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Abstract—Inspired by computational complexity results for the
quantified constraint satisfaction problem, we study the clones
of idempotent polymorphisms of certain digraph classes. Our
first results are two algebraic dichotomy, even “gap”, theorems.
Building on and extending [1], we prove that partially reflexive
paths bequeath a set of idempotent polymorphisms whose associ-
ated clone algebra has: either the polynomially generated powers
property (PGP); or the exponentially generated powers property
(EGP). Similarly, we build on [2] to prove that semicomplete
digraphs have the same property.

These gap theorems are further motivated by new evidence
that PGP could be the algebraic explanation that a QCSP is in
NP even for unbounded alternation. Along the way we effect also
a study of a concrete form of PGP known as collapsibility, tying
together the algebraic and structural threads from [3], and show
that collapsibility is equivalent to its Π2-restriction. We also give
a decision procedure for k-collapsibility from a singleton source
of a finite structure (a form of collapsibility which covers all
known examples of PGP for finite structures).

Finally, we present a new QCSP trichotomy result, for partially
reflexive paths with constants. Without constants it is known
these QCSPs are either in NL or Pspace-complete [1], but we
prove that with constants they attain the three complexities NL,
NP-complete and Pspace-complete.

Index Terms—Quantified Constraints, Algebra, Computational
Complexity, Polynomially Generated Powers.

I. INTRODUCTION

A great literature of work exists from the past twenty years
on applications of universal algebra in the computational
complexity of constraint satisfaction problems (CSPs) and
a number of celebrated results have been obtained through this
method. Each CSP is parameterised by a finite structure B and
asks whether an input sentence ϕ holds on B, where ϕ is a
primitive positive sentence, that is where only ∃ and ∧ may
be used. For almost every class of model checking problem
induced by the presence or absence of first-order quantifiers
and connectors, we can give a complexity classification [4]:
the two outstanding classes are CSPs and its popular extension
quantified CSPs (QCSPs) for positive Horn sentences – where
∀ is also present – which is used in Artificial Intelligence to
model non-monotone reasoning or uncertainty.

The outstanding conjecture in the area is that all finite-
domain CSPs are either in P or are NP-complete, something
surprising given these CSPs appear to form a large microcosm
of NP, and NP itself is unlikely to have this dichotomy property.

This Feder-Vardi conjecture [5], given more concretely in the
algebraic language in [6], remains unsettled, but is now known
for large classes of structures.

The very useful role of algebra in unlocking the computa-
tional complexities of QCSP has also been widely documented
(see [7], [8]). Manuel Bodirsky has described the CSP as
a Königsproblem (king among problems) because it is an
important computational problem living at the interface of
logic, combinatorics and algebra. The QCSP is a somewhat less
important problem, with weaker links outside of the logical,
where it is formulated. In particular, its combinatorics are
unwieldy – for example a totally satisfactory notion of a core
remains elusive [9] – and its algebra is complicated by the
fact that the class of surjective polymorphisms is not closed
under composition. This perhaps explains why the complexity
of QCSPs is classified for rather modest classes of structures,
for which only three complexities are observed P, NP-complete
and Pspace-complete.

In the case in which only idempotent polymorphisms are
considered – corresponding relationally to all constants being
definable in B – some better behaviour is restored and it is
mostly in this arena that we shall place ourselves. What seems
to be a unifying explanation for a complexity in NP is that
it suffices to check an instance ϕ with m universal variables
for a small fraction (polynomial in m and B) of all possible
choices for these m universal variables. This property can be
viewed as a special form of quantifier relativisation in the sense
that it suffices to check an instance against restricted Skolem
functions. This fits in well with the classification for model
checking for other fragments of FO where relativisation also
characterises the complexity [4].

In Hubie Chen’s [10], a new traverse between algebra
and QCSP was discovered. Chen’s previous work in QCSP
tractability largely involved the special notion of collapsibility
[3], but in [10] this was extended to a version of the
polynomially generated powers (PGP) property. This latter
ties in with a rich literature of dichotomy (“gap”) theorems
on growth rate of generating sets of direct powers of algebras.
The PGP properly generalises collapsibility and reveals a link
to universal algebra that we explore in this paper and we might
argue makes QCSP at least a Fürstenproblem (prince among
problems).



The initial algebraic phenomenon of our study is the growth
rate of generating sets for direct powers of an algebra. That
is, for an algebra A we associate a function fA : N → N,
giving the cardinality of the minimal generating sets of the
sequence A,A2,A3, . . . as f(1), f(2), f(3), . . ., respectively.
We may say A has the g-generating property (g-GP for short)
if f(m) ≤ g(m) for all m. The question then arises as to the
growth rate of f and specifically regarding the behaviours
constant, logarithmic, linear, polynomial and exponential.
Wiegold proved in [11] that if A is a finite semigroup then fA is
either linear or exponential, with the former prevailing precisely
when A is a monoid. This dichotomy classification may be
seen as a gap theorem because no growth rates intermediate
between linear and exponential may occur. We say A enjoys
the polynomially generated powers property (PGP) if there
exists a polynomial p so that fA = O(p) and the exponentially
generated powers property (EGP) if there exists a constant b
so that fA = Ω(g) where g(i) = bi.

The PGP implies that the bounded alternation QCSP is
in NP rather than the corresponding level of the polynomial
hierarchy one expects in general, provided that generators may
be generated effectively, effective PGP in Chen’s parlance. This
should be clear for Π2-sentences (quantifier prefix of the form
∀?∃?) as it suffices to solve one CSP per generator, and by
induction this holds for bounded alternation. Moreover, for
all known examples it also holds for unbounded alternation.
In particular, for known examples of finite structures, this
drop is witnessed by an operation which characterises a type
of collapsibility (from the so-called singleton source), which
we shall call a Hubie operation. When this is present as a
polymorphism, it implies a drop to NP also in the unbounded
case as it may be composed in a more involved fashion suitable
for working with Skolem functions, what Chen terms reactive
composition.

Hubie Chen proved the first PGP-EGP gap theorem for
polymorphism clones in [10]. Namely, let id-Pol(B)1 be the
clone of idempotent polymorphisms of a 3-element structure B
such that id-Pol(B) does not contain a G-set as a factor2. Then
either id-Pol(B) has PGP or it has EGP. Indeed, this result
extended the previous observation of Chen that when id-Pol(B)
is the clone of idempotent polymorphisms of a 2-element
structure B, then either id-Pol(B) has PGP or it has EGP. Now,
k-Π2-collapsibility (whose naming will be explained in the
sequel) can be seen as a special form of the PGP in which
the generating set for each Am may be taken to be the set
of m-tuples which contain the repetition of a single element
from a so-called source set at least m− k times, the other at
most k positions being arbitrary. k-collapsibility can be seen
similarly but manifests slightly differently through the already
alluded to reactive composition of this set of m-tuples. In
the 2-element case, the PGP manifests in the special form of
1-collapsibility, but already in the 3-element case there are

1We will view this as at once a set of polymorphisms on domain B and an
algebra of operations over that domain.

2This is a technical assumption that we will not define. When there is a
G-set as a factor we know the corresponding QCSP is NP-hard [6].

algebras with the PGP that are not k-collapsible for any k,
though no such example is known for a finite structure (i.e.
with finitely many relations).

When a structure H expanded by all constants is so that
QCSP(H) is Pspace-complete, then (under the complexity-
theoretic assumption that NP is different from Pspace) we
can assume that id-Pol(H) does not have effective PGP [8].
Naturally, these are the places to look to prove EGP results.
The QCSP complexity classification for 3-element structures
is still open, even in the idempotent case, but this paper
builds upon Chen’s [10] motivated by the extant complexity
classifications for the QCSP for partially reflexive trees in [1]
and semicomplete digraphs in [2]. Thus, the complexity results
lead the algebra, in contrast to the typical modus operandi.

PRINCIPAL CONTRIBUTIONS

Complexity to algebra: new PGP-EGP gaps.

For partially reflexive paths we recall the notion of being
quasi-loop-connected from [1], and prove the following alge-
braic gap.

Theorem 1. Let H be a partially reflexive path. If H is
quasi-loop-connected, then id-Pol(H) has the PGP. Otherwise,
id-Pol(H) has the EGP.

Along the way, we also characterise precisely which partially
reflexive paths have only essentially unary polymorphisms.

Building upon and refining [2], we derive a second gap for
semicomplete digraphs.

Theorem 2. Let H be a semicomplete digraph. If H has at
most one cycle or both a source and a sink, then id-Pol(H)
has the PGP. Otherwise, id-Pol(H) has the EGP.

The PGP: collapsibility and beyond.

We prove that when we have a sufficiently uniform form of
effective PGP, based on the notion of projective sequences of
adversaries (an adversary is a set of tuples restricting the tuple
of universal variables), then we also have a drop in complexity
to NP even in the unbounded case. For such sequences of
adversaries, we can show that they are generating iff they are
generating via reactive composition. Our proof relies on and
adapts the notion of a canonical Π2-sentence from [12]. The
statement of this result, Theorem 36, is somewhat technical
so we state here its concrete application to the situation of
collapsibility.

Corollary 39 (Part of). Let A be a structure, ∅ ( B ⊆ A and
p > 0. The following are equivalent.

(i) A is p-collapsible from source B.
(ii) A is Π2-p-collapsible from source B.

(iii) For every m, the structure A satisfies a canonical Π2-
sentence with m · |A| universal variables.

In the case of a singleton source, which covers all known
examples of collapsibility for finite structures (see also Table I
which recalls the polymorphisms that are known to imply
collapsibility), then we can refine this further as follows.



Theorem 44 (Part of). (p-Collapsibility from a singleton
source). Let p ≥ 1 and x be a constant in A. The following
are equivalent:

(i) A is p-collapsible from {x}.
(ii) A is Π2-p-collapsible from {x}.

(iii) A models a single canonical Π2-sentence which implies
that A admits a Hubie operation as a polymorphism.

This means that we may decide p-collapsibility from a
singleton source (the parameter p > 0 being part of the input).

Back to complexity.

As we have argued already, a uniform form of PGP like p-
collapsibility might explain when a QCSP is in NP. It is natural
in this context to allow constants in the structure not only
because it makes things well behaved in the algebra, but also
because constants are needed for the natural algorithm which
consists in solving a polynomial number of CSP instances
induced by replacing all but p variables by a constant. Finally,
we apply our earlier results: that collapsibility coincides with
its Π2-restriction and that partially reflexive paths that are not
quasi-loop-connected remain Π2-collapsible in the idempotent
case. This morphs the first dichotomy theorem of [1] (cf.
Theorem 49.) to become a new trichotomy theorem. Specifically,
the NL cases in the absence of constants split to become NL
and NP-complete cases in the presence of constants.

Theorem 3. Let H be a partially reflexive path expanded with
all constants.

(i) If H is loop-connected, then QCSP(H) is in NL.
(ii) Else, if H is quasi-loop-connected, then QCSP(H) is

NP-complete.
(iii) Otherwise, QCSP(H) is Pspace-complete.

Due to space restriction, many proofs have been omitted.

II. PRELIMINARIES

Throughout we consider only finite relational structures
possibly with some constants. On first reading, the reader
might prefer to assume that all constants are present, for the
sake of simplicity; though we can not make this assumption
in general as adding all constants may increase the complexity
(compare Theorem 3 with Theorem 49). We denote by σ
our base signature and hereafter unless otherwise specified, a
structure will be a σ-structure. We shall denote by A the domain

of a structure A. The canonical query3 of the structure A
is the quantifier-free first-order sentence that has one variable
xa for each element a in A and a conjunction of all the
positive facts of A: e.g. R(a1, a2, . . . , ar) holds in A for
some r-ary symbol in σ iff this conjunction contains the
conjunct R(xa1

, xa2
, . . . , xar ). Conversely, given a conjunction

of positive atoms ϕ, we denote by Dϕ its canonical database,
that is the structure with domain the variables of ϕ and
whose tuples are precisely those that are atoms of ϕ. Let
A and B be structures. A homomorphism h from A to B is
a map from A to B such that for every relational symbol
R of arity r and every r-tuple (a1, a2, . . . , ar) of elements
of A such that R(a1, a2, . . . , ar) holds in A we have that
R(h(a1), h(a2), . . . , h(ar)) holds in B. The product A⊗B is
the structure with domain A×B such that for every relational
symbol R of arity r and every r-tuples (a1, a2, . . . , ar) of
elements of A and (b1, b2, . . . , br) of elements of B, we have
that R

(
(a1, b1), (a2, b2), . . . , (ar, br)

)
holds in A⊗B iff both

R(a1, a2, . . . , ar) holds in A and R(b1, b2, . . . , br) holds in B.
A constant symbol c is interpreted in A ⊗ B as the element
(a, b) where a and b are the interpretation of c in A and
B, respectively. We write Ak for the product of k copies of
A. A k-ary polymorphism of A is a homomorphism f from
Ak to A. We say that f is idempotent if for any x in A,
f(x, x, . . . , x) = x holds. Equivalently, f is a polymorphism
of an extension of A with constants symbols naming the
elements of A. Let id-Pol(A) (resp. sPol(A)) denote the set of
idempotent (resp. surjective) polymorphisms of A. A majority
operation is a ternary operation f that satisfies the identities
f(x, x, y) = f(x, y, x) = f(y, x, x) = f(x, x, x) = x. The
dual discriminator (dd) is the particular majority that satisfies
dd(x, y, z) = x when x, y, z are distinct. A Hubie operation
is a surjective k-ary operation f , on a set A 3 x, such that
f(x, x, . . . , x) = x and f(x,A, . . . , A) = f(A, x, . . . , A) =
. . . = f(A,A, . . . , x) = A. That is, the restriction of the
operation from fixing x in each coordinate position remains
surjective. When we need to specify x, we speak of a Hubie
operation with source x. A positive Horn sentence (pH-sentence
for short) is a sentence of first-order logic with equality using

3We actually consider the quantifier-free part of the canonical query. We
depart from the usual definition where an existential sentence is used, as we
will often need a different prefix of quantification.

Polymorphism Arity Collapsibility
Near unanimity (a.k.a. majority when k = 3) k (k− 1)-collapsibility with source {x} for any x.
satisfies the identities f(x, y, . . . , y) = . . . = f(. . . , y, x, y . . .) = f(y, . . . , y, x) = y
Dual discriminator. 3 1-collapsibility with source A.
majority acting as a projection when the 3 arguments are distinct 2-collapsibility with source {x} for any x.
Mal’tsev 3 1-collapsibility with source {x} for any x.
m(x, x, y) = m(y, x, x) = y
Hubie operation : remains surjective when any coordinate is fixed to be x k (k − 1)-collapsibility with source {x}.
In particular, the case of so-called semilattice with unit {x}: a binary idempotent,
associative and commutative polymorphism s that satisfies s(x, y) = s(y, x) = y for
any y.

2 1-collapsibility with source {x}.

TABLE I
SOME POLYMORPHISMS THAT IMPLY COLLAPSIBILITY.



both quantifiers ∃ and ∀ but only the logical connective ∧.
We will only consider pH sentences in prenex form, that is
with all quantifiers in front. In the absence of the universal
quantifier, we speak of a primitive positive sentence (pp-
sentence for short). A Π2-pH sentence is a pH-sentence with
quantifier prefix of the form ∀?∃?, that is a block of universal
variables followed by a block of existential variables. Let A
be a finite relational structure (possibly with constants). The
quantified constraint satisfaction problem with structure A,
denoted QCSP(A), is the model-checking problem for pH-
sentences over A. That is, it takes as input a pH-sentence ϕ
and asks whether A models ϕ. When A is a structure with
constants naming its elements, we may write QCSPc(A) to
stress that all constants are present. Similarly, let CSP(A)
denote the constraint satisfaction problem with structure A
defined as above but with pp-sentences. We will denote by
〈A〉pH the class of relations that are interpretable in A via
some pH-sentence.

Reading the introduction, one could be forgiven for thinking
collapsibility is at once a logical property of structures and
a property of algebras. Indeed, Chen [3] defines a form of
collapsibility for each and shows that the algebraic form implies
the logical one (a result reworded here as Theorem 26). One
purpose of this paper is to tie these two definitions together
and prove the converse. For formal purposes we will define
collapsibility only in the logical sense. Let A be a structure,
B ⊆ A and p ≥ 0. The structure A is p-collapsible with source
B when for all m ≥ 1, for all pH-sentences ϕ with m universal
quantifiers, we have that A |= ϕ iff A |= ψ, for all sentences
ψ obtained by instantiating all but p universal variables of ϕ
by some single element x ∈ B. We assume here that A has all
constants from the source set B and will delay to § IV-A for a
more general definition where this assumption is not necessary.
A is collapsible with source B if it is p-collapsible with source
B for some p. We define similarly the analogous notions for
the Π2-fragment.

III. NEW PGP-EGP GAPS

Let [n] := {1, . . . , n}. A digraph G has vertex set G, of
cardinality |G|, and edge set E(G). Similarly, an algebra A has
domain A. For a digraph H, the distance between two m-tuples
s = (s1, . . . , sm) and t = (t1, . . . , tm) ∈ Hm is the minimal
r so that there are m-tuples z1 = (z1

1 , . . . , z
m
1 ), . . . , zr−1 =

(z1
r−1, . . . , z

m
r−1) ∈ Hm such that, for each i ∈ [m], j ∈ [r−2],

we have E(si, zi1), E(zij , z
i
j+1) and E(zir−1, t

i).

A. Partially reflexive paths

Henceforth we consider partially reflexive paths, i.e. paths
potentially with some loops (we will frequently drop the
preface partially reflexive). As we are interested in idempotent
polymorphisms these paths come with constants naming each
of their vertices. For a sequence β ∈ {0, 1}∗, of length |β|,
let Pβ be the undirected path on |β| vertices such that the ith

vertex has a loop iff the ith entry of β is 1 (we may say that
the path P is of the form β). A path H is quasi-loop-connected
if it is of either of the forms

(i) 0a1bα, for b > 0 and some α with |α| = a, or
(ii) 0aα, for some α with |α| ∈ {a, a− 1}.

Where a path satisfies both (i) and (ii), we use formulation
(i) preferentially. A path whose self-loops induce a connected
component is further said to be loop-connected. We will usually
envisage the domain of a path with n vertices to be [n],
where the vertices appear in the natural order (and a good
behaviour brought by the absence of self-loops of the quasi-loop
connected case is exhibited in the lower numbers). The centre
of a path is either the middle vertex, if there is an odd number
of vertices, or between the two middle vertices, otherwise. The
main result of this section was stated as Theorem 1.

Proof of Theorem 1. The PGP cases follow from Lemmas 4,
6 and 7. The EGP cases follow from Proposition 10.

1) Partially reflexive paths with the PGP:
The loop-connected case is well understood.

Lemma 4. Let H be a partially reflexive path that is loop-
connected. Then id-Pol(H) has the PGP.

Proof. H admits a majority polymorphism (see Lemma 3
of [1]). This is a Hubie polymorphism of G (where the
single element can be chosen arbitrarily), whereupon the result
follows from [3] (see our forthcoming Lemma 42 together with
Corollary 39).

The quasi-loop connected case is more technical. Due to
space restriction, we will only present in full half of this case,
which will suffice to illustrate the proof principle. First, we
are able to exhibit specific binary idempotent polymorphisms.

Lemma 5. Let P0a1bα, with b > 0, be a quasi-loop-connected
path on vertices [n]. For each y ∈ [n] there is a binary
idempotent polymorphism fy of P0a1bα so that fy(1, x) = x
(for all x) and fy(n, 1) = y.

Next, we exhibit specific linear generating set for the powers.

Lemma 6. Let P0a1bα, for b > 0, be a quasi-
loop-connected path on vertices [n]. Let A be the al-
gebra specified by id-Pol(P0a1bα). For each m, Am
is generated from the n + 1 m-tuples (1, 1, . . . , 1),
(n, 1, . . . , 1), (1, n, . . . , 1), . . . , (1, 1, . . . , n).

Proof. We will make use of the polymorphisms fy guaran-
teed to exist by Lemma 5. Firstly, from (n, 1, . . . , 1) and
(1, 1, . . . , 1) we can, for each y, use fy to generate (y, 1, . . . , 1).
And we can similarly build all co-ordinate permutations of this.
We now have the base case in an inductive proof, where our
inductive hypothesis will be that for all k we can build the tuple
which has entries y1, . . . , yk with the remaining entries being 1.
The result for k = m implies the lemma, so it remains only to
test the inductive step where we will assume y1, . . . , yk, yk+1

are the first k + 1 entries of a tuple continued by 1, . . . , 1 (of
course we can build the rest through co-ordinate permutation).
From (1, . . . , 1, n, 1, . . . , 1) and (y1, . . . , yk, 1, . . . , 1) (where
n is in the k + 1st position) we can use fyk+1

to build
(y1, . . . , yk, yk+1, 1, . . . , 1). This proves the claim.



Lemma 5 fails for the other type of quasi-loop-connected
paths, essentially when b = 0. This is easily seen to be the
case when we take an irreflexive path on an odd number n
of vertices (for an example on paths with an even number
of vertices ≥ 4, take an irreflexive path leading to a single
looped vertex at the end). Then no idempotent polymorphism
f may have f(n, 1) = 2 for parity reasons, since odd and even
vertices must be at odd distance in the square of the graph.
In fact, Lemma 5 does hold for quite a few of the remaining
cases (e.g. for P0aα when |α| = a and the first entry of α
is 1), but the proof requires an alternative construction. This
alternative construction and a proof in the spirit of that of
Lemma 6 yields the following result which deals at once with
all the outstanding cases.

Lemma 7. Let P0aα, for |α| ∈ {a, a − 1}, be a quasi-
loop-connected path on vertices [n] (that is not of the form
P0a1bα with |α| = a). Let A be the algebra specified by
id-Pol(P0aα). For each m, Am is generated from the 2n+2 m-
tuples (1, 1, . . . , 1), (2, 2, . . . , 2), (n, 1, . . . , 1), (1, n, . . . , 1),
. . . , (1, 1, . . . , n),(n, 2, . . . , 2), (2, n, . . . , 2), . . . , (2, 2, . . . , n).

We remark that if we were not in the idempotent situation
(i.e. without constants in the structure) then the lemmas could
have been proved from observations about the so-called Q-core
[9] via the main result of [12] (see Application 41).

2) Partially reflexive paths with the EGP:
By induction on the arity, we prove the following.

Lemma 8. Let α be any sequence of zeros and ones. All
idempotent polymorphisms of P10α01 are projections.

This will suffice to derive EGP for all non-quasi loop
connected graphs as we will be able to pinpoint a suitable
copy of P10α01 in all such graphs. But first we need to
appeal to another ingredient, namely the well-known Galois
correspondence Inv(sPol(B)) = 〈B〉pH holding for finite
structures B [13], which can be used to derive the following.

Corollary 9. Suppose A = id-Pol(B), for some finite structure
B, and Γ is a generating set for Am. Let ϕ(v1, . . . , vm)
be a formula from 〈B〉pH. If B |= ϕ(x1, . . . , xm) for all
(x1, . . . , xm) ∈ Γ, then B |= ∀v1, . . . , vm ϕ(v1, . . . , vm).

We are now ready to conclude our proof of the PGP/EGP
gap for p.r. paths and establish EGP for the remaining cases.

Proposition 10. Let G be a p.r. path that is not quasi-loop
connected. Then id-Pol(G) has the EGP.

Proof. Number the vertices of G left-to-right over [n] and
let p be the leftmost loop and let q be the rightmost loop.
Since G is not quasi-loop connected, p will be to the left
of the centre and q will be to the right of centre. Let µ be
max{p, n− q, b q−p−1

2 c}. Let P and Q be the sets of vertices
at distance ≤ µ from p and q, respectively.

A word τ ∈ ((P \ Q) ∪ (Q \ P ))m is a cousin of a word
σ ∈ {p, q}m if τ can be obtained by some local substitutions
of p 7→ x ∈ (P \ Q) and q 7→ y ∈ (Q \ P ). A word τ ∈

Gm is a friend of a word σ ∈ {p, q}m if τ can be obtained
by some local substitutions of p 7→ 1, . . . , p, . . . , p + µ and
q 7→ q − µ, . . . , q, . . . , n. The relations friend and cousin are
symmetric. If max{p, n− q} > q − p− 1 then a situation can
arise in which all words {p, q}m are friends of each other (this
will not be a problem). However, it is not hard to see that
every word in Gm has a friend in {p, q}m and one can walk
to this friend pointwise in at most µ steps. Further,

(†)


. each word in ((P \Q) ∪ (Q \ P ))m has a unique

cousin in {p, q}m; and,
. every word in Gm \ ((P \Q)∪ (Q\P ))m has more

than one friend in {p, q}m.

Note that it is possible that Gm \ ((P \ Q) ∪ (Q \ P ))m is
empty. So let m be given and suppose there exists a generating
set Γ for Gm of size < 2m. It follows from (†) that, for some
τ ∈ {p, q}m, Γ omits τ and all of τ ’s cousins (though it may
contain some of τ ’s non-cousin friends). We will prove that Γ
does not generate Gm, by assuming otherwise and reaching
a contradiction using Corollary 9. Let RΓ be the subset of
{p, q}m induced by {p, q}m \ {τ}. Note

(∗) that every element σ ∈ Γ has a friend in RΓ.

Note also that RΓ is pp-definable since {p, . . . , q} is pp-
definable and all polymorphisms of the induced sub-structure
given by{p, . . . , q} are projections (this was Lemma 8).

Consider the pH-formula ϕ(x1, . . . , xn) :=

∃x1
1, . . . , x

µ−1
1 , . . . . . . ,∃x1

n, . . . , x
µ−1
n RΓ(x′1, . . . , x

′
n)∧( ∧

i∈[n]

E(xi, x
1
i ) ∧ E(x1

i , x
2
i ) ∧ . . .

∧ E(xµ−2
i , xµ−1

i ) ∧ E(xµ−1
i , xµ−1

i )
)
.

The sentence ∀x1, . . . , xn ϕ(x1, . . . , xn) is false and can
be witnessed as false by taking x to be that word in {1, n}m
derived from τ by substituting p 7→ 1 and q 7→ n. However,
consider now that ϕ(y1, . . . , yn) is true for all (y1, . . . , yn) ∈ Γ,
precisely because of property (∗), i.e. when (x1, . . . , xn) is
evaluated as σ, choose (xµ−1

1 , . . . , xµ−1
n ) to be evaluated as

σ’s friend in RΓ.

B. Semicomplete digraphs

Recall that a digraph G is semicomplete if it is irreflexive
and for each x 6= y ∈ G we have either E(x, y) or E(y, x),
or both. We will often abuse of the substantive and speak of
semicompletes rather than semicomplete graphs. If we always
have precisely one of E(x, y) or E(y, x), then the digraph is
additionally a tournament. In a digraph, a source (resp., sink)
is a vertex of in-degree (resp., out-degree) zero. A digraph is
smooth if it has neither a source nor a sink. For a digraph G
we define G+ to be G augmented with a new sink to which
all other vertices have a directed edge. Let y− be the set {x ∈
G : E(x, y) ∈ G} and y+ be the set {x ∈ G : E(y, x) ∈ G}.
In the sequel we use the notation xi

′

j to indicate the prime of
xij (i.e., the prime does not modify just the i).



The main result of this section is the gap theorem stated as
Theorem 2.

Proof of Theorem 2. The PGP cases follow from Proposi-
tions 11 and 12. The EGP cases follow from Corollary 24.

1) Semicomplete graphs with the PGP:

Proposition 11. Let G be a semicomplete graph with exactly
one cycle and either a source or a sink, or none, then id-Pol(G)
has the PGP.

Proof. If G has neither source nor sink, then it is either
the directed 3-cycle DC3 or K2. Let A :=id-Pol(DC3) or
id-Pol(K2). Both of these have the dual discriminator for a
polymorphism which witnesses, for each a in the domain, that
Am can be generated from tuples, for all x ∈ A, of the form
(a, a, . . . , a), (x, a, . . . , a), (a, x, . . . , a), . . . , (a, a, . . . , x) (this
latter appears in [3]).

Let us suppose G has a sink but no source (the alternative
being a symmetric proof). Then G was built from DC3 or K2

by the iterative addition of sinks t1, . . . , tk, where tk is the
sink of G. Define f(x, y, z) to be the ternary operation on
G that acts as dual discriminator in the subgraph DC3 or K2

and returns the element ti with the highest index i whenever
the triple (x, y, z) contains an element from {t1, . . . , tk}. It
is straightforward to verify that f is a polymorphism of G.
Further, it is a Hubie polymorphism as is witnessed by any
element z in the subgraph DC3 or K2; that is f(z,G,G) =
f(G, z,G) = f(G,G, z) = G. The result follows from [3]
(that we will quote as Lemma 42).

Proposition 12. Let G be a semicomplete graph with both a
source and a sink, then id-Pol(G) has the PGP.

Proof. We will give a Hubie polymorphism of G whereupon
the result follows from [3] (that we will quote as Lemma 42).

Let x, y, z be elements of G distinct from s and t which
are the source and sink, respectively, of G. Define the ternary
operation f so that f({{x, s, t}}) = x (we use multiset notation
to indicate any coordinate permutation) extended as a projection
on its first coordinate otherwise (e.g. f(s, t, s) = f(s, t, t) = s
and f(x, y, z) = x). It is easy to see this is a polymorphism,
once one notes that in G3 all vertices of the form {{x, s, t}}
are isolated. Furthermore, f is a Hubie operation in both the
single elements s and t.

We will shortly need to talk about variables that are indexed
individually over two dimensions and use overbar to denote
columns (top index vary) and underbar to denote rows (bottom
index vary). Suppose id-Pol(A) has the f(m)-GP. Then we
are saying, for each m ∈ N, that there exist k = f(m) tuples
x1 = (x1

1, x
2
1, . . . , x

m
1 ), . . . , xk = (x1

k, x
2
k, · · · , xmk ) so that,

for each y = (y1, y2, . . . , ym) there is a k-ary polymorphism
fy of A so that

y = (y1, y2, . . . , ym) = (fy(x1
1, . . . , x

1
k), . . . , fy(xm1 , . . . , x

m
k )).

This can be presented by the following picture for f := fy ,

f f · · · f
_ _ · · · _
x1

1 x2
1 · · · xm1

x1
2 x2

2 · · · xm2
...

...
...

x1
k x2

k · · · xmk
^ ^ · · · ^
‖ ‖ ‖
y1 y2 · · · ym

which indicates that f is a homomorphism from
(Ak;x1, . . . , xm) to (A; y1, . . . , ym). It follows of course that
all pp-formulas that are true on (Ak;x1, . . . , xm) are also
true on (A; y1, . . . , ym).

The following well-known model-theoretic lemma is in some
sense trivial for finite structures.

Lemma 13. LetA and B be finite structures. If all pp-sentences
that are true (A; a1, . . . , am) are true on (B; b1, . . . , bm), then
there is a homomorphism f from A to B so that f(aj) = (bj)
for each j ∈ [m].

2) Semicompletes with more than one cycle but without
sources: It is known from [2] that a smooth semicomplete
digraph H with more than one cycle has only essentially unary
polymorphisms, since these are also cores we can immediately
say in this case that id-Pol(H) has the EGP. What remains
is to classify semicompletes with more than one cycle but
without sources, and semicompletes with more than one cycle
but without sinks. These situations are symmetric so we will
address directly only the former. We begin with some simple
results.

Lemma 14. Let G be a digraph. Let id-Pol(G++) have the
f(m)-GP, for some f(m). Then id-Pol(G+) has the f(m)-GP.

Proof. Let t be the sink in G++ and let t′ be the sink
in G+ ⊆ G++. Let m be given and set k = f(m). Let
x1 = (x1

1, x
2
1, . . . , x

m
1 ), . . . , xk = (x1

k, x
2
k, · · · , xmk ) be a

set of generators for id-Pol(G++). Set x′1, . . . , x′k to be the
tuples obtained from x1, . . . , xk by substituting t by t′ and
leaving everything else unchanged. We claim that x′1, . . . , x′k
is a set of generators for id-Pol(G+). To prove this then, let
y = (y1, y2, . . . , ym) ∈ (G+)

m be given. We need to prove
there is f ′ ∈ id-Pol(G+) so that we have the following.

f ′ f ′ · · · f ′

_ _ · · · _

x1′

1 x2′

1 · · · xm
′

1

x1′

2 x2′

2 · · · xm
′

2
...

...
...

x1′

k x2′

k · · · xm
′

k

^ ^ · · · ^
‖ ‖ ‖
y1 y2 · · · ym



Let 1, . . . , n, n + 1, n + 2 enumerate the elements of G++

with G+ being induced on the subset {1, . . . , n, n + 1}. For
i ∈ [n+ 2], let ik denote the k-tuple of is.

By Lemma 13, it is sufficient to show that all pp-formulas
that are true on ((G+)k; 1k, . . . , (n + 1)k, x1′ , . . . , xm

′
) are

also true on (G+; 1, . . . , n+ 1, y1, . . . , ym).
Let ϕ = ∃ wϕ(w, v) be a pp-formula that is true on

((G+)k; 1k, . . . , (n + 1)k, x1′ , . . . , xm
′
), that is, for each j ∈

[k], it is true on (G+; 1, . . . , n + 1, x1′

j , . . . , x
m′

j ). Let wj be
the witnesses for the existential variables of ϕ on this latter
structure. Since for all x ∈ G++ we have E(x, t′) implies
E(x, t), we deduce that ϕ is also true on (G++; 1, . . . , n +
1, x1

j , . . . , x
m
j ), using the same witnesses w0. Now it follows

from fy that ϕ is true on (G++; 1, . . . , n+ 1, y1, . . . , ym), by
mapping the tuples w0, . . . , wk under fy to obtain the witness
for w in (G++; 1, . . . , n+ 1, y1, . . . , ym). But, the idempotent
fy preserves the set {1, . . . , n, n+ 1}, which is pp-definable
in G++, so this shows that the same witnesses show ϕ is also
true on (G+; 1, . . . , n+1, x1

j , . . . , x
m
j ). The result follows.

Corollary 15. Let G be a digraph. If id-Pol(G+) has the EGP
then so does id-Pol(G++).

Let G be a semicomplete digraph with more than one cycle
and no source. We say G has the Novi Sad property if there
exist vertices p, q ∈ G so that
• for all v ∈ G there is the edge E(v, p) or E(v, q).

Note that the Novi Sad property implies a double edge between
p and q, hence this fails on all tournaments. Importantly for our
uses, on irreflexive graphs this property implies that (picking
p′ := q and q′ := p):
• exists p′ ∈ G so that E(p′, p) but not E(p′, q),
• exists q′ ∈ G so that E(q′, q) but not E(q′, p).

The Novi Sad property does not feature in [2].
Specific results imported from [2]. We now need to borrow
some definitions and results from [2]. In that paper the authors
usually refer to Pol instead of id-Pol, but the the objects are
always cores expanded by constants, so the two coincide.

Definition 16 (Definition 6 in [2]). Let G be a directed graph.
We define the relation �G on V by x �G y iff x− ⊆ y−.

Proposition 17 (Proposition 9 in [2]). Assume that G is
semicomplete. Then �G is a partial order, �G has the largest
element t iff t is a sink, and dually for least elements and
sources.

Definition 18 (Definition 7 in [2]). Let G be a digraph. We
define the partition of the vertex set V into V Gmin, V Gmax, V Gboth
and V Gnone so that all vertices in V Gmax are maximal, but not
minimal, in the order �G , all vertices in V Gmin are minimal,
but not maximal, in the order �G , all vertices in V Gboth are
both minimal and maximal in the order �G , while vertices in
V Gnone are neither minimal nor maximal in the order �G . When
the digraph G is understood, we will omit the superscript G .

Definition 19 (Definition 8 in [2]). Let G be a digraph. We
define the irreflexive digraph S(G) by:

1) For all x, y ∈ Vmax ∪ Vboth, (x, y), (y, x) ∈ E(S(G)),
2) For all x, y ∈ Vmin, (x, y), (y, x) ∈ E(S(G)),
3) For all x, y ∈ Vnone, (x, y) ∈ E(S(G)) iff (x, y) ∈ E(G).
4) For all x ∈ Vmin and y ∈ Vnone ∪ Vmax, (x, y) ∈

E(S(G)), but not (y, x) ∈ E(S(G)),
5) For all x ∈ Vnone and y ∈ Vmax, (x, y) ∈ E(S(G)), but

not (y, x) ∈ E(S(G)),
6) For all x ∈ Vboth and y ∈ Vnone ∪ Vmin, (x, y) ∈

E(S(G)), but not (y, x) ∈ E(S(G)).

Proposition 20 (Proposition 10 in [2]). V
S(G)
min = V Gmin,

V
S(G)
max = V Gmax, V

S(G)
both = V Gboth and V

S(G)
none = V Gnone.

Consequently, S(S(G)) = S(G).

Corollary 21 (Corollary 6 in [2]). Let G be a smooth
semicomplete digraph which is not a cycle. Then id-Pol(G+) ⊆
id-Pol(S(G)+).

Applications of results imported from [2].

Theorem 22. Let G be a smooth semicomplete with more than
one cycle. There exists a smooth semicomplete with more than
one cycle H so that id-Pol(G+) ⊆ id-Pol(H+) and H+ has
the Novi Sad property.

Proof. Note that |V Gboth∪V Gmax| ≥ 2, so we can apply Corollary
21, choosing H = S(G), with p 6= q chosen as follows: If
V Gmax = ∅, this implies that V Gmin = V Gnone = ∅ and V = V Gboth,
and p, q can be chosen arbitrarily; If V Gmax 6= ∅, then we choose
p ∈ V Gmax and q ∈ V Gmax∪V Gboth. Then (p, q), (q, p) ∈ E(S(G))
(and this graph has no loops), and there is an edge from all
vertices of S(G), except p, to p.

Main EGP result for semicompletes.

Proposition 23. Let G be a semicomplete digraph with more
than one cycle, no source, and the Novi Sad property. Then
id-Pol(G) has the EGP.

Proof. Let p and q, together with p′ and q′, be as guaranteed
to exist by the Novi Sad property. Let U be the unary relation
specifying the domain of the smooth semicomplete digraph
with more than one cycle which is obtained from G by removing
sinks repeatedly.

A word τ ∈ Gm is said to be a sub-predecessor of a word
σ ∈ {p, q}m if τ can be obtained by some local substitutions
of p 7→ x ∈ p− and q 7→ x ∈ q−. If τ is a sub-predecessor of
σ then we may say σ is a sub-successor of τ . Note that every
word τ ∈ Gm has a sub-successor in σ ∈ {p, q}m, by the Novi
Sad property. A word τ ∈ Gm is said to be a predecessor
of a word σ ∈ {p, q}m if τ can be obtained by some local
substitutions of p 7→ x ∈ p− \ q− and q 7→ x ∈ q− \ p−. If τ
is a predecessor of σ then we may say σ is a successor of τ .
Note that predecessor (resp., successor) imply sub-predecessor
(resp., sub-successor). Now,

(†)


. each word in ((p−\q−)∪(q−\p−))m has a unique

successor in {p, q}m; and
. every word in Gm \ ((p− \ q−) ∪ (q− \ p−))m has

more than one sub-successor in {p, q}m.



In analogy to the proof of Proposition 10, predecessor/
successor play the role of cousin and sub-predecessor/ sub-
successor play the role of friend.

Let m be given and suppose there exists a generating set
Γ for Gm of size < 2m. It follows from (†) that, for some
τ ∈ {p, q}m, Γ omits τ and all of τ ’s predecessors.

We will prove that Γ does not generate Gm, by assuming
otherwise and reaching a contradiction. Let RΓ be the subset
{p, q}m \ {τ}. Note

(∗) that every σ ∈ Γ has a sub-successor in RΓ.

Note also that RΓ is pp-definable since U is pp-definable
and all polymorphisms of the sub-structure induced by U are
projections (see [2]).

Consider the pH-formula ϕ(x1, . . . , xn) :=

∃x′1, . . . , x′n

 ∧
i∈[n]

E(xi, x
′
i)

 ∧RΓ(x′1, . . . , x
′
n).

The sentence ∀x1, . . . , xn ϕ(x1, . . . , xn) is false and can be
witnessed as false by taking x to be that word in {p′, q′}m
derived from τ by substituting p 7→ p′ and q 7→ q′. However,
consider now that ϕ(y1, . . . , yn) is true for all (y1, . . . , yn) ∈ Γ,
precisely because of property (∗), i.e. when (x1, . . . , xn) is
evaluated as σ, choose (x′1, . . . , x

′
n) to be evaluated as σ’s

sub-successor in RΓ.

Corollary 24. Let G be a semicomplete digraph with more
than one cycle and either no source or no sink. Then id-Pol(G)
has the EGP.

Proof. From [2] we know that semicomplete digraphs H with
more than one cycle and neither a source nor a sink (smooth)
have only essentially unary polymorphisms. It follows of course
that id-Pol(H) has the EGP. The result now follows from
Proposition 23 (and its symmetric dual).

IV. THE PGP: COLLAPSIBILITY AND BEYOND

Throughout this section, we shall be concerned with a
relational structure A over a finite set A of size n. In the
few cases when we will require A to have specific constants,
we shall state it explicitly.

A. Games, adversaries and reactive composition

We recall some terminology due to Chen [3], [10], for
his natural adaptation of the model checking game to the
context of pH-sentences. We shall not need to explicitly play
these games but only to handle strategies for the existential
player. An adversary B of length m ≥ 1 is an m-ary relation
over A. When B is precisely the set B1 × B2 × . . . × Bm
for some non-empty subsets B1, B2, . . . , Bm of A, we speak
of a rectangular adversary. Let ϕ have universal variables
x1, . . . , xm and quantifier-free part ψ. We write A |= ϕ�B

and say that the existential player has a winning strategy in
the (A, ϕ)-game against adversary B iff there exists a set of
Skolem functions {σx : ‘∃x’ ∈ ϕ} such that for any assignment
π of the universally quantified variables of ϕ to A, where

(
π(x1), . . . , π(xm)

)
∈ B, the map hπ is a homomorphism

from Dψ (the canonical database) to A, where

hπ(x) :=

{
π(x) , if x is a universal variable; and,
σx(π|Yx

) , otherwise.

(Here, Yx denotes the set of universal variables preceding
x and π|Yx

the restriction of π to Yx.) Clearly, A |= ϕ iff
the existential player has a winning strategy in the (A, ϕ)-
game against the so-called full (rectangular) adversary A×
A × . . . × A (which we will denote hereafter by Am). We
say that an adversary B of length m dominates an adversary
B′ of length m when B′ ⊆ B. Note that B′ ⊆ B and
A |= ϕ�B implies A |= ϕ�B′ . We will also consider sets of
adversaries of the same length, denoted by uppercase greek
letters as in Ωm; and, sequences thereof, which we denote
with bold uppercase greek letters as in Ω =

(
Ωm
)
m∈N. We

will write A |= ϕ�Ωm to denote that A |= ϕ�B holds for
every adversary B in Ωm. We call width of Ωm and write
width(Ωm) for

∑
B∈Ωm

|B|. We say that Ω is polynomially
bounded if there exists a polynomial p(m) such that for every
m ≥ 1, width(Ωm) ≤ p(m). We say that Ω is effective if
there exists a polynomial p′(m) and an algorithm that outputs
Ωm for every m in total time p′(width(Ωm)).

Let f be a k-ary operation of A and A ,B1, . . . ,Bk

be adversaries of length m. We say that A is reactively
composable from the adversaries B1, . . . ,Bk via f , and we
write A E f(B1, . . . ,Bk) iff there exist partial functions
gji : Ai → A for every i in [m] and every j in [k] such that,
for every tuple (a1, . . . , am) in adversary A the following
holds.
• for every j in [k], the values gj1(a1), gj2(a1, a2),
. . . , gjm(a1, a2, . . . , am) are defined and the tuple(
gj1(a1), gj2(a1, a2), . . . , gjm(a1, a2, . . . , am)

)
is in adver-

sary Bj ; and,
• for every i in [m], ai = f

(
g1
i (a1, a2, . . . , ai),

g2
i (a1, a2, . . . , ai), . . . , g

k
i (a1, a2, . . . , ai)).

We write A E {B1, . . . ,Bk} if there exists a k-ary operation
f such that A E f(B1, . . . ,Bk)

Remark 25. We will never show reactive composition by
exhibiting a polymorphism f and partial functions gij that
depend on all their arguments. We will always be able to exhibit
partial functions that depend only on their last argument.

Reactive composition allows to interpolate complete Skolem
functions from partial ones.

Theorem 26 ([10, Theorem 7.6]). Let ϕ be a pH-sentence
with m universal variables. Let A be an adversary and Ωm
a set of adversaries, both of length m.

If A |= ϕ�Ωm and A E Ωm then A |= ϕ.

As a concrete example of an interesting sequence of
adversaries, consider the adversaries for the notion of p-
collapsibility, which we introduced in a purely logical fashion
in the introduction. Let p ≥ 0 be some fixed integer. For x
in A, let Υm,p,x be the set of all rectangular adversaries of



length m with p coordinates that are the set A and all the other
that are the fixed singleton {x}. For B ⊆ A, let Υm,p,B be
the union of Υm,p,x for all x in B. Let Υp,B be the sequence
of adversaries

(
Υm,p,B

)
m∈N

. We will define a structure A
to be p-collapsible from source B iff for every m and for
all pH-sentence ϕ with m universal variable, A |= ϕ�Υm,p,B

implies A |= ϕ.

B. The Π2-case

For a Π2-pH sentence, the existential player knows the values
of all universal variables beforehand, and it suffices for her to
have a winning strategy for each instantiation (and perhaps no
way to reconcile them as should be the case for an arbitrary
sentence). This also means that considering a set of adversaries
of same length is not really relevant in this Π2-case as we may
as well consider the union of these adversaries or the set of
all their tuples (see also statement of Corollary 9).

Lemma 27 (principle of union). Let Ωm be a set of
adversaries of length m and ϕ a Π2-sentence with m universal
variables. Let O∪Ωm

:=
⋃

O∈Ωm
O and Ωtuples := {{t}|t ∈

O∪Ωm
}. We have the following equivalence.

A |= ϕ�Ωm ⇐⇒ A |= ϕ�O∪Ωm
⇐⇒ A |= ϕ�Ωtuples

Let A be an adversary and Ωm a set of adversaries, both
of length m. We say that Ωm generates A iff for any tuple t
in A , there exists a k-ary polymorphism ft of A and tuples
t1, . . . , tk in Ωtuples such that ft(t1, . . . , tk) = t. We have the
following analogue of Theorem 26.

Proposition 28. Let ϕ be a Π2-pH-sentence with m universal
variables. Let A be an adversary and Ωm a set of adversaries,
both of length m.

If A |= ϕ�Ωm
and Ωm generates A then A |= ϕ�A .

We will construct a canonical Π2-sentence to assert that an
adversary is generating. Let O be some adversary of length
m. Let σ(m) be the signature σ expanded with a sequence of
m constants. For a map µ from [m] to A, we write µ ∈ O
as shorthand for (µ(1), µ(2), . . . , µ(m)) ∈ O . For some set
Ωm of adversaries of length m, we consider the following
σ(m)-structure: ⊗

O∈Ωm

⊗
µ∈O

Aµ

where the σ(m)-structure Aµ denotes the expansion of A by
m constants as given by the map µ. Let ϕΩm,A be the Π2-pH-
sentence4 created from the canonical query of the σ-reduct of
this σ(m)-structure with the m constants cj becoming variables
wj , universally quantified outermost, when all constants are
pairwise distinct. Otherwise, we will say that Ωm is degenerate,
and not define the canonical sentence.

Note that adversaries such as Υm,p,B corresponding to p-
collapsibility are not degenerate for p > 0, and degenerate for
p = 0.

4For two structures A and B, when Ωm is Am and m is |A|B , B models
this canonical sentence iff QCSP(A) ⊆ QCSP(B) [12]

Proposition 29. Let Ωm be a set of adversaries of length m
that is not degenerate. The following are equivalent.

(i) for any Π2-pH sentence ψ, A |= ψ�Ωm
implies A |= ψ.

(ii) for any Π2-pH sentence ψ, A |= ψ�O∪Ω
implies A |= ψ.

(iii) for any Π2-pH sentence ψ, A |= ψ�Ωtuples implies A |= ψ.
(iv) A |= ϕO∪Ω,A
(v) A |= ϕΩtuples,A

(vi) Ωm generates Am.

C. The unbounded case

Let n denote the number of elements of the structure A. Let
B be an adversary from Ωn·m. We will denote by ProjB the
set of adversaries of length m induced by projecting over some
arbitrary choice of m coordinates, one in each block of size n;
that is 1 ≤ i1 ≤ n, n+ 1 ≤ i2 ≤ 2 · n, . . . , n · (m− 1) + 1 ≤
im ≤ n ·m. Of special concern to us are projective sequences
of adversaries Ω satisfying the following for every m ≥ 1,

∀B ∈ Ωn.m ∃A ∈ Ωm
∧

B̃∈ProjB

B̃ ⊆ A (m-projectivity)

As an example, consider the adversaries for collapsibility.

Fact 30. Let B ⊆ A and p ≥ 0. The sequence of adversaries
Υp,B are projective.

Example 31. For a concrete illustration consider A = {0, 1, 2}
(thus n = 3). We illustrate the fact that Υp=2,B={0} is
projective for m = 4 and some adversary B ∈ Ωn·m =
Υp=2,B={0},3·4=12. Adversaries are depicted vertically with
horizontal lines separating the blocks.

B ∈ Ωn·m ProjB A ∈ Ωm

A A A �ZA
0 �C0 �C0 . . . �C0 A

0 �C0 �C0 0

0 0 0 �C0
0 �C0 �C0 . . . �C0 0

0 �C0 �C0 0

0 0 0 �C0
0 �C0 �C0 . . . �C0 0

0 �C0 �C0 0

0 0 �C0 �C0
A �ZA A . . . �ZA A

0 �C0 �C0 0

The adversary A dominates any adversary obtained by
projecting the original larger adversary B by keeping a single
position per block.

We could actually consider w.l.o.g. sequences of singleton
adversaries.

Fact 32. If Ω is projective then so is the sequence(⋃
O∈Ωm

O
)
m∈N.

A canonical sentence for composability for arbitrary pH-
sentences with m universal variables may be constructed
similarly to the canonical sentence for the Π2 case, except
that it will have m.n universal variables, which we view as
m blocks of n variables, where n is the number of elements
of the structure A. Let O be some adversary of length m.
Let σ(n·m) be the signature σ expanded with a sequence of



n.m constants c1,1, . . . , cn,1, c1,2 . . . , cn,2, . . . c1,m . . . , cn,m.
We say that a map µ from [n] × [m] to A is consistent
with O iff for every (i1, i2, . . . , im) in [n]m, the tuple
(µ(i1, 1), µ(i2, 2), . . . , µ(im,m)) belongs to the adversary O .
We write A[n.m]

�O for the set of such consistent maps. For some
set Ωm of adversaries of length m, we consider the following
σ(n.m)-structure: ⊗

O∈Ωm

⊗
µ∈A[n.m]

�O

AO,µ

where the σ(n·m)-structure AO,µ denotes the expansion of A
by n.m constants as given by the map µ. Let ϕn,Ωm,A be the
Π2-pH-sentence created from the canonical query of the σ-
reduct of this σ(n.m) product structure with the n.m constants
cij becoming variables wij , universally quantified outermost.
As for the canonical sentence of the Π2-case, this sentence is
not well defined if constants are not pairwise distinct, which
occurs precisely for degenerate adversaries.

Lemma 33. Let Ωm be a set of adversaries of length m that
is not degenerate. Let A be a structure of size n. If A models
ϕn,Ωm,A then the full adversary Am is reactively composable
from Ωm. That is, A |= ϕn,Ωm,A =⇒ Am E Ωm

Proof. We let each block of n universal variables of the
canonical sentence ϕn,Ωm,A enumerate the elements of A. That
is, given an enumeration a1, a2, . . . , an of A, we set wi,j = ai
for every j in [m] and every i in [n].

The assignment to the existential variables provides us with a
k-ary polymorphism (the sentence being built as the conjunctive
query of a product of k copies of A) together with the desired
partial maps. A coordinate r in [k] corresponds to a choice of
some adversary O of Ωm and some map µr from [n]× [m] to
A, consistent with this adversary. The partial map gr` : A` →
A with ` in [m] (and r in [k]) is given by µr as follows:
gr` (ai1 , . . . , ai`) depends only on the last coordinate ai` and
takes value µ(i, `) if ai` = ai. By construction of the sentence
and the property of consistency of such µr with the adversary
O , these partial functions satisfy the properties as given in the
definition of reactive composition.

Lemma 34. Let Ω be a sequence of sets of adversaries that
has the m-projectivity property for some m ≥ 1 such that
Ωn·m is not degenerate. The following holds.

(i) A |= ψ�Ωn.m , where ψ = ϕn,Ωm,A
(ii) If for every Π2-sentence ψ with m.n universal variables,

it holds that A |= ψ�Ωm.n implies A |= ψ, then A |=
ϕn,Ωm,A.

Theorem 35. Let Ω be a sequence of sets of adversaries that
has the m-projectivity property for some m ≥ 1 such that
Ωn.m is not degenerate. The following chain of implications
holds

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv)

where,
(i) For every Π2-pH-sentence ψ with m.n universal variables,
A |= ψ�Ωm.n implies A |= ψ.

(ii) A |= ϕn,Ωm,A.
(iii) Am E Ωm.
(iv) For every pH-sentence ψ with m universal variables,
A |= ψ�Ωm implies A |= ψ.

Proof. The first implication holds by the previous lemma
(second item of Lemma 34, this is the step where we use
projectivity). The second implication is Lemma 33. The last
implication is Theorem 26.

Thus, in the projective case, when an adversary is good
enough in the Π2-case, it is good enough in general. This can be
characterised logically via canonical sentences or “algebraically”
in terms of reactive composition or the weaker and more usual
composition property (see (vi) below).

Theorem 36 (In abstracto). Let Ω =
(
Ωm
)
m∈N be a projec-

tive sequence of adversaries, none of which are degenerate.
The following are equivalent.

(i) For every m ≥ 1, for every pH-sentence ψ with m
universal variables, A |= ψ�Ωm implies A |= ψ.

(ii) For every m ≥ 1, for every Π2-pH-sentence ψ with m
universal variables, A |= ψ�Ωm

implies A |= ψ.
(iii) For every m ≥ 1, A |= ϕn,Ωm,A.
(iv) For every m ≥ 1, A |= ϕO∪Ω,A.
(v) For every m ≥ 1, Am E Ωm.

(vi) For every m ≥ 1, Ωm generates Am.

Remark 37. The above equivalences can be read along two
dimensions:

general Π2

logical interpolation (i) (ii)
canonical sentences (iii) (iv)
algebraic interpolation (v) (vi)

In [10], Chen introduces effective PGP and shows that it
entails a QCSP to CSP reduction, for the bounded alternation
QCSP. For concrete examples, such as collapsibility and
switchability, he shows a QCSP to CSP reduction even in the
unbounded case [10, Theorem 7.11]. As a second corollary, we
can generalise this last result to effective and “projective” PGP,
though we formulate this in terms of sequence of adversaries.

Corollary 38. Let A be a structure. Let Ω be a sequence of
non degenerate adversaries that is effective, projective and
polynomially bounded such that Ωm generates Am for every
m ≥ 1.

Let A′ be the structure A, possibly expanded with constants,
at least one for each element that occurs in Ω. The problem
QCSP(A) reduces in polynomial time to CSP(A′). In particular,
if A has all constants, the problem QCSPc(A) reduces in
polynomial time to CSPc(A).

D. Studies of Collapsibility

Let A be a structure, B ⊆ A and p ≥ 0. Recall the structure
A is p-collapsible with source B when for all m ≥ 1, for
all pH-sentences ϕ with m universal quantifiers, A |= ϕ iff
A |= ϕ�Υm,p,B

. Collapsible structures are very important: to
the best of our knowledge, they are in fact the only examples



of structures that enjoy a form of polynomial QCSP to CSP
reduction. This is different if one considers structures with
infinitely many relations where the more general notion of
switchability crops up [10]. Our abstract results of the previous
section apply to both switchability and collapsibility but we
concentrate here on the latter. This result applies since the
underlying sequence of adversaries are projective (see Fact 30),
as long as p > 0 (non degenerate case).

Corollary 39 (In concreto). Let A be a structure, ∅ ( B ⊆ A
and p > 0. The following are equivalent.

(i) A is p-collapsible from source B.
(ii) A is Π2-p-collapsible from source B.

(iii) For every m, the structure A satisfies the canonical Π2-
sentence with m · |A| universal variables ϕn,Υm,p,B ,A.

(iv) For every m, the structure A satisfies the canonical Π2-
sentence with m universal variables ϕU ,A, where U =⋃
O∈Υm,p,B

O.
(v) For every m, there exists a polymorphism f of A

witnessing that Am E Υm,p,B .
(vi) For every m, for every tuple t in Am, there is a poly-

morphism ft of A of arity k at most
(
m
p

)
.|B| and tuples

t1, t2, . . . , tk in Υm,p,B such that ft(t1, t2, . . . , tk) = t.

Remark 40. When p = 0, we obtain degenerate adversaries
and this is due to the fact that if a QCSP is permitted equalities,
then 0-collapsibility can never manifest (think of ∀x, y x = y).

In [3], Case (v) of Corollary 39 is equivalent to id-Pol(A)
being p-collapsible (in the algebraic sense). It is proved in
[3] that if id-Pol(A), is k-collapsible (in the algebraic sense),
then A is k-collapsible. We note that Corollary 39 proves the
converse, finally tying together the two forms of collapsibility.

A fun application of Corollary 39 is an alternative proof of
Proposition 12. It is easy to see that a semicomplete digraph
with both a source and a sink is 1-collapsible with any singleton
source. This is because any input sentence for QCSP(G),
involving a universal variable v in an edge relation E, is false
(evaluate as either the source or the sink, depending on whether
v appears as the second or first entry of E, respectively). The
statement of the proposition now follows from Corollary 39,
via (i) ⇒ (vi).

Another application of Corollary 39 is the following (com-
pare with § III-A1).

Application 41. A partially reflexive path A (no constants are
present) that is quasi-loop connected has the PGP.

The last two conditions of Corollary 39 provide us with
a semi-decidability result: for each m, we may look for a
particular polymorphism (v) or several polymorphisms (vi).
Instead of a sequence of polymorphisms, we now strive for a
better algebraic characterisation. We will only be able to do so
for the special case of a singleton source, but this is the only
case hitherto found in nature.

Chen uses the following lemma to show 4-collapsibility of
bipartite graphs and disconnected graphs [8, Examples 1 and

2]. Though, we know via a direct argument [14] that these
examples are in fact 1-collapsible from a singleton source.

Lemma 42 (Chen’s lemma [3, Lemma 5.13]). Let A be a
structure with a constant x. If there is a k-ary polymorphism
of A such that f is surjective when restricted at any position
to {x}, then A is (k − 1)-collapsible from source {x} (i.e. A
has a k-ary Hubie polymorphism).

An interesting consequence of last section’s formal work is
a form of converse of Chen’s Lemma, which allows us to give
an algebraic characterisation of collapsibility from a singleton
source.

Proposition 43. Let x be a constant in A. The following are
equivalent:

(i) A is collapsible from {x}.
(ii) A has a Hubie polymorphism with source x.

In the proof of the above, for (i) ⇒ (ii) ⇒ (i), we no
longer control the collapsibility parameter as the arity of our
polymorphism is larger than the parameter we start with. By
inspecting more carefully the properties of the polymorphism
f we get as a witness that A models a canonical sentence,
we may derive in fact p-collapsibility by an argument akin to
the one used above in the proof of Chen’s Lemma. We obtain
this way a nice concrete result to counterbalance the abstract
Theorem 36.

Theorem 44 (p-Collapsibility from a singleton source). Let
x be a constant in A and p > 0. The following are equivalent:

(i) A is p-collapsible from {x}.
(ii) For every m ≥ 1, the full adversary Am is reactively

composable from Υm,p,x.
(iii) A is Π2-p-collapsible from {x}.
(iv) For every m ≥ 1, Υm,p,x generates Am.
(v) A models ϕn,Υp+1,p,x,A (which implies that A admits

a particularly well behaved Hubie polymorphism with
source x of arity (p+ 1)np).

Corollary 45. Given p ≥ 1, a structure A and x a constant
in A, we may decide whether A is p-collapsible from {x}.

Remark 46. We say that a structure A is B-conservative
where B is a subset of its domain iff for any polymorphism f
of A and any C ⊆ B, we have f(C,C, . . . , C) ⊆ C. Provided
that the structure is conservative on the source set B, we may
prove a similar result for p-Collapsibility from a conservative
source.

Expanding on Remark 40, we note that if we forbid equalities
in the input to a QCSP, then we can observe the natural case of
0-collapsibility, to which now we turn. This is not a significant
restriction in a context of complexity, since in all but trivial
cases of a one element domain, one can propagate equality out
through renaming of variables.

We investigated a similar notion in the context of positive
equality free first-order logic, the syntactic restriction of first-
order logic that consists of sentences using only ∃,∀,∧ and
∨. For this logic, relativisation of quantifiers fully explains the



complexity classification of the model checking problem (a
tetrachotomy between Pspace-complete, NP-complete, Co-NP-
complete and Logspace) [15]. In particular, a complexity in
NP is characterised algebraically by the preservation of the
structure by a simple A-shop (to be defined shortly), which is
equivalent to a strong form of 0-collapsibility since it applies
not only to pH-sentences but also to sentences of positive
equality free first-order logic. We will show that this notion
corresponds in fact to 0-collapsibility from a singleton source.
Let us recall first some definitions.

A shop on a set B, short for surjective hyper-operation,
is a function f from B to its powerset such that f(x) 6= ∅
for any x in B and for every y in B, there exists x in B
such that f(x) 3 y. An A-shop5 satisfies further that there
is some x such that f(x) = B. A simple A-shop satisfies
further that |f(x′)| = 1 for every x′ 6= x. We say that a
shop f is a she of the structure B, short for surjective hyper-
endomorphism, iff for any relational symbol R in σ of arity r,
for any elements a1, a2 . . . , ar in B, if R(a1, . . . , ar) holds in
B then R(b1, . . . , br) holds in B for any b1 ∈ f(a1), . . . , br ∈
f(ar). We say that B admits a (simple) A-she if there is a
(simple) A-shop f that is a she of B.

Theorem 47. Let B be a finite structure. The following are
equivalent.

(i) B is 0-collapsible from source {x} for some x in B for
equality-free pH-sentences.

(ii) B admits a simple A-she.
(iii) B is 0-collapsible from source {x} for some x in B for

sentences of positive equality free first-order logic.

The above applies to singleton source only, but up to taking
a power of a structure (which satisfies the same QCSP), we
may always place ourselves in this singleton setting for 0-
collapsibility.

Theorem 48. Let B be a structure. The following are equiva-
lent.

(i) B is 0-collapsible from source C
(ii) B|C| is 0-collapsible from some (any) singleton source x

which is a (rainbow) |C|-tuple containing all elements of
C.

V. BACK TO COMPLEXITY

The trichotomy of Theorem 3 should be seen as a companion
to the following dichotomy result.

Theorem 49 (Theorem 1 of [1]). Let H be a p.r. path.
(i) If H is quasi-loop-connected, then QCSP(H) is in NL.

(ii) Otherwise, QCSP(H) is Pspace-complete.

Case (i) is proved in 2 steps : a loop connected p.r. path
is known to be in NL via a majority polymorphism and a
quasi-loop connected p.r. path is shown to have the same
QCSP via some surjective homomorphisms from powers (via
the methodology from [12]). This means that we can build

5The A does not stand for the name of the set, it is short for All.

a Hubie polymorphism for a quasi-loop connected p.r. path
(see Application 41). However, this polymorphism need not
be idempotent and the argument does not extend to p.r. paths
with constants.

Using results from both of the previous sections we can now
give a proof of Theorem 3.

Proof of Theorem 3. For Cases (i) and (ii), NP membership
follows from Corollary 38 as we established suitable forms
of PGP in Lemmas 4, 6 and 7. More specifically, the
Ptime membership of Case (i) is established by the majority
polymorphism mentioned in the proof of Lemma 4 (via [3]).
As for Case (ii), we note in passing that collapsibility follows
from Lemmas 6 and 7 which establish item (vi) of Corollary 39.
More importantly, NP-hardness follows from the classification
of [16].

For Case (iii), we observe from [1] that we are Pspace-hard
even without constants.

We note that the complexity classification for semicomplete
digraphs from [2] is unchanged regardless of whether all
constants are present (since semicompletes are cores).

VI. CONCLUSION

One important application of our abstract investigation of
PGP yields a nice characterisation in the concrete case of
collapsibility, in particular in the case of a singleton source
which we now know can be equated with preservation under
a single polymorphism, namely a Hubie polymorphism. So
far, this is the only known explanation for a complexity of a
QCSP in NP which provokes the following question.

Question 1. For a structure A, is it the case that QCSP(A)
is in NP iff A admits a Hubie polymorphism?

In the literature, it is common to study the case of non finite
constraint languages. This means that for an infinite set of
relations over the same finite domain Γ we study the uniform
problem QCSP(Γ) which covers all problems QCSP(A) where
A is a structure with relations from Γ.

Typically Γ is taken to be the invariant of some algebra.
There is an example of such a problem QCSP(Γ) with a
complexity in NP that is provably not collapsible but enjoys a
property similar to p-collapsibility, namely p-switchability [10],
which is a special form of PGP.

For m ≥ 1 and ı̄ = (i1, i2, . . . , ip) a strictly increasing
sequence in [m− 1]p, let Sı̄,p be the adversary that consists
of tuples t ∈ Am such that each of the following sets contain
a single element: {t[j] ∈ A|1 ≤ j ≤ i1}, {t[j] ∈ A|i1 + 1 ≤
j ≤ i2}, . . ., {t[j] ∈ A|ip + 1 ≤ j ≤ m}. Let Σm,p be the
set of all such adversaries Sı̄,p. Let Σp be the sequence of
adversaries

(
Σm,p

)
m∈N.

We say that a structure A is p-switchable iff for every m and
for all pH-sentence ϕ with m universal variable, A |= ϕ�Σm,p

implies A |= ϕ.
We say that a set of relations Γ is p-switchable iff every

structure A with relations from Γ is p-switchable.



Our definition of switchability is not exactly the same as that
of Hubie Chen who uses instead a single adversary ∪Sı̄ for
each arity. It is a simple exercise to show that both sequences
of adversaries satisfy the hypotheses of Theorem 36. Since the
two notions are of course equivalent in the Π2 case via the
principle of union (Lemma 27), they are therefore equivalent
in general. Thus not only we can equate switchability with its
Π2 analogue but we can also give a purely syntactic definition
of switchability as follows. A structure A is p-switchable
iff, for all m and for all pH formula ϕ with m universal
variables x1, x2, . . . , xm (in this order), A |= ϕ iff for all
ı̄ = (i1, i2, . . . , ip) a strictly increasing sequence in [m− 1]p,
A |= ϕ ∧ η̄ı where η̄ı is

∧
0≤`1<`2≤p

∧
i`1≤j<k≤i`2

xj = xk.
However, there are two limitations to our result on switch-

ability. Firstly, we do not have a crisp candidate for a single
polymorphism or even a sequence of polymorphisms that would
endow switchability. Secondly, our findings only hold for finite
structures, where it is unclear that switchability plays a natural
role. This provokes the following question.

Question 2. For every infinite set of relations Γ, is it the case
that Γ is switchable iff it is Π2-switchable?

Going back to collapsibility, regarding the meta-question of
deciding whether a structure is collapsible, one can wonder if
the parameter p of collapsibility depends on the size of the
structure A. In particular, this would provide a positive answer
to the following.

Question 3. Given a structure A, can we decide if it is p-
collapsible for some p?

A tantalising question remains.

Question 4. Are there any finite algebras, minimal generating
sets for whose powers grow sub-exponentially (e.g. Θ(2

√
i))?

The alternative is that finite algebras exhibit a PGP-EGP
gap in general. In a sequence of three papers Growth rates of
algebras, Kearnes, Kiss and Szenderei explore this question,
demonstrating all polynomial growth rates are possible.

Finally, let us return to the foundation for Fürstenproblem
and contemplate the complexity of the QCSP. Let B be a finite
structure. At present it is not conjectured where one might
seek to prove the boundary between QCSP(B) being in P and
QCSP(B) being NP-hard, even in the case where all constants
are present. Furthermore, settling this will be at least as hard
as settling the similar dichotomy for CSP. However, we would
like to specifically echo the conjecture of Chen in [8] (where
it appears written in two conjectures).

Conjecture. Let B be finite and expanded with all constants;
then QCSPc(B) is in NP iff id-Pol(B) has the PGP.
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APPENDIX

MATERIAL OMITTED FROM § III.

III-APartially reflexive paths

1) Cases with the PGP:
In the proof of Lemma 4, we refer to the fact that loop-

connected p.r. paths have a majority polymorphism. In the
reference, it is not fully explicit how one builds such a majority
operation, and we highlight it here for the sake of completeness.

Let P be a loop-connected path labelled in ascending natural
numerical order. Let L be the irreflexive component left of the
central loops and R be the irreflexive component right of the
loops. If there are no loops let the whole path be in L.

Recall first that the operation median over the elements of
P returns the argument that is neither minimal, nor maximal
when the arguments are pairwise distinct, and behave as a
majority operation otherwise.

Define Feder(x, y, z) := median(x, y, z), if all x, y, z have
the same parity, and Feder(x, y, z) :=max of the repeated
parity, otherwise (this operation was communicated to one of
the author by email by Tomás Feder, hence its name).

We define f(x, y, z) := Feder(x, y, z), if x, y, z ⊂ L or
x, y, z ⊂ R, and f(x, y, z) := median(x, y, z), otherwise. This
operation f is a majority polymorphism and a polymorphism
of P .

Lemma 5. Let P0a1bα, with b > 0, be a quasi-loop-connected
path on vertices [n]. For each y ∈ [n] there is a binary
idempotent polymorphism fy of P0a1bα so that fy(1, x) = x
(for all x) and fy(n, 1) = y.

Proof. Let y be given. Suppose P0a1bα is of odd length and has
centre at position q (the argument for even length is very similar
with central vertices q, q′). Choose p minimal (1 ≤ p ≤ q) so it
is a looped vertex. Let r be so that r−q = q−p, i.e. p and r are
first and last in the block 1b, and we have 1 ≤ p ≤ q ≤ r ≤ n).
An idempotent binary polymorphism on domain [n] may be
visualised as a matrix X with leading diagonal 1, . . . , n. We
consider the top-left and bottom-left parts of the matrix Xtl

and Xbl, respectively, to include as their farthest right column
the central column of the matrix X at position q. Xtl and Xbl

will also overlap on the bottom row of the former which is
the top row of the latter. Let us consider what constraints a
polymorphism must satisfy. Across the whole matrix, diagonal
neighbours must be adjacent elements. In Xtl, in fact, only the
diagonals are needed to be considered to satisfy polymorphism.
But in Xbl (indeed the whole bottom half) there may be some
horizontal lines that must satisfy the adjacency condition and
in the right half there might be some vertical lines that need
to satisfy this adjacency condition too. To see an example of
this we direct the reader to P00001110110 in Figure 3. We will
rebuild Xtl and Xbl to satisfy all horizontals, even though we
do not need them all, and the right half of the matrix will
satisfy all potential vertical lines.

When viewed as a matrix, the entire right half (from and
including the middle column q) will obey f(u, v) = v. We
now turn our attention to Xtl. The farthest right column of
Xtl is already set to q, and we will set the entire bottom row
to q. We now remove these already-set positions and then set
the farthest right column and bottom row of the remainder of
Xtl to q− 1. We iterate this until we reach and have done this
for p. Note that this is consistent with idempotency. We have
now filled in X other than a (p− 1)× (p− 1) matrix in the
top-left which we call X ′tl and a (q−1)× (q−1) matrix in the
bottom-left which we still call Xbl. This is depicted in Figure 1
and satisfies all local conditions for polymorphism. The matrix
X ′tl must additionally satisfy leading diagonal idempotency
and must also satisfy the boundary condition of p against its
right-most column and bottom row. The matrix Xbl must satisfy
position (n, 1) being y and the boundary condition of q against
its right-most column and top row.

(Construction of X ′tl.) We explain how to fill in position
(1, i) and (i, 1) for i ∈ [p−1] because each diagonal proceeding
towards the centre of the matrix will contain an increasing
arithmetic sequence with step 1. Set (1, i) to be i and (i, 1)
to be i (when i is odd) and i+ 1 (when i is even). A simple
calculation now yields the precise specification: if λ < µ, set
(λ, µ) to µ; if λ > µ, set (λ, µ) to λ (if λ − µ + 1 is odd)
and to λ + 1 (if λ − µ + 1 is even). It is easy to see that
this satisfies polymorphism. Indeed, it satisfies polymorphism
on the horizontals where it is not necessary (but will become
necessary for Xbl).

(Construction of Xbl.) The upward diagonal from y at
position (n, 1) to q is filled y, y ± 1 . . . , q, . . . , q. That is, if
y ≤ q we increase by one until we reach q and then repeat q,
and if y ≥ q we decrease by one until we reach q and then
repeat q.

All rows and columns in Xbl that contain a vertex z ∈
{p, . . . , q, . . . , r} on the upward diagonal from (n, 1) are now
filled in with z. At this point we are left with some s × s
submatrix X ′bl of Xbl not filled in. X ′bl might be empty if
y ∈ {p, . . . , q, . . . , r}, but if X ′bl is not empty then we have
the boundary condition of either p or r against its right-most
column and top row. We now fill this in in precisely the dual
fashion to our filling in of X ′tl. We will give the argument
when the boundary condition is r (the other case of boundary
p being very similar). We explain how to fill in position (n, i)
and (i, n) for i ∈ {n, . . . , n − s + 1) because each diagonal
proceeding towards the centre of the matrix will contain a
decreasing (increasing if boundary is instead p) arithmetic
sequence with step 1. Set (n, i) to be y − i+ 1 and (i, n) to
be i − n + y (when i is odd) and i − 1 − n + y (when i is
even). It is not hard to see that this satisfies polymorphism,
even on its horizontals.

Two examples, for the graph P0413α with |α| = 4, are given
in Figure 2. The left-hand example is for (n = 11 where
p = 5, q = 6, r = 7 and) y = 10; and the right-hand example
is for (n = 11 where p = 5, q = 6, r = 7 and) y = 3.



• • • • • • • • • • •

P00001110110 ↑ ↓ P00001110110
2

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

•

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

@@
@@

@@
@ •

��
��

��
�

• • • • • • • • • • •

Fig. 3. Path P04130120 and its square

1 p · · · q · · · r · · · n
. . .

...
...

...
...

p · · · p · · · q · · · r · · · n
...

...
...

...
...

q · · · q · · · q · · · r · · · n
...

...
...

q · · · r · · · n
...

...
...

y q · · · r · · · n

Fig. 1. First part of the construction for the proof of Lemma 5.

Lemma 50. Let P0aα be a quasi-loop-connected path on
vertices [n] (that is not of the form P0a1bα with |α| = a). For
each y ∈ [n] there is a binary idempotent polymorphism fy of
P0aα so that fy(1, x) = x (for all x) and either fy(n, 1) = y

or fy(n, 2) = y.

Proof. Suppose first that y ∈ {1, 2}. Assume n is even (the
argument for the odd case is very similar). Our proof has
similarities to that of Lemma 5. We will rebuild Xtl roughly as
before, but now we rebuild Xbl as a mirror image of Xtl. We
will set the columns n/2 + 1, . . . , n of our matrix to be full
columns of n/2+1, . . . , n, respectively. Take the remainder of
the matrix, on columns 1, . . . , n/2 and split it into two across
its central horizontal. Call the top left Xtl and the bottom left
Xbl. We will fill in Xtl according to the construction of X ′tl
from Lemma 5. We will now fill Xbl to be a mirror image of
Xtl in the central horizontal. An example of this is depicted
in Figure 4.

Now for general y ∈ {z, z + 1} with z odd, we shift the
horizontal split between Xtl and Xbl downwards (making Xtl

larger). The split will be just after row n/2 + (z − 1)/2, i.e.
at z = n − 1 the matrix Xbl is empty. We now build Xtl

according to the construction of X ′tl from Lemma 5 and now



1 2 3 4 5 6 7 8 9 10 11
3 2 3 4 5 6 7 8 9 10 11
3 4 3 4 5 6 7 8 9 10 11
5 4 5 4 5 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
6 6 6 6 6 6 7 8 9 10 11
7 7 7 7 7 6 7 8 9 10 11
7 7 7 7 7 6 7 8 9 10 11
8 7 8 7 7 6 7 8 9 10 11
8 9 8 7 7 6 7 8 9 10 11

10 9 8 7 7 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
3 2 3 4 5 6 7 8 9 10 11
3 4 3 4 5 6 7 8 9 10 11
5 4 5 4 5 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
6 6 6 6 6 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
5 4 5 5 5 6 7 8 9 10 11
3 4 5 5 5 6 7 8 9 10 11

Fig. 2. Two polymorphism of the graph P0413α, with α any string of 0s
and 1s of length 4. The lines indicate the boundaries of X′

tl and X′
bl.

fill Xbl to be a mirror image of the bottom part of Xtl in the
horizontal just after row n/2 + (z − 1)/2. An example of this
is depicted in Figure 4.

Lemma 7. Let P0aα, for |α| ∈ {a, a − 1}, be a quasi-
loop-connected path on vertices [n] (that is not of the form
P0a1bα with |α| = a). Let A be the algebra specified by
id-Pol(P0aα). For each m, Am is generated from the 2n+2 m-
tuples (1, 1, . . . , 1), (2, 2, . . . , 2), (n, 1, . . . , 1), (1, n, . . . , 1),
. . . , (1, 1, . . . , n),(n, 2, . . . , 2), (2, n, . . . , 2), . . . , (2, 2, . . . , n).

Proof. The proof is as in the Lemma 6 but relies upon
Lemma 50 in place of Lemma 5.

2) Cases with the EGP:
For a digraph H, the distance, dH, between two vertices is

the number of edges in a shortest path connecting them. By
Hn we mean the tensor product of H with itself n times.

We note that polymorphisms do not increase distances in
graphs, i.e. if f is an n-ary polymorphism of H and u, v ∈ Hn

then dHn(u, v) ≤ dH(f(u), f(v)).
Lemma 8 is proved by induction on the arity of the

polymorphisms. We deal first with the base case.

Lemma 51. Let α be any sequence of zeros and ones. All
idempotent binary polymorphisms of P10α01 are projections.

1 2 3 4 5 6 7 8 9 10
3 2 3 4 5 6 7 8 9 10
3 4 3 4 5 6 7 8 9 10
5 4 5 4 5 6 7 8 9 10
5 6 5 6 5 6 7 8 9 10
5 6 5 6 5 6 7 8 9 10
5 4 5 4 5 6 7 8 9 10
3 4 3 4 5 6 7 8 9 10
3 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
3 2 3 4 5 6 7 8 9 10
3 4 3 4 5 6 7 8 9 10
5 4 5 4 5 6 7 8 9 10
5 6 5 6 5 6 7 8 9 10
7 6 7 6 5 6 7 8 9 10
7 6 7 6 5 6 7 8 9 10
5 6 5 6 5 6 7 8 9 10
5 4 5 4 5 6 7 8 9 10
3 4 3 4 5 6 7 8 9 10

Fig. 4. Examples for the proof of Lemma 50. The line indicates the axis of
symmetry for the mirror image.

Proof. We label the vertices of P = P10α01 left to right over
0, 1, . . . , t = |P| − 1 and start by showing that any binary
polymorphism f of P must satisfy the following

f(i, j) ≤ max{i, j} and f(i, j) ≥ min{i, j},

with i, j = 0, . . . , t and considering the natural linear ordering
of the labelling of vertices of P . Assume, for a contradiction,
that there exist i, j such that f(i, j) = k with k > i, j. Without
loss of generality we assume that i < j. There exists a path of
length at most j from f(i, j) to f(0, 0) = 0, via the vertices
f(i− 1, j − 1), . . . , f(0, 1), f(0, 0), but clearly dH(0, k) = k,
so we get a contradiction. Dually, we can show that we also
cannot have k < i, j.

We now show that f|{x,x+k} is, without loss of generality,
the first projection, by induction on k ≥ 1.

There is an edge, in P , from f(0, 1) and from f(1, 0) to
f(0, 0) = 0, so f(0, 1), f(1, 0) ∈ {1, 0}. There is also an edge
from f(0, 1) to f(1, 0), so they cannot both be equal to 1. In a
similar way we can check that f(t, t−1), f(t−1, t) ∈ {t−1, t}
and they cannot both be equal to t− 1.

We have dH(f(0, 1), f(t − 1, t), dH(f(1, 0), f(t, t − 1) ≤
t− 1, since f(t, t− 1) and f(t− 1, t) cannot both be equal to
t− 1, this immediately implies that f(1, 0) and f(0, 1) cannot
both be equal to 0. Hence it follows that f|{1,2} must be a
projection. Assume, without loss of generality, that it is the
first projection.

To be able to get the correct distances from f(0, 1) to f(t−
1, t) we must have that f restricted to any two consecutive
vertices must be the first projection, i.e. f(x, x+ 1) = x and
f(x+ 1, x) = x+ 1 for all x = 0, . . . , t− 1.



Now, assume that f|{x,x+l} is the first projection, for all
l < m and all x = 0, . . . , t− l. We show that f|{x,x+m} is also
the first projection, by induction on x. For the base case x = 0,
we know that there is an edge from f(0,m) to f(0,m − 1)
and an edge from f(m, 0) to f(m − 1, 0). By the inductive
hypothesis, f(0,m− 1) = 0 and f(m− 1, 0) = m− 1, so we
must have f(0,m) ∈ {1, 0} and f(m, 0) ∈ {m−2,m−1,m}.

Also, there is an edge from f(0,m) to f(1,m − 1), by
the inductive hypothesis f(1,m − 1) = 1, so we must have
f(0,m) = 0. We now just need to consider the case f(m, 0).

Case 1: Suppose that f(m, 0) = m−2; dH(f(m, 0), f(t, t−
(m + 1)) ≤ t −m, and by the inductive hypothesis f(t, t −
(m+ 1)) = t. So dH(f(m, 0), t) ≤ t−m, but dH(m−2, t) =
t− (m− 2), so we get a contradiction.

Case 2: Suppose that f(m, 0) = m−1. Since there is an edge
from f(m, 0) to f(m−1, 0), and f(m−1, 0) = m−1 by the
inductive hypothesis, it follows that m−1 must be a loop. Now,
there is an edge from f(m, 0) to f(m+ 1, 1) and from this to
f(m, 2). Since f(m, 2) = m, by the inductive hypothesis. We
have that f(m+ 1, 1) ∈ {m− 1,m}. If f(m+ 1, 1) = m− 1
we get a similar contradiction as in Case 1, so we must have
f(m+ 1, 1) = m, which also implies that m must be a loop.
We now move on to f(m+ 2, 2) and using the same reasoning
we get that m + 2 must be a loop. Carrying on in this way
we will eventually reach a contradiction since the vertex t− 1
does not have a loop; unless m = t, in which case f(t, 0) is a
loop and we immediately have f(t, 0) = t.

Hence we must have f(m, 0) = m. This proves the base
case.

Assume now that f|{x,x+m} is the first projection for all
x < b. We show that f|{b,b+m} is also the first projection. There
are edges from f(b, b+m) and f(b+m, b) to f(b−1, b−1+m)
and f(b−1+m, b−1) respectively. By the inductive hypothesis,
f(b−1, b−1+m) = b−1 and f(b−1+m, b−1) = b−1+m.
So we have f(b, b+m) ∈ {b− 2, b− 1, b} and f(b+m, b) ∈
{b− 2 +m, b− 1 +m, b+m}.

There is an edge from f(b, b+m) to f(b+ 1, b+m− 1),
and, by the inductive hypothesis, f(b+ 1, b+m− 1) = b+ 1.
So we must have f(b, b+m) ∈ {b, b+1, b+2}, it immediately
follows that f(b, b + m) = b. Like above, in Cases 1 and 2,
we can show that we also must have f(b+m, b) = b+m.

This proves the lemma.

Lemma 8. Let α be any sequence of zeros and ones. All
idempotent polymorphisms of P10α01 are projections.

Proof. Let P = P10α01 and label the vertices of P over [t]
with t = |P| left to right. Let n ≥ 2 be arbitrary and let
f(x1, . . . , xn) be any idempotent n-ary polymorphism of P .
We prove the lemma by induction on n, with base case given
by Lemma 51.

Assume now that the lemma holds for any n < k, i.e. we
have f(x1, . . . , xn) = x1 for any x1, . . . , xn vertices of P and
any n < k. Let us consider the case when f is a polymorphism
of arity k. We will show that f(x1, . . . , xk) is also the first
projection.

Case 1: x1 is not the left-most nor the right-most element
of x1, . . . , xk.

In this case we know that
d(f(x1, . . . , xk), f(1, y2, . . . , yk)) ≤ x1 − 1, where
yi = xi − x1 if xi > x1 and it is 1 otherwise. Now at least
one of the yis equals to 1, so at this stage f(1, y2, . . . , yk)
matches a polymorphism of arity smaller than k and we can
apply the inductive hypothesis, so that f(1, y2, . . . , yk) = 1.
It follows that d(f(x1, . . . , xk), 1) ≤ x1 − 1. In a similar way
we obtain that d(f(x1, . . . , xk), f(t, z2, . . . , zk)) ≤ t−x1− 1,
so that d(f(x1, . . . , xk), t) ≤ t − x1 − 1. It follows that
f(x1, . . . , xk) = x1.

Case 2: x1 = 1; Assume, wlog, that x2 is the
left-most element of x2, . . . , xk and is not equal to x1.
Then d(f(1, x2, . . . , xk), f(1, 1, y3, . . . , yk)) ≤ x2 − 1,
with yi defined as above. By the inductive hypothesis
f(1, 1, y3, . . . , yk) = 1, so that d(f(1, x2, . . . , xk), 1) ≤ x2−1,
hence f(1, x2, . . . , xk) ≤ x2. We show that f(1, x2, . . . , xk) =
1 by induction on x2. If x2 = 2 then f(1, x2, . . . , xk) ∈ {1, 2},
and we know that there is an edge from f(1, 2, x3 . . . , xk) to
f(2, 1, x3 − 1, . . . , xk − 1). Since there are no loops at 2 and,
by Case 1, f(2, 1, x3 − 1, . . . , xk − 1) = 2, we must have
f(1, x2, . . . , xk) = 1.

Assume now that the result holds whenever x2 < z. Then
f(1, z, x3, . . . , xk) ≤ z and there is an arc from this vertex
to f(1, z − 1, x3 − 1, . . . , xk − 1), since f(1, z − 1, x3 −
1, . . . , xk − 1) = 1 by the inductive hypothesis, we must
have f(1, z, x3, . . . , xk) ∈ {1, 2}.

Suppose, for a contradiction, that f(1, z, x3, . . . , xk) = 2.
Since there is an arc from this vertex to f(2, z − 1, x3 −
1, . . . , xk − 1) we have that f(2, z − 1, x3 − 1, . . . , xk − 1) ∈
{1, 3}. Now d(f(2, z − 1, x3 − 1, . . . , xk − 1), f(dz/2e +
1, dz/2e, x3 − dz/2e, . . . , xk − dz/2e) ≤ dz/2e − 1. By Case
1, we know that f(dz/2e + 1, dz/2e, x3 − dz/2e, . . . , xk −
dz/2e) = dz/2e + 1. So, we cannot have f(2, z − 1, x3 −
1, . . . , xk − 1) = 1. It follows that f(2, z − 1, x3 −
1, . . . , xk − 1) = 3, and since there is an arc from this
vertex to f(1, z2, x3, . . . , xk) and, by the inductive hypothesis,
f(1, z2, x3, . . . , xk) = 1, we get a contradiction.

Case 3: x1 is the left-most element of x1, . . . , xk, but is not
equal to 1.

In this case we know that d(f(1, x2 − x1, . . . , xk −
x1), f(x1, . . . , xk)) ≤ x1 − 1, by Case 2 we know that
f(1, x2 − x1, . . . , xk − x1) = 1 it then follows that
f(x1, . . . , xk) ≤ x1. Since we have already seen that
f(x1, . . . , xk) ≥ x1, because x1 is the left-most element, it
immediately follows that f(x1, . . . , xk) = x1. This proves the
claim.

3) EGP Methodology via Galois correspondence:
The following is a restatement of the backward inclusion of

the well-known Galois correspondence Inv(sPol(B)) = 〈B〉pH

holding for finite structures B [13]. This direction can be proved
by induction on the term-complexity of ϕ ∈ 〈B〉pH.

Lemma 52. Let B be a finite structure and suppose there
is a k-ary surjective polymorphism of B that [pointwise]



maps the tuples (x1
1, . . . , x

r
1), . . . , (x1

k, . . . , x
r
k) to (y1, . . . , yr).

Let ϕ be an r-ary relation from 〈B〉pH. If ϕ holds on each
of (x1

1, . . . , x
r
1), . . . , (x1

k, . . . , x
r
k) in B, then ϕ holds on

(y1, . . . , yr) in B.

Together with the definition of a generating set, it can be
used to derive Corollary 9.

MATERIAL OMITTED FROM § IV.

IV-A Games, adversaries and reactive composition

Theorem 26. Let ϕ be a pH-sentence with m universal
variables. Let A be an adversary and Ωm a set of adversaries,
both of length m.

If A |= ϕ�Ωm and A E Ωm then A |= ϕ.

Proof. We sketch the proof for the sake of completeness. Let
Ωm := {B1, . . . ,Bk} and f and gij be as in the definition of
reactive composition and witnessing that A E f(B1, . . . ,Bk).
Assume also that A |= ϕ�Ωm . Given any sequence of play
of the universal player according to the adversary A , that
is v1 is played as a1 ∈ A1, v2 is played as a2 ∈ A2,
etc., we ”go backwards through f” via the maps gij to
pinpoint incrementally for each j ∈ [k] a sequence of play
v1 = g1

j (a1), v2 = g2
j (a1, a2) etc, thus yielding eventually

a tuple that belongs to adversary Bj . After each block of
universal variables, we lookup the winning strategy for the
existential player against each adversary Bj and ”going forward
through f”, that is applying f to the choice of values for
an existential variable against each adversary, we obtain a
consistent choice for this variable against adversary A (this is
because f is a polymorphism and the quantifier-free part of
the sentence ϕ is conjunctive positive). Going back and forth
we obtain eventually an assignment to the existential variables
that is consistent with the universal variables being played as
a1, a2, . . . , am.

Remark 53. In Chen’s work on QCSP, constants are almost
always allowed in the constraint language. This amounts
with our definition to consider a relational structure A with
all its elements named by constants. However, Chen does
not necessarily explicitly add constants to the constraint
language and instead moves rapidly to the algebraic setting
and considers algebra. There he insists on additional technical
conditions which preserves constants. For example in the
above theorem, he has the additional condition that f is an
idempotent polymorphism. Whenever we will use one of Chen’s
result, we will generalise it as above by considering arbitrary
constraint languages and dropping technical conditions such
as idempotency from the statement.

IV-B The Π2-case

Lemma 27 (principle of union). Let Ωm be a set of adversaries
of length m and ϕ a Π2-sentence with m universal variables.
Let O∪Ω :=

⋃
O∈Ω O and Ωtuples := {{t} ∈ O∪Ω} =⋃

O∈Ω{{t} ∈ O}. We have the following equivalence.

A |= ϕ�Ωm ⇐⇒ A |= ϕ�O∪Ω ⇐⇒ A |= ϕ�Ωtuples

The forward implications

A |= ϕ�Ωm =⇒ A |= ϕ�O∪Ω =⇒ A |= ϕ�Ωtuples

of Lemma 27 hold clearly for arbitrary pH-sentences. The
proof is trivial and is a direct consequence of the following
obvious fact.

Fact 54. Let Ωm be a set of adversaries of length m and ϕ a
Π2-sentence with m universal variables.

A |= ϕ�Ωm

m

∀O ∈ Ωm∀t = (a1, . . . , am) ∈ O A |= ϕ�{t}

Remark 55 (following Lemma 27). For a sentence that is
not Π2, this does not necessarily hold. For example, consider
∀x∀y∃z∀w E(x, z) ∧ E(y, z) ∧ E(w, z) on the irreflexive 4-
clique K4. The sentence is not true, but for all individual tuples
(x0, y0, w0), we have ∃z E(x0, z) ∧ E(y0, z) ∧ E(w0, z).

Proposition 28. Let ϕ be a Π2-pH-sentence with m universal
variables. Let A be an adversary and Ωm a set of adversaries,
both of length m.

If A |= ϕ�Ωm and Ωm generates A then A |= ϕ�A .

Proof. The hypothesis that Ωm generates A can be rephrased
as follows : for each tuple t in A , {t} E ft(t1, t2, . . . , tk),
where t1, t2, . . . , tk belong to Ωtuples. To see this, it remains to
note that the suitable gji ’s from the definition of composition
are induced trivially as there is no choice: for every j in [k]
and every i in [m] pick gji (a1, a2, . . . , ai) = ti,j where ti,j
is the ith element of tj . So by Theorem 26, if A |= ϕ�Ωtuples

then A |= ϕ�{t}. As this holds for any tuple t in A , via the
principle of union, it follows that A |= ϕ�A .

Proposition 29. Let Ωm be a set of adversaries of length m
that is not degenerate. The following are equivalent.

(i) for any Π2-pH sentence ψ, A |= ψ�Ωm
implies A |= ψ.

(ii) for any Π2-pH sentence ψ, A |= ψ�O∪Ω
implies A |= ψ.

(iii) for any Π2-pH sentence ψ, A |= ψ�Ωtuples implies A |= ψ.
(iv) A |= ϕO∪Ω,A
(v) A |= ϕΩtuples,A

(vi) Ωm generates Am.

Proof. The first three items are equivalent by Lemma 27 (these
implications have the same conclusion and equivalent premises).
The fourth and fifth items are trivially equivalent since ϕO∪Ω,A
and ϕΩtuples,A are the same sentence.

We show the implication from the third item to the fifth.
By construction, ϕΩtuples,A is Π2 and it suffices to show that
there exists a winning strategy for ∃ against any adversary
{t} in Ωtuples. This is true by construction. Indeed, note that
there exists a winning strategy for ∃ in the (A, ϕΩtuples,A)-game
against adversary {t} iff there is a homomorphism from the
σ(m)-structure

⊗
t′∈Ωtuples

Aµt′ to the σ(m)-structure Aµt
, where

µt : [m]→ A is the map induced naturally by t. The projection
is such a homomorphism.



The penultimate item implies the last one: instantiate the
universal variables of ϕΩtuples,A as given by the m-tuple t and
pick for ft the homomorphism from the product structure
witnessing that ∃ has a winning strategy.

Finally, the last item implies the first one by Proposition 28.

IV-C The unbounded case

Lemma 34. Let Ω be a sequence of sets of adversaries that
has the m-projectivity property for some m ≥ 1 such that
Ωn.m is not degenerate. The following holds.

(i) A |= ψ�Ωn.m , where ψ = ϕn,Ωm,A
(ii) If for every Π2-sentence ψ with m.n universal variables,

it holds that A |= ψ�Ωm.n implies A |= ψ, then A |=
ϕn,Ωm,A.

Proof. The second statement is a direct consequence of the first
one. The proof of the first statement generalises an argument
used in the proof of Proposition 29. Consider any adversary
O in Ωn.m. For convenience, we name the positions of this
adversary in a similar fashion to the universal variables of the
sentence, namely by a pair (i, j) in [n]× [m]. By projectivity,
there exists an adversary O ′ in Ωm which dominates any
adversary Õ in ProjO (obtained by projecting over an arbitrary
choice of one position in each of the m blocks of size n).
In the product structure underlying the formula ϕn,Ωm,A, we
consider the following structure:⊗

µ∈A[n.m]

�O′

AO′,µ

An instantiation of the universal variables of ϕn,Ωm,A
according to some tuple t from the adversary O corresponds
naturally to a map µt from [n]× [m] to A. Observe that our
choice of O ′ ensures that this map µt is consistent with O ′.
An instantiation of the universal variables by µt induces a
σ(n.m)-structure Aµt

and a winning strategy for ∃ amounts to
a homomorphism from the product σ(n.m)-structure underlying
the sentence to this Aµt

. Since the component AO′,µt
of this

product structure is isomorphic to Aµt
, we may take for a

homomorphism the corresponding projection. This shows that
A |= ψ�Ωn.m where ψ = ϕn,Ωm,A.

Theorem 36. (In abstracto.) Let Ω be a projective sequence
of adversaries, none of which are degenerate. The following
are equivalent.

(i) For every m ≥ 1, For every pH-sentence ψ with m
universal variables, A |= ψ�Ωm implies A |= ψ.

(ii) For every m ≥ 1, for every Π2-pH-sentence ψ with m
universal variables, A |= ψ�Ωm

implies A |= ψ.
(iii) For every m ≥ 1, A |= ϕn,Ωm,A.
(iv) For every m ≥ 1, A |= ϕO∪Ω,A.
(v) For every m ≥ 1, Am E Ωm.

(vi) For every m ≥ 1, Ωm generates Am.

Proof. Propositions 29 establishes the equivalence between (ii),
(iv) and (vi) for fixed values of m (numbered there as (i), (iv)
and (vi), respectively).

To lift these relatively trivial equivalences to the general
case, the principle of our current proof no longer preserves
the parameter m. The chain of implications of Theorem 35
translates here, once the parameter is universally quantified, to
the chain of implications

(ii) =⇒ (iii) =⇒ (v) =⇒ (i)

The fact that (i) implies (ii) is trivial6, which concludes the
proof.

Corollary 38. Let A be a structure. Let Ω be a sequence
of non degenerate adversaries that is effective, projective and
polynomially bounded such that Ωm generates Am for every
m ≥ 1.

Let A′ be the structure A, possibly expanded with constants,
at least one for each element that occurs in Ω. The problem
QCSP(A) reduces in polynomial time to CSP(A′). In particular,
if A has all constants, the problem QCSPc(A) reduces in
polynomial time to CSPc(A).

Proof. To check whether a pH-sentence ϕ with m universal
variables holds in A, by Theorem 36, we only need to check
that A |= ϕ�B for every B in Ωm. The reduction proceeds as
in the proof of [10, Lemma 7.12], which we outline here for
completeness.

Pretend first that we reduce A |= ϕ�B to a collection of CSP
instances, one for each tuple t of B, obtained by instantiation
of the universal variables with the corresponding constants. If
x is an existential variable in ϕ, let xt be the corresponding
variable in the CSP instance corresponding to t. We will in
fact enforce equality constraints via renaming of variables to
ensure that we are constructing Skolem functions. For any two
tuples t and t′ in B that agree on their first ` coordinates, let
Y` be the corresponding universal variables of ϕ. For every
existential variable x such that Yx (the universally quantified
variables of ϕ preceding x) is contained in Y`, we identify xt
with xt′ .

IV-D Studies of Collapsibility

p-collapsibility for p > 0

Application 41. A partially reflexive path A (no constants are
present) that is quasi-loop connected has the PGP.

Proof. Indeed, a partially reflexive path A that is quasi-loop
connected has the same QCSP as a partially reflexive path
that is loop-connected B [9] since for some ra > 0 there is

6We note in passing and for purely pedagogical reason that the implication (v)
to (vi) is also trivial, while the natural implication (iii) to (iv) will appear as
an evidence to the reader once the definition of the canonical sentences is
digested.



a surjective homomorphism g from Ara to B and for some
rb > 0 there is a surjective homomorphism h from Brb to
A (see main result of [12]). We also know that B admits a
majority polymorphism m [1] and is therefore 2-collapsible
from any singleton source (see Table I) and that Theorem 39
holds for B. Pick some arbitrary element a in A such that
there is some b in B satisfying g(a, a, . . . , a) = b. Use b as a
source for B.

We proceed to lift (vi) of Corollary 39 from structure B to
A, which we recall here for B : for every m, for every tuple t
in Bm, there is a polymorphism ft of B of arity k and tuples
t1, t2, . . . , tk in Υm,2,b such that ft(t1, t2, . . . , tk) = t.

Let gk denote the surjective homomorphism from (Ara)k to
Bk that applies g blockwise. Going back from ti through g, we
can find ra tuples ti,1, ti,2, . . . , ti,ra all in Υm,2,a (adversaries
based on the domain of A) such that g(ti,1, ti,2, . . . , ti,ra) = ti.
Thus, we can generate any t̃ in B via ft̃ ◦ (gk) from tuples of
Υm,2,a.

Let t̂ be now some tuple of A. By surjectivity of h, let
t̃1, t̃2, . . . , t̃rb be tuples of B such that h(t̃1, t̃2, . . . , t̃rb) = t̂.
The polymorphism of A (ft̃1 ◦ (gk), ft̃2 ◦ (gk), . . . , ft̃rb

◦ (gk))

shows that Υm,2,a generates t̂. This shows that A is also
2-collapsible from a singleton source.

Lemma 42. (Chen’s lemma.) Let A be a structure with a
constant x. if there is a k-ary polymorphism of A such that
f is surjective when restricted at any position to {x}, then A
is k − 1-collapsible from source {x} (i.e. A as a k-ary Hubie
polymorphism).

Proof. We sketch the proof for pedagogical reasons. Via
Corollary 39, it suffices to show that for any m, Am is generated
by Υm,k−1,x (instead of the notion of reactive composition).

Consider adversaries of length m = k for now, that is from
Υk,k−1,x. If we apply f to these k adversaries, we generate
the full adversary Ak. With a picture (adversaries are drawn
as columns):

f


{x} A A . . . A
A {x} A . . . A
...

. . .
...

A . . . A {x} A
A . . . A A {x}

 =


A
A
...
A
A

 = Ak

Expanding these adversaries uniformly with singletons {x} to
the full length m, we may produce an adversary from Υm,k,x.
With a picture for e.g. trailing singletons:

f



{x} A A . . . A
A {x} A . . . A
...

. . .
...

A . . . A {x} A
A . . . A A {x}
{x} {x} {x} . . . {x}

...
...

...
...

...
{x} {x} {x} . . . {x}


=



A
A
...
A
A
{x}

...
{x}



Shifting the first additional row of singletons in the top block,
we will obtain the family of adversaries from Υm,k,x with a
single singleton in the first k + 1 positions. It should be now
clear that we may iterate this process to derive Am eventually
via some term f ′ which is a superposition of f and projections
and is therefore also a polymorphism of A.

Remark 56. An extended analysis of our proof should convince
the careful reader that we may in the same fashion prove
retroactive composition (the polymorphism’s action is deter-
mined for a row independently of the others). Thus, appealing
to the previous section is not essential, though it does allow
for a simpler argument.

Proposition 43. Let x be a constant in A. The following are
equivalent:

(i) A is collapsible from {x}.
(ii) A has a Hubie polymorphism.

Proof. Lemma 42 shows that (ii) implies collapsibility. We
prove the converse.

Assume p-collapsibility. By Fact 30, we may apply Theo-
rem 36. For m = p + 1, item (v) of this theorem states that
there is a polymorphism f witnessing that Ap+1 E Υp+1,p,x

(diagrammatically, we may draw a similar picture to the one
we drew at the beginning of the previous proof). Clearly, f
satisfies (ii).

Theorem 44. (p-Collapsibility from a singleton source). Let
x be a constant in A. The following are equivalent:

(i) A is p-collapsible from {x}.
(ii) For every m ≥ 1, the full adversary Am is reactively

composable from Υm,p,x.
(iii) A is Π2-p-collapsible from {x}.
(iv) For every m ≥ 1, Υm,p,x generates Am.
(v) A models ϕn,Υp+1,p,x,A (which implies that A admits

a particularly well behaved Hubie polymorphism with
source x of arity (p+ 1)np).

Proof. Equivalence of the first four points appears in Corol-
lary 39, as does the equivalence with the statement : For every
m ≥ 1, A models ϕn,Υm,p,x,A. So they imply trivially the last
point by selecting m = p+ 1.

We show that the last point implies the penultimate one. The
proof principle is similar to that of Chen’s Lemma. As we have
argued similarly before, the last point implies the existence of
a polymorphism f . This polymorphism enjoys the following
property (each column represents in fact np coordinates of A):

f


{x} A A . . . A
A {x} A . . . A
...

. . .
...

A . . . A {x} A
A . . . A A {x}

 =


A
A
...
A
A

 = Ap+1

So arguing as in the proof of Chen’s Lemma, we may conclude
similarly that for all m, the full adversary Am is composable
from Υm,p,x.



p-collapsibility for p > 0 from a conservative source
We expand on Remark 46.

Theorem 57 (p-Collapsibility from a conservative source).
Let B be a subset of the domain of a structure A. Assume
further that A is B-conservative.

The following are equivalent:
(i) A is p-collapsible from B.

(ii) A models ϕn,Υp+1,p,B ,A (which implies that A admits
a polymorphism f of arity |B|(p + 1)np that remains
surjective when a position i is fixed to a suitable source
element bi in B, and that this polymorphism witnesses
that Am is reactively composable from Υm,p,B).

Proof. Just like the case of singleton source, almost all the
proof follows directly from Corollary 39 and similarly we shall
only need to prove that the last point implies the penultimate
one via a bootstrapping argument.

As we have argued similarly before, the last point
implies the existence of a polymorphism f . Let
x1, x2, . . . , xb enumerate the elements of the source
B. This polymorphism enjoys the following property
(each column represents in fact np coordinates of A):

f


{x1} {x2} . . . {xb} A A . . . A . . . A A . . . A

A A . . . A {x1} {x2} . . . {xb} . . . A A . . . A
A A . . . A A A . . . A A A . . . A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
A A . . . A A A . . . A . . . {x1} {x2} . . . {xb}

 =


A
A
A

.

.

.
A

 = Ap

By conservativity, f(x1, x2 . . . xb, . . . , x1, x2 . . . xb) ∈ B
and we may assume w.l.o.g. that it is in fact equal
to x1. So adding this line at the bottom of the above
we may obtain the tuple (Ap, x1) and (similarly
for the other permutations of x1 within Ap) :

f


{x1} {x2} . . . {xb} A A . . . A . . . A A . . . A

A A . . . A {x1} {x2} . . . {xb} . . . A A . . . A
A A . . . A A A . . . A A A . . . A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
A A . . . A A A . . . A . . . {x1} {x2} . . . {xb}
{x1} {x2} . . . {xb} {x1} {x2} . . . {xb} . . . {x1} {x2} . . . {xb}

 =


A
A
A

.

.

.
A
{x1}


Now, we may recopy the above picture replacing in all
columns with x1 at least one of the two occurrences
of x1 by A (we have all permutation of tuples of the
form (Ap, x1)). In particular, we may chose for the last
line, the value x2. Assuming w.l.o.g. that the image of
the last line is x2 (by B-conservativity). We obtain that :

f


{x1} {x2} . . . {xb} A A . . . A . . . A A . . . A

A A . . . A {x1} {x2} . . . {xb} . . . A A . . . A
A A . . . A A A . . . A A A . . . A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
A A . . . A A A . . . A . . . {x1} {x2} . . . {xb}
{x2} {x2} . . . {xb} {x2} {x2} . . . {xb} . . . {x2} {x2} . . . {xb}

 =


A
A
A

.

.

.
A
{x2}


Iterating this trick, replacing this time the last occurrence of
x1 and x2 (from our original picture) by x3, we will obtain
a value in B that differs from x1 and x2, say x3 w.l.o.g.
Eventually, we show that Ap+2 may be generated from
Υo+2,p,B . Iterating this bootstrapping technique for higher
arity, we show that for any m, the full adversary Am may be
generated from Υm,p,B .

Corollary 58. Given p ≥ 1, a structure A that is B-
conservative, we may decide whether A is p-collapsible from
source B.

0-collapsibility (proofs were omitted fully from paper)

Theorem 47. Let B be a finite structure. The following are
equivalent.

(i) B is 0-collapsible from source {x} for some x in B.

(ii) B admits a simple A-she.
(iii) B is 0-collapsible for sentences of positive equality free

first-order logic from source {x} for some x in B.

Proof. The last two points are equivalent [17, Theorem 8] (this
result is stated with A-she rather than simple A-she but clearly,
A has an A-she iff it has a simple A-she). The implication (ii)
to (i) follows trivially.

We prove the implication (i) to (ii) by contraposition.
Assume that A = [n] = {1, . . . , n} and suppose that A
has no simple A-she. We will prove that A does not admit
universal relativisation to x for pH-sentences. We assume
also w.l.o.g. that x = 1. Let Ξ be the set of simple A-
shops ξ s.t. ξ(1) = [n]. Since each ξ is not a she of A, we
have a quantifier-free formula with 2n− 1 variables Rξ that
consists of a single positive atom (not all variables need appear
explicitly in this atom) such that A |= Rξ(1, . . . , 1, 2, . . . , n)7,
but A |=/ Rξ(ξ1, . . . , ξn, ξ(2), . . . , ξ(n)) for some ξ1, . . . , ξn ∈
[n] = ξ(1).

This means that for each η : {2, . . . , n} → [n] there is some
2n−1-ary “atom” Rη such thatA |= Rη(1, . . . , 1, 1, 2, . . . , n)8,
but A |=/ Rη(ξ1, . . . , ξn, η(2), . . . , η(n)) for some ξ1, . . . , ξn ∈
[n]. Let E = [n][n−1] denotes the set of ηs.

Suppose we had universal relativisation to 1. Then we know
that

A |=
∧
η∈E

Rη(1, . . . , 1, 1, 2, . . . , n),

that is,

A |= ∃y1, . . . , yn
∧
η∈E

Rη(1, . . . , 1, y1, y2, . . . , yn).

According to relativisation this means also that

A |= ∃y1, . . . , yn∀x1, . . . , xn
∧
η∈E

Rη(x1, . . . , xn, y1, y2, . . . , yn).

But we know

A |= ∀y1, . . . , yn∃x1, . . . , xn
∨
η∈E

¬Rη(x1, . . . , xn, y1, y2, . . . , yn),

since the ηs range over all maps [n] to [n]. Contradiction.

Theorem 48. Let B be a structure. The following are equivalent.
(i) B is 0-collapsible from source C

(ii) B|C| is 0-collapsible from some (any) singleton source x
which is a (rainbow) |C|-tuple containing all elements of
C.

Proof. Let B = {1, 2, . . . , b}.
• (downwards). Let x be |B|-tuple containing all elements

of B, wlog x = (1, 2, . . . , b). Let ϕ be a pH sentence.
Assume that A|B| |= ϕ�(x,x,...,x). Equivalently, for any i
in B, A |= ϕ�(i,i,...,i). Thus, 0-collapsibility from source
B implies that A |= ϕ. Since A and its power satisfy
the same pH-sentences[12], [18] we may conclude that
A|B| |= ϕ.

7There are n ones.
8There are n ones.



• (upwards). Assume that for any i in B, A |= ϕ�(i,i,...,i).
Equivalently, A|B| |= ϕ�(x,x,...,x) where x is any |B|-tuple
containing all elements of B. By assumption, A|B| |= ϕ
and we may conclude that A |= ϕ.


