, “as) كه

 92812 u0643 u0647 (”ke, “as) كه

 39747 u06A9 u0647 (”ke, “as) که

 11312 u0643 u06D5 (”ke, “as) كه

 ,kurdistan) كوردستان

“Kurdistan”)

16081 u0643 u0648 u0631 u062F

u0633 u062A u0627 0646

 ,kurdistan) کوردستان
“Kurdistan”)

13196 u06A9 u0648 u0631 u062F
u0633 u062A u0627 0646

 4252 u0626 u06CE u0645 u0647 (”aeme, “us) ئێمه

 4050 u0626 u06CE u0645 u06D5 (”aeme, “us) ئێمه

 hyz, “its) هێزی
power”)

2472 u0647 u06CE u0632 u06CC

1. read words from a file and add them to a lexicon (L).
2. count the frequency of each word in L and create a
create a new lexicon containing words and their
frequency (LF).
 2.1. optional: sort content of LF in ascending order.
 2.2. for each word in LF, write the word and its
Unicode values to a file for manual inspection.
 2.3. retrieve the characters of each word in LF.
 2.3.1. add the characters to a list (CL) if it is not in
CL.

 2.3.2. write the character and their Unicode values
to file if it is not in CL.
3. Inspect the characters that were written to the file in
step 2.3.2 and identify n duplicate characters, where n
is a predetermine number with the same form but with
different Unicode values.

 Once we identified all the unique characters and
their Unicode, we then identified three ambiguous
characters. Those characters are shown in Table III.
The simple steps for finding the Unicode values of
ambiguous characters are given in Fig. 1, which
creates a list of all unique characters from all words
for manual inspection.

V. UNIFYING DIFFERENT UNICODE VALUES OF

SIMILAR CHARACTERS

Once we identified the ambiguous characters, we
generated a mapping dictionary that mapped the
Unicode value of ambiguous characters to a different
Unicode value, which is shown in Table IV. The
content of the mapping dictionary is simple and can be
formatted in any style.

Generally, if we find a specific character with a
specific Unicode value in a word then we replace it
with a given (correct) Unicode value. However, as it
can be noted from Table IV the Unicode value u0647,
which represents {ه} (a, “a”), (h, “ha”), or zwnj should
remain as it is or be mapped to u06BE or u06D5. The
location in which the character appears dictates its
form. If the character was followed by a character with
the same Unicode value then it is changed to u06BE
Unicode. Otherwise, there are exceptional cases for
correctly mapping u0647 to u06BE or u06D5 Unicode
values: (i) if the character is final then we replace it
with u06D5. (ii) If a specific vowel (with the Unicode
value u06CE, u06CC, u0627, or u06c6) follows the
character then it should be mapped to u06D5. (iii) If
the previous two cases do not apply then it should be
mapped to u06BE.

The mapping dictionary, as shown in Fig. 2, that
we have compiled contains one entry per line. Each
entry contains a list of comma separated Unicode
values (parameters), where the first parameter
represents the Unicode value of an ambiguous
character in a word and the second parameter is a list
representing the Unicode value(s) that is used for
replacing the ambiguous character. In order to deal
with exceptional cases for handling u0647 Unicode
value, the format of the dictionary entry for characters
with u0647 Unicode value is the following: the first
parameter is u0647 Unicode value; the first value in
the list is the value that replaces u0647 if the character
with u0647 Unicode value is a final character; the
third parameter in the entry is a list of n number of
Unicode values, where n is a positive number; the last
parameter is the value that is used for replacing the
Unicode value of the character with u0647 value if and
only if the immediate following character is similar to
the Unicode values in the list of n Unicode values.

From the list of characters that we have identified
by following the steps in Fig. 1 we have manually
inspected the characters that were of the same form
but with different Unicode values. This way we have
identified the characters that had the same form but
different Unicode values, which resulted in duplicating
a large number of words. Once we have identified all
the ambiguous characters, we have compiled a

mapping dictionary for replacing the Unicode values,
which is shown in Table IV. The evaluation of the
solution is conducted by extracting all the unique
characters and their Unicode values from the lexicon
and manually inspecting them to identify a character
that is similar in form and pronunciation to one or
more character(s) but with different Unicode value.
The absence of an ambiguous character indicated that
all characters in the lexicon were encoded correctly. It
should be noted that the number of alphabet of any
languages is not large and manual inspection of their
Unicode values is not time consuming.

Figure 1. Outline of steps for identifying different Unicode values

of characters of the same form

TABLE III. AMBIGUOUS CHARACTERS

Characters Frequency Unicode

values

 pronounced as /ha/, /a/ and used as) ه

zero-width non-joiner character)

2361391 u06D5

1961352 u0647

51442 u06BE

 (/pronounced as /ye) ی

2481987 u06CC

69363 u0649

 (/pronounced as /k) ک

585728 u06A9

537621 u0643

TABLE IV. MAPPING BETWEEN UNICODE VALUES

Unicode value Mapped Unicode value

u0647 u06BE or u06D5

u0649 u06CC

u0643 u06A9

VI. APPLYING OUR APPROACH TO RELATED

LANGUAGES

We applied the same approach to Farsi, which is
closely related to Kurdish. From our experiment on
Farsi we identified that in Farsi the number of
ambiguous characters are less than those in Kurdish.
For example, from Table V we can see that the final

u'\u0647': [u'\u06be', [u'\u06ce', u'\u06d5', u'\u06cc'
u'\u0627' u'\u06c6'], u'\u06d5']
u'\u0643': [u'\u06a9']
u'\u0649': [u'\u06cc']
u'\u064a': [u'\u06cc']

and medial characters {ي} (y, “y”) appear with
different Unicode values. It is noticeable that the final
 has u06CC assignment more frequently (”y, “y) {ي}
than u06BE while a medial {ـيـ} (y, “y”) is assigned
u06CC Unicode value more than u06BE. Unlike in
Kurdish, the character {ه} (a, “a”) have not been
assigned the Unicode value u06BE. The u0647
Unicode value is assigned to the initial, medial and
final character {ه} (a, “a”) more than u06D5 Unicode
value. The third ambiguous character in Farsi was the
character {ک} (k, “K”) which was often assigned the
Unicode values u06A9 instead of u0643.

As shown in Table V those ambiguous characters
neither change the semantic nor the form of the words
but some NLP tools (such as text normalisers) treat
words that contain ambiguous characters as different
words, because of the differences in the Unicode
values of some of their characters. In conclusion, after
applying the same technique to related languages we
could identify ambiguous characters and semi-
automatically correct them.

VII. CONCLUSION

The normalisation of text often involves removing
unwanted texts (noise) such as foreign words,
numbers, punctuations, etc. This stage of text
processing is one of the main stages in processing less-
resourced languages because in most cases raw data is
collected from the Internet, which may contain various
noise. In addition to noise removal processing of
online text we have identified an interesting case in
processing Kurdish, and other related languages such
as Farsi, where some characters of similar form and
pronunciation are assigned different Unicode values
(ambiguous characters). We anticipate that the reason
is that for languages that use a modified version of
Arabic script for writing may interchangeably use
different Unicode values, which could be the Unicode
value of the original Arabic character or a specific
Unicode value for the modified character. Another
possibility is that it may be due to the type of
Operating Systems or the data entry devices that are
used in producing the web pages, where they have
different Unicode values for characters with similar
forms.

Unifying ambiguous characters is an important
step in the text normalisation stage because ambiguous
characters, which are used for constructing words, lead
to duplication of words. In many inductive NLP
processing tasks it is not plausible to induce
information from noisy data. Therefore, unifying
Unicode values of ambiguous characters is an essential
step towards removing noise.

In this paper, we have presented a semi-automatic
approach to unifying Unicode values of Kurdish text.
Furthermore, we have applied the same approach to
Farsi. Our experiment on Farsi shows that our
approach could be applicable to other related
languages, such as Urdu and Pashtu, which we aim to
apply it to them in the near future.

Figure 2. Entries in the mapping-character file

TABLE V. FARSI AMBIGUOUS WORDS

Words Frequency Unicode value

 u0622 u0626 u06CC u0646 118 آئين

 u0622 u0626 u06BE u0646 10 آئين

 u0622 u0632 u0627 u062F u06CC 112 آزادى

 u0622 u0632 u0627 u062F u0649 11 آزادى

 u062C u0627 u0645 u0639 u0647 197 جامعه

 u062C u0627 u0645 u0639 u06D5 22 جامعه

 u062D u0627 u06A9 u0645 183 حاكم

 u062D u0627 u0643 u0645 14 حاكم

REFERENCES

[1] U. I. Bajwa, Z. Rehman, and W. Anwar, “Challenges

in Urdu text tokenization and sentence boundary

disambiguation,” Proc. 2nd Workshop on Southeast

Asian Natural Language Processing, Chiang May,

Thailand, 2011, pp. 40-45.

[2] K. S. Gautier, “Building a Kurdish language corpus:

an overview of the technical problems,” Proc. 6th

International Conference and Exhibition on

Multilingual Computing (ICEMCO98), Cambridge,

UK, April, 2012.

[3] D. N. MacKenzie, Kurdish dialect studies, volume 1

of London Oriental Series. Oxford University Press,

1961.

[4] E. N. McCarus, A Kurdish grammar descriptive

analysis of the Kurdish of Sulaimaniya Iraq. PhD

thesis. New York, USA: American Council of

Learned Societies. 1958.

[5] G. B. Walther, and B. Sagot, “Developing a large-

scale lexicon for a less-resourced language: general

methodology and preliminary experiments on Sorani

Kurdish,” Proc. 7th SaLTMiL Workshop on Creation

and use of basic lexical resources for less-resourced

languages (LREC 2010 Workshop), Valetta, Malta,

2010.

[6] M. Shamsfard, “Challenges and open problems in

Persian text processing,” Proc. 5th Language and

Technology Conference (LTC 2011), Poland, 2011,

pp. 65-69.

[7] W. M. Thackston, Sorani Kurdish: A Reference

Grammar with Selected Readings. Oxford University

Press, UK. 1960.

