
Available online at www.sciencedirect.com

2212-8271 Crown Copyright © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the The 5th International Conference on Through-life Engineering Services (TESConf 2016)
doi: 10.1016/j.procir.2016.10.126

 Procedia CIRP 59 (2017) 172 – 177

ScienceDirect

The 5th International Conference on Through-life Engineering Services (TESConf 2016)

Using big-data and surface fitting to improve aircraft safety through the
study of relationships and anomalies

Duncan Woodera, Alan Purvisa,*, Richard McWilliamb

aSchool of Engineering and Computer Science, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
bIBEX Innovations Ltd, Discovery 2 NETPark William Armstrong Way, Sedgefield, County Durham TS21 3FH

∗ Corresponding author. Tel.: +44 (0) 191 33 42437. E-mail address: alan.purvis@durham.ac.uk

Abstract

The aim of this paper is to assess the utility of a Big-Data approach to fault detection for ‘systems of systems’, utilising the derivation of empirical

relationships identified through surface fitting. So-called Big-Data Integrated Vehicle Health Management systems do currently exist, but tend

to analyse the health of vehicle systems based on the behaviour of individual sensors and readings. This paper proposes that it is possible to

consider vehicle systems with a ‘macro’ approach and identify relationships between key variables which may not be initially apparent. Used

in this paper is the open source flight simulation software FlightGear which has previously been assessed for the development of fault detection

systems with positive results. The relationships found can be combined into a model of expected results against which real-time data is tested.

Surface fitting and the assessment of ‘goodness of fit’ is used to identify these relationships. It is proposed that this technique need not be limited

to fault detection in vehicle systems but is also applicable to other vital systems which require redundancy and constant health analysis. This

paper concludes that this method is a viable approach and that relationships can be successfully identified for fault detection purposes.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 5th International Conference on Through-life Engineering Services (TESConf

2016).

Keywords: FlightGear; fault detection; big-data; integrated vehicle health management; surface fitting

1. Introduction

Commercial air travel is an increasily accessible form of

transport and when considered on a fatalities per kilometre ba-

sis, proves to be the safest mainstream form of transport, at only

0.05 deaths per bn km. However, when compared in terms of

fatalities per journey, travelling by air can be seen to be nearly

30 times more dangerous than bus travel at 117 deaths per bn

journeys[1]. Of course, the average person does not take as

many journeys by air as by bus, and, for this reason, the risk is

often seen as reasonable. It could be said that aviation will al-

ways be unsafe, to some degree, due to the nature of the mode of

travel. However, it is the ambition of many organisations, rang-

ing from aircraft manufacturers to airline operators to reach an

optimal level of safety in aviation, whilst maintaining the prof-

itability of the form of travel. It is the aim of this project to

develop theory in fault detection from Big-Data which could

help secure improvements in both of these areas. Big-Data is

the concept of the processing and analysis of extremely large,

multi-variate data-sets, often polled at high frequencies.

It is consistently true that a large proportion of fatalities in

aviation each year can be attributed, at least partially, to me-

chanical error[2]. Fault detection and prediction can be used

to mitigate the risk to human lives caused by the potential for

unexpected or undiscovered mechanical faults. It has been the

opinion of Rolls Royce for some time that a large pool of data

(Big-Data) can be used to both improve efficiency and safety[3]

by finding or predicting the occurrence of faults. However,

the detection of faults within complex engineering systems is a

well-known challenge [4]. The engines which Rolls Royce pro-

duces are each equipped with hundreds of sensors which report

in real-time to engineers based in the UK. During each flight,

terrabytes of data are generated by the aircraft’s engines. These

data are analysed on-board, during the flight, and a distillation

of these data is transmitted to the ground for maintenance action

to either be scheduled in a few weeks time or for a ground crew

to be dispatched immediately to the flight’s destination. Upon

landing, the entire data-set is available for download and anal-

ysis. Anomalies in pressure, temperatures and vibration mea-

surements, amongst others, are investigated as potential indica-

tors that an engine requires service. The expected values are

generated from both simulated and experimental analysis. This

paper suggests that a similar strategy of Big-Data analysis could

be used on the aircraft’s systems as a whole with similar aims.

Although proof of concept is provided by Rolls Royce, the

complexity of modelling and analysing an entire aircraft’s sys-

tems as compared to a single engine is far greater. It is noted

Crown Copyright © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the The 5th International Conference on Through-life Engineering Services (TESConf 2016)

173 Duncan Wooder et al. / Procedia CIRP 59 (2017) 172 – 177

that an engine is subject to relatively constant conditions and

has limited variance in input but an aircraft and its systems ex-

perience a vastly varying set of conditions due to environmental

or consequential factors ranging from the weather and cruising

altitude to the duration and route of a flight. An aircraft is, of

course, also a much larger system than a single engine and, is,

in reality, a ‘system of systems’.

This paper assesses the viability of a Big-Data approach to

fault detection and prediction in aircraft systems and uses the

open-source flight simulation software FlightGear[5] to provide

the modelling of a Boeing 737. Ben Morris (2015) demon-

strates the utility of FlightGear as a Tool for Real-Time Fault
Detection and Self-Repair[6] and proves that its extensive in-

put/output (I/O) features allow for it to be used for this purpose.

Boeing, a leading commercial aircraft manufacturer, uses their

Aircraft Health Management system (AHM system), a form of

Integrated Vehicle Health Management (IVHM) on-board air-

craft to attempt to detect or predict faults in order to increase

safety and reduce the financial and logistical impacts of fail-

ure. This system monitors individual components on a micro

scale to detect or predict failure on an element-by-element ba-

sis. The data generated from individual components is com-

piled into a system report, but the system’s health is not anal-

ysed on a truly macro scale. It is suggested by this paper that

a possible approach to this macro analysis is to use Big-Data-

sets from ’healthy’ flights to form a model of how an aircraft

is expected to behave. Individual, and potentially unexpected,

relationships may then be drawn from these data-sets and flight

data compared in real-time in an attempt to assess the health

of the aircraft as a whole. The aim of this paper is to assess

whether Big-Data from an open-source simulator may be used

as a platform for the development of such a system.

2. Theory

2.1. FlightGear

Key to the operation of FlightGear is the Property Tree. The

Property Tree is described as the ‘central nervous system’ in

documentation[5]. It features a hierarchical tree-like structure

of low-level variables. These variables range in function from

user interface to Flight Dynamic Model (FDM), the modelled

mechanics behind the behaviour of the aircraft. There are nu-

merous different methods of viewing and modifying these vari-

ables. The folders entitled instrumentation and engines include

many of the variables which would be expected to be found

in an avionics computer of a real aircraft. There are approxi-

mately 1000 variables in these folders and it is these upon which

this paper focuses. The input/output capabilities of FlightGear

are comprehensive and designed for implementing configurable

testbeds for a variety of applications [7]. I/O is configurable

from the program launcher, with the ability for the use of stan-

dard or custom protocols. The Generic Protocol[8] allows for

the design of custom packets with chosen fields. It is possi-

ble to select between reading and writing from/to file, serial,

User Datagram Protocol (UDP) or Transmission Control Pro-

tocol (TCP). Since, by default, the FDM updates at 120Hz, it

is possible to import/output variables at this rate. The config-

uration of protocols is facilitated by an easy to read XML file,

examples of which are provided. FlightGear includes the op-

tion for the creation of multiple I/O protocols to allow for the

concurrent transmission/receipt of different data sets.

2.2. Function Fitting

MATLAB includes objects, cfit and sfit, for the creation and

analysis of empirical polynomial curve and surface functions

fitted to a data set. It is possible for the user to select between

curve and line fits as well as choosing the fitType from a va-

riety of options including linear, quadratic or higher polyno-

mial curves/surfaces. MATLAB offers polynomial fitting up

to 9th order terms for curves and 5th order in each direction

for surfaces in 3-dimensional space. With surface fitting, it

is possible to select different orders of approximation for the

x and y dimensions.[9] MATLAB’s fit function uses the linear

least-squares method to minimise the sum of the squares of the

error between each data point and the proposed curve or sur-

face. Equation 1 below shows how the number of coefficients,

k, scales with m (number of variables) and n (order)[10]. It must

be noted that MATLAB’s fit function does not operate beyond

3-dimensions. Instead, lsqnonlin may be used.

Number of terms, k =
(
n + m − 1

m − 1

)
(1)

Equation 1 means that the expression for the number of coef-

ficients needed to be found in a general case of n-dimensional

surface fitting includes a factorial term with both the number of

dimensions and the order of the desired polynomial. For this

reason, the computation time for the finding of a least-squares

fitted surface, which depends linearly on this number of coeffi-

cients to be found and linearly on the number of data points in

the data set being fitted, will scale with factorial order.

The fit object includes the fit result (ie a list of function co-

efficients) as well as ‘goodness of fit’ statistics including the

sum of squares due to error and the root mean squared error or

deviation. A normalized root mean square error can be found

by dividing the RMS error value by the difference between the

maximum and minimum values of the dataset being fitted to

(This method is referred to in this paper as Method A). How-

ever, in this case, it is also possible to normalise the RMS devi-

ation value by the range in the z-direction of the fitted function

over the x, y plane in consideration by replacing the maximum

and minimum values with the maximum and minimum heights

of the surface. Approximated values for these can be found

using the decimation of the surface in two dimensions. (This

method is referred to in this paper as Method B).

3. Methods

3.1. Extracting Data from FlightGear

Before extracting a data-set from FlightGear, it was neces-

sary to plan a ’healthy’ test flight. For this study, a flight be-

tween London Heathrow and Toulouse Blagnac in a Boeing

737-200 was selected. The trip distance was chosen to min-

imise the size of the resultant data-set but maximise the cruise

time of the flight and the aircraft was chosen as it includes the

most developed auto-pilot in FlightGear. The -200 variant of

the 737 was selected as it is optimal for the trip distance. A

174 Duncan Wooder et al. / Procedia CIRP 59 (2017) 172 – 177

flight was made using the Boeing auto-pilot route planning fa-

cility and an Instrument Landing System approach and touch-

down as is common with aircraft in commercial use. Fuel levels

were accurately loaded and simulator realism was maximised,

including randomising meteorological events. Random failures

were disabled.

In order to extract the data-set from FlightGear, it was nec-

essary to code a script in the language NASAL (an object ori-

ented language which directly supports reading/writing prop-

erty tree properties) which FlightGear utilises heavily. The

NASAL console can be used to instruct FlightGear to output

a .xml file with the hierarchical tree structure of the variables

within the instrumentation branch of the property tree in Flight-

Gear [11]. This structure is incompatible with the custom pro-

tocol .xml configuration files, which require a list of full paths

(e.g /instrumentation/airspeed-indicator/indicated-speed-kt) of

each individual variable and, therefore, a custom script to com-

pile a list of full paths from the tree structure was developed in

MATLAB. The code was designed to detect the ‘level’ of the

current branch and compose a full path using the ‘/’ delimiter.

The resulting list of full paths was retained for use in steps of

analysis. At this stage, analysis proved that variables which in-

cluded the text ‘=n’ could be removed to minimise the data-set

without compromising the accuracy of this relationship detec-

tion method. It was noted that the /instrumentation branch does

not include low level variables relating to engine operation (e.g.

N1 and N2) or pitot-static systems (e.g. dynamic pressure and

static pressure). For this reason, individually selected variables

from the branches /engines and /systems were added to the full

paths list and custom protocol configuration for output.

The above mentioned test flight was flown with the start up

argument –generic=*params* (including parameters) to enable

saving to file of the included custom protocol file at 1Hz. This

generated a comma delimited text file which was imported into

MATLAB as an array with columns corresponding to variables

and rows corresponding to the sampled points over time. This

array was temporally decimated by approximately 10 times to

reduce computation time for correlation and fit functions. The

variable property path names were also subjected to a keyword

exclusion filter for terms such as ‘freq’ and ‘encoder’ to exclude

variables which would not show any meaningful relationships.

In order to test relationships in real-time, a UDP connection

was coded in MATLAB to interface with current figures.

3.2. Finding Empirical Relationships

Ben Morris (2015)[6] shows that in an avionics system, there

are ratios of variables which remain constant in healthy sys-

tems. This current paper suggests that these same relationships

may be considered in a different manner. For a bi-variate data-

set, if the ratio between variables remains constant temporally

then when the variables are plotted as x and y respectively, a

linear relationship will be observed, as can be seen with the

relationship between barometric altitude and GPS altitude. The

gradient (dy/dx) of this line is equal to a constant similar to that

which Morris found and tested. The expected value of a vari-

able plotted on the y axis may be found using a linear equation.

This mathematical relationship may be used in a fault detec-

tion routine to validate real-time data. However, this does not

allow for an order of relationship higher than linear between

the two variables and does not test variables which may depend

on more than one other variable. In order to address the first

point, a non-linear bi-variate Big-Data approach to relationship

detection and evaluation is suggested.

It should be noted that the selected variable ratios in Mor-

ris’ work are chosen using existing knowledge of flight systems

and are specific to aviation. It is the aim of this current paper to

present a Big-Data fault detection technique which is compati-

ble with any system, given a ‘healthy’ data-set. For this reason,

algorithms are used for each step of filtering and evaluating pos-

sible relationships.

3.2.1. Bi-Variate Approach
Section 3.1 describes how a multi-variate, high frequency

data-set was generated for a ‘healthy’ test flight. Using this

data array, a list of all possible permutations of two variables

was generated using two nested for loops. Permutations were

selected rather than combinations because whether a variable is

assigned to x or to y is significant in a bi-variate curve fitting.

This looping structure was then used to compute fitted curves

and their goodness of fit statistics (including RMS error and

sum of squares error) for the bi-variate data. A cfit MATLAB

object was accessed using structure notation to access coeffi-

cients and RMS error values. The coefficients are ordered such

that f (x) = p1 × x2 + p2 × x + p3.

RMS data in its original form is dimensional (ie the RMS

average error of identically well-fitting graphs with different

y dimensions will be different). Therefore, it is important to

normalise this data for each bi-variate permutation. Section

2.2 demonstrates two methods of how to do so. In this 2D

case, Method A is sufficient. Values of Normalised RMS Error

(NRMSE) vary in magnitude between around ×10−10 to 0.5.

This 2D array was sorted in MATLAB using the default sort
function. Upon analysis of the sorted NRMSE array, it was

clear that many of the low normalised RMS error values are

due to direct coded correlations between variables in the sim-

ulator. For the purpose of this study, these are not of interest

and were excluded or ‘filtered’. Analysis allowed focus to be

placed upon those relationships with significant quadratic terms

and, following further filtering, a series of valid relationships of

interest is found. The relationship between GPS Altitude and

Barometric Altitude is an example of such a relationship.

3.2.2. Tri-Variate Approach
Section 3.2.1 briefly explains the method of drawing bi-

variate relationships using a Big-Data approach to fitting func-

tions. Although it is possible to link this approach to the meth-

ods of Morris (2015)[6], the approach must be extended in di-

mensions in order for an automated process of relationship de-

tection to be possible. Morris uses techniques of combining two

or more variables in order to create normalised variables which

may be monitored. As an example, a plot is used where the x-

axis represents a ratio of variables a and b and the y-axis a ratio

of variables c and d. This may be considered instead as a fitted

4-dimensional function (ie one variable expressed as a function

of three other variables). This current paper proposes that it is

possible to extend this process to m-dimensions (or, into an m-

variable case). The approximation order may also be extended

to be of nth order.

In this current paper, the order of polynomial is limited to

quadratic and a tri-variate approach is set out. This leads to the

175 Duncan Wooder et al. / Procedia CIRP 59 (2017) 172 – 177

necessity to solve for six polynomial coefficients in each tri-

variate combination of variables. MATLAB was also used in

this case, with the use of the parallel processing command par-
for to enable multi-processor support. It is important to note

that in tri-variate analysis, for three variables, the order of vari-

ables assigned to both the x and y dimensions is irrelevant, but

the variable chosen as the z is significant. For this reason, a vari-

ant of combination theory, seen in Equation 2, may be used to

calculate the number of combinations of variables which must

be analysed in this way.

N =
(
n
3

)
× 3 where n = number of variables (2)

Surface Fitting. Prior to the Big-Data function fitting process,

it was important to exclude all variables of an either boolean

(only two unique values) or highly discrete nature (few unique

values) as these do not lead well to surface fitting. To do this,

for each data-set, the number of unique values was calculated

and analysed. Any variables which feature less than 20 unique

values were excluded from the array. The resultant array was of

134 data-sets and with 680 sampled data points for each.

Due to the size in memory of fit and gof structures, it was

important for the function fitting MATLAB code to be saved to

disk regularly during the surface fitting process to prevent the

saturation of RAM. It should be noted that this routine may be

configured to be run on multiple nodes concurrently by chang-

ing starting and ending values. In this case, the availability of

Durham University’s Hamilton High Performance Computing

cluster was exploited to expedite the process.

The resultant RMS error for each surface fit may be nor-

malized individually using Method B in Section 2.2 and com-

piled with the six polynomial coefficients into a similar array

structure to Section 3.2.1. The filtering and evaluation of fits

in tri-variate, 3-dimensional cases is more complicated than

in the above bi-variate example and requires a more detailed

approach. As a comparison of numbers, with a data-set of

134 variables, as in this case, the bi-variate approach considers

17,956 combinations whereas the tri-variate approach considers

1,176,252.

In order to understand the reasoning for steps taken in fil-

tering possible relationships, the desired characteristics of an

ideal result must be appreciated. An ideal quadratic tri-variate

relationship has very low error and, therefore, a high implied

predictability and model reliability. It should be noted that

the known data-points should be distributed relatively evenly

across the surface and the maximum individual point error be

minimal. In reality, it is unlikely that a bi-variate plane over

which data-points are evenly distributed will be found. It was

determined through the analysis of randomly chosen data-set

combinations that a normalised RMS error of below approxi-

mately 0.05 is an acceptable safe threshold. This value ensures

that no unnecessary data analysis is taking place without risking

missing certain combinations which are of acceptable error. For

this reason, after the sorting of combinations by NRMSE data,

the primary combination filtering operation carried out is to ex-

clude combinations with NRMSE values above 0.05. This im-

mediately reduced the number of possible surfaces by 82.76%.

Removing Linear Correlations. Upon analysis of the data-set,

it is clear that a large number of the combinations of variables

result in straight lines in the x, y plane due to linear relation-

ships. These combinations are unwanted, as they suggest that

the x and y variables are directly related and they do not pro-

duce surfaces with well distributed data points. Therefore, the

second filtering procedure which was carried out is designed

to remove data which follows a linear relationship in the x, y
plane. For this, a Pearson correlation coefficient for all possi-

ble bi-variate (2-dimensional) combinations is calculated. This

is not a computationally intensive process as there are only

N =
(

134
2

)
= 8, 911 possible combinations of x and y. His-

tograms allowed insight into the correct value of coefficient

to be used as the threshold. In this case, all x, y relationships

which exhibited correlation coefficients greater than 0.9 were

excluded. This operation reduced the number of surfaces under

analysis by a further 7.78%.

Removing Flat Surfaces. Subsequently, graphical analysis of

random samples from the array of combinations proved that a

large number of surfaces under consideration were flat surfaces

parallel to one axis. These surfaces are of little interest as they

imply a relationship between one of x or y and z but not both.

Although this relationship can be expressed in 3-dimensions, it

is not a true tri-variate relationship and for this reason should be

discarded. In order to identify such flat surfaces parallel to an

axis, but not unintentionally remove surfaces with quadratic-

only relationships, the following method was used. If the z

values at the extremities of a surface are too similar relative

to the total range of the function in z, a flat surface is implied.

Although this holds in strictly linear cases, in quadratic cases

a more complex distinction must be found. In the case of a

quadratic surface, the edge values may be equal but the centre

value much different. For this reason, it was decided to sample

the height in z of the surface in three locations in each dimen-

sion. A normalised comparison between these values can detect

a flat surface.

This filtering process reduced the number of combinations

by a further 89.32%.

Removing poorly distributed surfaces. Many of the remaining

surfaces do not have a sufficient distribution of data over the

x, y plane to enable a useful tri-variate relationship to be drawn.

It is important to exclude these combinations of variables from

analysis without discarding potentially interesting surfaces. In

order to develop a normalised spread coefficient, the concept of

discretisation was used. Each surface was discretised in each

dimension x, y into 14x14 ‘buckets’ or cells. For each bucket, it

was determined whether a data point existed within its coordi-

nates. The ratio of cells with data to cells without data becomes

the determinant for exclusion. Using the analysis of random

samples, 15x15 points (14x14 buckets, as each bucket has two

points in each dimension) was chosen as a suitable level of dis-

cretisation. Histograms were used to select a spread determi-

nant of 0.2 as a threshold value. This filtering process reduced

the number of combinations by a further 75.03%.

Removing surfaces with high point errors. In order for fault

detection to be viable using empirically derived relationships,

it is important that the false positive detection rate is low. For

this to be the case, it is key that there is low individual point

176 Duncan Wooder et al. / Procedia CIRP 59 (2017) 172 – 177

deviation of data points from the surface which represents the

expected response of the system. Some relationships may have

relatively low (acceptable) RMS error but maximum individual

point deviation from the empirically found surface can be large.

In order to exclude combinations by maximum point error, the

values must be normalised. A conservative value of 0.3 was

chosen as the threshold for normalised maximum point error

by histogram analysis. This filtering reduced the number of

combinations under consideration by a further 61.72%.

4. Results and Discussion

After filtering 99.84% of the original 1,176,252 tri-variate

combinations, using the processes described in Section 3, 1,910

remained. As these relationships are empirical, the resultant

models must be tested with more extensive data-sets to truly

validate them (for example, by further flights). However, this

is beyond of the immediate scope of this paper. For the re-

maining relationships, manual intervention was required to se-

lect the most interesting (relevant to fault detection) and viable

combinations with the aid of available data and graphical visu-

alisation. It is important during manual analysis to check the

relationships which the above algorithms and processes select

to ensure that they are physically accurate (i.e. not coinciden-

tal) and of interest. For some variables, it is also useful for the

variable which is represented by the z axis in a surface repre-

sentation to be selected by manual analysis. Although, at this

point, nearly 2,000 relationships remained under analysis, many

of these were related to the same few variables, often air data.

Also, due to the conservative choice of 0.05 NRMS error as a

threshold value, many of these relationships are far too ‘noisy’

to be of use in reality. The methodology of choosing acceptable

relationships involved sorting through the remaining array in

the order of increasing NRMS error. The surface of Indicated

Altitude vs GPS Ground Speed vs Total Pitot Pressure is an

example of a relationship which appears to be near perfect, in

terms of error, but in reality does not correspond to physical re-

lationships. The indicated ground speed occasionally exceeds

1,000kt leading to a false surface being generated. It is clear

upon manual analysis that this data is due to errors in the instan-

taneous GPS speed measurement, but when fitted to a surface,

the result can be deceptive.

Figures 1 and 2 demonstrate two examples of relationships

selected by manual analysis. The low RMS and individual point

error of both surfaces should be noted. Figure 1 shows the re-

lationship between Indicated Speed, Total Pitot Pressure mea-

sured and the True Speed of the aircraft. It is important to note

that in an aircraft, both the indicated speed and the true speed

are important. For example, the true speed corrected for wind

speed is approximately the ground speed and is key for naviga-

tion. The indicated airspeed is important as the flight dynamics

of the aircraft respond directly to it (this is key in stall speed

calculations). The relationship between the two is related to the

altitude of the aircraft, as confirmed by Figure 1. It is, therefore,

likely that further testing would prove this tri-variate empirical

relationship to be useful for the purpose of fault detection in the

calculation of True Speed.

A second example of an empirical tri-variate relationship

found by this paper is shown in Figure 2. Here, the relationship

between Indicated Altitude, True Speed and Indicated Mach is

Fig. 1. Indicated Speed vs Indicated Altitude vs True Speed. Grey surface in-

dicates fitted relationship. Coloured markers indicate original data-set. Marker

colour scale indicates time into flight of data points. z = −15.2−7.19 × 10−4 x+
1.14y + 5.85 × 10−8 x2 + 1.48 × 10−5 xy − 2.99 × 10−4y2

demonstrated. The Indicated Mach number is a ratio of the True

Speed of the aircraft and the speed of sound at that specific al-

titude. The relationship between speed of sound and altitude is

linear up to approximately the operating ceiling of a commer-

cial airliner. Therefore, the gradient of the line connecting data

points of True Speed and Indicated Mach should vary linearly

with an increasing altitude. This is confirmed by the empirical

relationship found and can also be used for fault detection in

the calculation of Indicated Mach.

Multiple relationships similar to both of these example sur-

faces exist due to the characteristics of the air in which flight is

undertaken.

Fig. 2. Indicated Altitude vs True Speed vs Indicated Mach. Grey surface in-

dicates fitted relationship. Coloured markers indicate original data-set. Marker

colour scale indicates time into flight of data points. z = −5.86 × 10−4 −
3.61 × 10−7 x+1.53 × 10−3y+1.57 × 10−11 x2 +6.37 × 10−9 xy−4.49 × 10−8y2

Figure 3 demonstrates how the surfaces derived using the

above methods can be used for fault detection. A drifting-

type fault was injected into the calculation of Mach number at

15 minutes after take-off. The error between the actual value

of Mach number and that injected was increased following a

quadratic relationship with added noise. The deviation of each

point from the expected surface was calculated, normalised and

plotted against time, with healthy deviations included for refer-

ence. An error threshold of 1.5 times the maximum point error

of the healthy data set was selected. The algorithm was set to

flag a fault when two consecutive points breached this threshold

in order to remove natural high frequency variation and discour-

age false positive results.

As seen in Figure 3, the fault detection algorithm detected a

very slowly drifting fault within 30 minutes at an error value

of approximately 0.5% from the healthy value. However, it

177 Duncan Wooder et al. / Procedia CIRP 59 (2017) 172 – 177

should be noted that faults injected with faster drifts were de-

tected in less time and instantaneously occurring faults detected

within one second. A benefit of this detection method is that

faults which occur either gradually or instantaneously can be

detected. These results conclude that this method is not only

viable but has produced meaningful, accurate results. It is sug-

gested that reproducing the process on a more complex data set

of a system involving higher order relationships could allow the

process to be further developed.

Fig. 3. A gradual drifting-type fault in the calculation of Mach number injected

at 15 mins from take-off. Lines show normalised values of deviation from ex-

pected surface and error threshold. Healthy deviations included for reference.

5. Conclusions

This paper concludes that there is value in a Big-Data ap-

proach to fault analysis through the detection of empirical re-

lationships by surface fitting. The filtering process used in this

study was successful in excluding 99.84% of potential variable

combinations automatically. It is observed that this process is

scalable to higher orders, an increased number of dimensions

and a larger number of variables. It is important to note, how-

ever, that the computation time of the learning process is a key

factor in the viability of this process. Computation time scales

with factorial terms of all three of these values and, therefore,

for large models with complex relationships, the computation

time can be extreme. The use of multiple computing nodes

is an obvious solution to this issue although it assumes that a

High Performance Computing cluster is available. In reality,

simplification of the order and/or dependence of the relation-

ships may produce acceptable results and should be attempted

before increased complexity is introduced. Although not tested

specifically in this paper, it is suggested that this approach could

be easily adapted to systems outside of the field of aviation.

This process would be well suited to systems of vital impor-

tance which require constant monitoring and fault detection.

For use in the field of IVHM, it is proposed that relationships

from the processes suggested in this paper may be included in

fault detection routines. Computation power required on-board

for analysis is minimal as the expected value for a function may

be calculated with ease. The results from the fault detection im-

plementation of the theory in this paper show that the relation-

ships detected may be used to detect even slow drifting faults

in a relatively short time. In the calculation of Mach number,

errors of approximately 0.5% were detected by the algorithm.

Furthermore, it is suggested that the analysis of the rate and

direction of deviation away from the surface of the expected

model could be used to determine the exact nature of the fault

to develop a multi-class anomaly detection system. This in-

formation could be integrated into existing systems to alert the

aircrew or the ground-crew, depending on the classification of

the fault. Limitations of this paper include the use of simulated

rather than real-world data for the generation of empirical re-

lationships. A repeat of this study using similar methods but

a real-world data-set would be of value. It should be formally

noted that throughout this paper it is assumed that the highest

order of relationships within the data-set analysed is quadratic

and a limitation of 3-dimensional (tri-variate) analysis imposed.

No relationships are found where there is insufficient data in the

data-set considered. For example, if a relationship holds only at

an altitude of 40,000ft, which the flight in the chosen data-set

does not reach, then this will not present itself as a relationship

found. Furthermore, this paper considers only those relation-

ships which hold for the entirety of a flight (i.e. take-off, cruise

and approach) and does not consider the temporal response of

variables. In further work it could be possible to include a vari-

able of time in the array of variables to seek these temporal re-

lationships, or to separate the model into individual time-based

responses.

Despite the limitations outlined above, this paper proposes

that the detection of empirical relationships using the concept

of Big-Data surface fitting is a viable approach to fault detection

in vital systems.

Acknowledgements

The authors would like to thank Dr Will Coombs and Dr Ian

Jermyn of Durham University for their helpful suggestions.

References

[1] “The risks of travel,” http://www.numberwatch.co.uk/risks of travel.htm,

(Accessed Oct 2015).

[2] “Cause of fatal accidents per decade,” http://www.planecrashinfo.com/

cause.htm, (Accessed Dec 2015).

[3] “How big data drives success at Rolls Royce,”

http://www.forbes.com/sites/bernardmarr/2016/06/01/

how-big-data-drives-success-at-rolls-royce/, (Accessed Oct 2015).

[4] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira, “Tracking probabilistic cor-

relation of monitoring data for fault detection in complex systems,” in In-
ternational Conference on Dependable Systems and Networks (DSN’06),
June 2006, pp. 259–268.

[5] “The flightgear flight simulator project is an open-source, multi-platform,

cooperative flight simulator development project,” http://www.flightgear.

org/, (Accessed Oct 2015).

[6] “Flightgear as a tool for real-time fault detection and self-repair,” http://

www.sciencedirect.com/science/misc/pii/S2212827115008926, (Accessed

Oct 2015).

[7] A. Y. Javaid, W. Sun, and M. Alam, “Uavsim: A simulation testbed for

unmanned aerial vehicle network cyber security analysis,” in 2013 IEEE
Globecom Workshops (GC Wkshps), Dec 2013, pp. 1432–1436.

[8] “Flightgear: Generic protocol,” http://wiki.flightgear.org/

Generic protocol, (Accessed Oct 2015).

[9] “Mathworks: Fit,” http://uk.mathworks.com/help/curvefit/fit.html, (Ac-

cessed Dec 2015).

[10] “Combinatorial analysis, properties,” http://dlmf.nist.gov/26.4, (Accessed

Feb 2016).

[11] J. Zhang, Q. Geng, and Q. Fei, “Uav flight control system modeling and

simulation based on flightgear,” in Automatic Control and Artificial Intelli-
gence (ACAI 2012), International Conference on, March 2012, pp. 2231–

2234.

