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Abstract

For any group G and set A, a cellular automaton over G and A is a transformation
τ : AG → AG defined via a finite neighborhood S ⊆ G (called a memory set of τ) and a
local function µ : AS → A. In this paper, we assume that G and A are both finite and
study various algebraic properties of the finite monoid CA(G,A) consisting of all cellular
automata over G and A. Let ICA(G;A) be the group of invertible cellular automata over
G and A. In the first part, using information on the conjugacy classes of subgroups of G,
we give a detailed description of the structure of ICA(G;A) in terms of direct and wreath
products. In the second part, we study generating sets of CA(G;A). In particular, we
prove that CA(G,A) cannot be generated by cellular automata with small memory set, and,
when G is finite abelian, we determine the minimal size of a set V ⊆ CA(G;A) such that
CA(G;A) = 〈ICA(G;A) ∪ V 〉.

1 Introduction

Cellular automata (CA), first introduced by John von Neumann as an attempt to design self-
reproducing systems, are models of computation with important applications to computer sci-
ence, physics, and theoretical biology. In recent years, the theory of CA has been greatly
enriched with its connections to group theory and topology (see [4] and references therein).
One of the goals of this paper is to embark in the new task of exploring CA from the point of
view of finite group and semigroup theory.

We review the broad definition of CA that appears in [4, Sec. 1.4]. Let G be a group and A
a set. Denote by AG the configuration space, i.e. the set of all functions of the form x : G→ A.
For each g ∈ G, let Rg : G → G be the right multiplication function, i.e. (h)Rg := hg, for any
h ∈ G. We emphasise that we apply functions on the right, while in [4] functions are applied
on the left.

Definition 1. Let G be a group and A a set. A cellular automaton over G and A is a trans-
formation τ : AG → AG such that there is a finite subset S ⊆ G, called a memory set of τ , and
a local function µ : AS → A satisfying

(g)(x)τ = ((Rg ◦ x)|S)µ, ∀x ∈ AG, g ∈ G.
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Most of the classical literature on CA focuses on the case when G = Zd, for d ≥ 1, and A is
a finite set (e.g. see survey [11]).

A semigroup is a set M equipped with an associative binary operation. If there exists an
element id ∈ M such that id ·m = m · id = m, for all m ∈ M , the semigroup M is called a
monoid and id an identity of M . Clearly, the identity of a monoid is always unique.

Let CA(G;A) be the set of all cellular automata over G and A; by [4, Corollary 1.4.11], this
set equipped with the composition of functions is a monoid. Although results on monoids of
CA have appeared in the literature before (see [3, 9, 12]), the algebraic structure of CA(G;A)
remains basically unknown. In particular, the study of CA(G;A), when G and A are both finite,
has been generally disregarded, perhaps because some of the classical questions are trivially
answered (e.g. the Garden of Eden theorems become trivial). However, many new questions,
typical of finite semigroup theory, arise in this setting.

In this paper, we study various algebraic properties of CA(G;A) when G and A are both
finite. First, in Section 2, we introduce notation and review some basic results. In Section 3, we
study the group ICA(G;A) consisting of all invertible CA: we show that its structure is linked
with the number of conjugacy classes of subgroups of G, and we give an explicit decomposition
in terms of direct and wreath products.

In Section 4, we study generating sets of CA(G;A). We prove that CA(G;A) cannot be
generated by CA with small memory sets: if T generates CA(G;A), then T must contain a
cellular automaton with minimal memory set equal to G itself. This result provides a striking
contrast with CA over infinite groups. Finally, when G is finite abelian, we find the smallest size
of a set U ⊆ CA(G;A) such that ICA(G;A) ∪ U generate CA(G;A); this number is known in
semigroup theory as the relative rank of ICA(G;A) in CA(G;A), and it turns out to be related
with the number of edges of the subgroup lattice of G.

2 Basic Results

For any set X, let Tran(X) and Sym(X) be the sets of all functions and bijective functions,
respectively, of the form τ : X → X. Equipped with the composition of functions, Tran(X)
is known as the full transformation monoid on X, while Sym(X) is the symmetric group on
X. When X is finite and |X| = q, we write Tranq and Symq instead of Tran(X) and Sym(X),
respectively.

A finite transformation monoid is simply a submonoid of Tranq, for some q. This type of
monoids has been extensively studied (e.g. see [6] and references therein), and it should be
noted its close relation to finite-state machines.

For the rest of the paper, let G be a finite group of size n and A a finite set of size q. By
Definition 1, it is clear that CA(G;A) ≤ Tran(AG) (we use the symbol “≤” for the submonoid
relation). We may always assume that τ ∈ CA(G;A) has (not necessarily minimal) memory set
S = G, so τ is completely determined by its local function µ : AG → A. Hence, |CA(G;A)| =
qq

n

.
If n = 1, then CA(G;A) = Tran(A), while, if q ≤ 1, then CA(G;A) is the trivial monoid

with one element; henceforth, we assume n ≥ 2 and q ≥ 2. We usually identify A with the set
{0, 1, . . . , q − 1}.

The group G acts on the configuration space AG as follows: for each g ∈ G and x ∈ AG, the
configuration x · g ∈ AG is defined by

(h)x · g = (hg−1)x, ∀h ∈ G.

A transformation τ : AG → AG is G-equivariant if, for all x ∈ AG, g ∈ G,

(x · g)τ = ((x)τ) · g.
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Denote by ICA(G;A) the group of all invertible cellular automata:

ICA(G;A) := {τ ∈ CA(G;A) : ∃φ ∈ CA(G;A) such that τφ = φτ = id}.

Theorem 1. Let G be a finite group and A a finite set.

(i) CA(G;A) = {τ ∈ Tran(AG) : τ is G-equivariant}.

(ii) ICA(G;A) = CA(G;A) ∩ Sym(AG).

Proof. The first part follows by Curtis-Hedlund Theorem (see [4, Theorem 1.8.1]) while the
second part follows by [4, Theorem 1.10.2].

Notation 1. For any x ∈ AG, denote by xG the G-orbit of x on AG:

xG := {x · g : g ∈ G}.

Let O(G;A) be the set of all G-orbits on AG:

O(G;A) := {xG : x ∈ AG}.

Clearly, O(G;A) forms a partition of AG. In general, when X is a set and P is a partition
of X, we say that a transformation monoid M ≤ Tran(X) preserves the partition if, for any
P ∈ P and τ ∈M there is Q ∈ P such that (P )τ ⊆ Q.

Lemma 1. For any x ∈ AG and τ ∈ CA(G;A),

(xG)τ = (x)τG.

In particular, CA(G;A) preserves the partition O(G;A) of AG.

Proof. The result follows by the G-equivariance of τ ∈ CA(G;A).

A configuration x ∈ AG is called constant if (g)x = k ∈ A, for all g ∈ G. In such case, we
usually denote x by k ∈ AG.

Lemma 2. Let τ ∈ CA(G;A) and let k ∈ AG be a constant configuration. Then, (k)τ ∈ AG is

a constant configuration.

Proof. Observe that x ∈ AG is constant if and only if x ·g = x, for all g ∈ G. By G-equivariance,

(k)τ = (k · g)τ = (k)τ · g, ∀g ∈ G.

Hence, (k)τ is constant.

For a monoid M and a subset T ⊆M , denote by CM (T ) the centraliser of T in M :

CM (T ) := {m ∈M : mt = tm,∀t ∈ T}.

If G is abelian, the transformation σg : AG → AG, with g ∈ G, defined by

(x)σg := x · g, ∀x ∈ AG,

is in CA(G;A). It follows by Theorem 1 that CA(G;A) = CTran(AG)(T ), where T := {σg : g ∈
G}.

We use the cyclic notation for the permutations of Sym(AG). If B ⊆ AG and a ∈ AG, we
define the idempotent transformation (B → a) ∈ Tran(AG) by

(x)(B → a) :=

{

a if x ∈ B,

x otherwise,
∀x ∈ AG.

When B = {b} is a singleton, we write (b→ a) instead of ({b} → a).

3



3 The Structure of ICA(G;A)

Let G be a finite group of size n ≥ 2 and A a finite set of size q ≥ 2. We review few basic
concepts about permutation groups (see [5, Ch. 1]). For x ∈ AG, denote by Gx the stabiliser

of x in G:
Gx := {g ∈ G : x · g = x}.

Remark 1. For any subgroup H ≤ G there exists x ∈ AG such that Gx = H; namely, we may
define x : G→ A by

(g)x :=

{

1 if g ∈ H,

0 otherwise,
∀g ∈ G.

Say that two subgroups H1 and H2 of G are conjugate in G if there exists g ∈ G such that
g−1H1g = H2. This defines an equivalence relation on the subgroups of G. Denote by [H] the
conjugacy class of H ≤ G.

We say that the actions of G on two sets Ω and Γ are equivalent if there is a bijection
λ : Ω → Γ such that, for all x ∈ Ω, g ∈ G, we have (x · g)λ = (x)λ · g.

The following is an essential result for our description of the structure of the group of
invertible cellular automata.

Lemma 3. Let G be a finite group of size n ≥ 2 and A a finite set of size q ≥ 2. For any

x, y ∈ AG, there exists τ ∈ ICA(G;A) such that (xG)τ = yG if and only if [Gx] = [Gy].

Proof. By [5, Lemma 1.6B], the actions of G on xG and yG are equivalent if and only if Gx

and Gy are conjugate in G. We claim that the actions of G on xG and yG are equivalent if
and only if there is τ ∈ ICA(G;A) such that (xG)τ = yG. Assume such τ ∈ ICA(G;A) exists.
Then, the restriction λ := τ |xG : xG → yG is the bijection required to show that the actions
of G on xG and yG are equivalent. Conversely, suppose there is a bijection λ : xG → yG such
that (z · g)λ = (z)λ · g, for all z ∈ xG, g ∈ G. Define τ : AG → AG by

(z)τ :=











(z)λ if z ∈ xG,

(z)λ−1 if z ∈ yG,

z otherwise,

∀z ∈ AG.

Clearly, τ is G-equivariant and invertible (in fact, τ = τ−1). Hence τ ∈ ICA(G;A), and it
satisfies (xG)τ = yG.

Corollary 1. Suppose that G is a finite abelian group. For any x, y ∈ AG, there exists τ ∈
ICA(G;A) such that (xG)τ = yG if and only if Gx = Gy.

For any integer α ≥ 2 and any group C, the wreath product of C by Symα is the set

C ≀ Symα := {(v;φ) : v ∈ Cα, φ ∈ Symα}

equipped with the operation

(v;φ) · (w;ψ) = (vwφ;φψ), for any v,w ∈ Cα, φ, ψ ∈ Symα

where φ acts on w by permuting its coordinates:

wφ = (w1, w2, . . . , wα)
φ := (w(1)φ, w(2)φ, . . . , w(α)φ).

See [5, Sec. 2.6] for a more detailed description of the wreath product.
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Notation 2. Let O ∈ O(G;A) be a G-orbit on AG. If G(O) is the pointwise stabiliser of O, i.e.

G(O) :=
⋂

x∈OGx, then G
O := G/G(O) is a group that is isomorphic to a subgroup of Sym(O)

(see [5, p. 17]). Consider the group

C(GO) := {τ |O : O → AG : τ ∈ ICA(G;A) and (O)τ = O}. (1)

By Theorem 1, C(GO) is isomorphic to the centraliser of GO in Sym(O):

C(GO) ∼= CSym(O)(G
O).

Notation 3. Let H be a subgroup of G and [H] its conjugacy class. Define

B[H] := {x ∈ AG : Gx ∈ [H]}.

Note that B[H] is a union of G-orbits and, by the Orbit-Stabiliser Theorem (see [5, Theorem
1.4A]), all the G-orbits contained in B[H] have equal sizes. Define

α[H](G;A) :=
∣

∣

{

O ∈ O(G,A) : O ⊆ B[H]

}∣

∣ .

If r is the number of different conjugacy classes of subgroups of G, observe that

B := {B[H] : H ≤ G}

is a partition of AG with r blocks.

Remark 2. B[G] = {x ∈ AG : x is constant} and α[G](G;A) = q.

Example 1. Let G = Z2 × Z2 be the Klein four-group and A = {0, 1}. As G is abelian,
[H] = {H}, for all H ≤ G. The subgroups of G are

H1 = G, H2 = 〈(1, 0)〉, H3 = 〈(0, 1)〉, H4 = 〈(1, 1)〉, and H5 = 〈(0, 0)〉,

where 〈(a, b)〉 denotes the subgroup generated by (a, b) ∈ G. Any configuration x : G→ A may
be written as a 2 × 2 matrix (xi,j) where xi,j := (i − 1, j − 1)x, i, j ∈ {1, 2}. The G-orbits on
AG are

O1 :=

{(

0 0
0 0

)}

, O2 :=

{(

1 1
1 1

)}

, O3 :=

{(

1 0
1 0

)

,

(

0 1
0 1

)}

,

O4 :=

{(

1 1
0 0

)

,

(

0 0
1 1

)}

, O5 :=

{(

1 0
0 1

)

,

(

0 1
1 0

)}

O6 :=

{(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
0 1

)

,

(

0 0
1 0

)}

,

O7 :=

{(

0 1
1 1

)

,

(

1 0
1 1

)

,

(

1 1
1 0

)

,

(

1 1
0 1

)}

.

Hence,

B[H1] := O1 ∪O2, B[H2] := O3, B[H3] := O4, B[H4] := O5, B[H5] := O6 ∪O7;

α[Hi](G;A) = 2, for i ∈ {1, 5}, and α[Hi](G;A) = 1, for i ∈ {2, 3, 4}.

Remark 3. By Lemma 3, the ICA(G;A)-orbits on AG coincide with the blocks in B, while the
ICA(G;A)-blocks of imprimitivity on each B[H] are the G-orbits contained in B[H].

The following result is a refinement of [12, Theorem 9] and [3, Lemma 4].
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Theorem 2. Let G be a finite group and A a finite set of size q ≥ 2. Let [H1], . . . , [Hr] be
the list of different conjugacy classes of subgroups of G. For each 1 ≤ i ≤ r, fix a G-orbit
Oi ⊆ B[Hi]. Then,

ICA(G;A) ∼=

r
∏

i=1

(

Ci ≀ Symαi

)

,

where Ci := C(GOi) ∼= CSym(Oi)(G
Oi) and αi := α[Hi](G;A).

Proof. Let Bi := B[Hi]. By Lemma 3, ICA(G;A) is contained in the group

r
∏

i=1

Sym(Bi) = Sym(B1)× Sym(B2)× · · · × Sym(Br).

For each 1 ≤ i ≤ r, let Oi be the set of G-orbits contained in Bi (so Oi ∈ Oi). Note that Oi is
a uniform partition of Bi. For any τ ∈ ICA(G;A), Lemma 1 implies that the projection of τ to
Sym(Bi) is contained in

S(Bi,Oi) := {φ ∈ Sym(Bi) : ∀P ∈ Oi, (P )φ ∈ Oi}.

By [2, Lemma 2.1(iv)],
S(Bi,Oi) ∼= Sym(Oi) ≀ Symαi

.

It is well-known that Symαi
is generated by its transpositions. As the invertible cellular au-

tomaton constructed in the proof of Lemma 3 induces a transposition (xG, yG) ∈ Symαi
, with

xG, yG ∈ Oi, we deduce that Symαi
≤ ICA(G;A). The result follows by the construction of

Ci
∼= CSym(Oi)(G

Oi) and Theorem 1.

Corollary 2. Let G be a finite abelian group and A a finite set of size q ≥ 2. Let H1, . . . ,Hr

be the list of different subgroups of G. Then,

ICA(G;A) ∼=

r
∏

i=1

(

(G/Hi) ≀ Symαi

)

,

and |G|αi = |Hi| · |{x ∈ AG : Gx = Hi}|, where αi := α[Hi](G;A).

Proof. By [5, Theorem 4.2A (v)], CSym(Oi)(G
Oi) ∼= GOi ∼= G/Gxi

, where xi ∈ Oi. By Remark
1, the list of pointwise stabilisers coincide with the list of subgroups of G, and, as G is abelian,
[Hi] = {Hi} for all i. Finally, by the Orbit-Stabiliser theorem, every orbit contained inBi = {x ∈

AG : Gx = Hi} has size
|G|
|Hi|

; as these orbits form a partition of Bi, we have |Bi| = αi
|G|
|Hi|

.

Example 2. Let G = Z2 × Z2 and A = {0, 1}. By Example 1,

ICA(G,A) ∼= (Z2)
4 × (G ≀ Sym2).

4 Generating Sets of of CA(G;A)

For a monoid M and a subset T ⊆ M , denote by 〈T 〉 the submonoid generated by T , i.e.
smallest submonoid of M containing T . Say that T is a generating set of M if M = 〈T 〉; in this
case, every element of M is expressible as a word in the elements of T (we use the convention
that the empty word is the identity).

Define the kernel of a transformation τ : X → X, denoted by ker(τ), as the partition of X
induced by the equivalence relation {(x, y) ∈ X2 : (x)τ = (y)τ}. For example, ker(φ) = {{x} :
x ∈ X}, for any φ ∈ Sym(X), while ker(y → z) = {{y, z}, {x} : x ∈ X \ {y, z}}, for y, z ∈ X,
y 6= z.

6



A large part of the classical research on CA has been focused on CA with small memory
sets. In some cases, such as the elementary Rule 110, or John Conway’s Game of Life, these
CA are known to be Turing complete. In a striking contrast, when G and A are both finite,
CA with small memory sets are insufficient to generate the monoid CA(G;A).

Theorem 3. Let G be a finite group of size n ≥ 2 and A a finite set of size q ≥ 2. Let T be a

generating set of CA(G;A). Then, there exists τ ∈ T with minimal memory set S = G.

Proof. Suppose that T is a generating set of CA(G,A) such that each of its elements has minimal
memory set of size at most n − 1. Consider the idempotent σ := (0 → 1) ∈ CA(G,A), where
0,1 ∈ AG are different constant configurations. Then, σ = τ1τ2 . . . τℓ, for some τi ∈ T . By the
definition of σ, there must be 1 ≤ j ≤ ℓ such that ker(τj) = {{0,1}, {x} : x ∈ AG \ {0,1}}. By
Lemma 2, (AG

c )τj ⊆ AG
c and (AG

nc)τj = AG
nc, where

AG
c := {k ∈ AG : k is constant} and AG

nc := {x ∈ AG : x is non-constant}.

Let S ⊆ G and µ : AS → A be the minimal memory set and local function of τ := τj,
respectively. By hypothesis, s := |S| < n. Since the restriction of τ to AG

c is not a bijection,
there exists k ∈ AG

c (defined by (g)k := k ∈ A, ∀g ∈ G) such that k 6∈ (AG
c )τ .

For any x ∈ AG, define the k-weight of x by

|x|k := |{g ∈ G : (g)x 6= k}|.

Consider the sum of the k-weights of all non-constant configurations of AG:

w :=
∑

x∈AG
nc

|x|k = n(q − 1)qn−1 − n(q − 1) = n(q − 1)(qn−1 − 1).

In particular, w
n
is an integer not divisible by q.

For any x ∈ AG and y ∈ AS , define

Sub(y, x) := |{g ∈ G : y = x|Sg}|.

Then, for any y ∈ AS ,

Ny :=
∑

x∈AG
nc

Sub(y, x) =

{

nqn−s if y ∈ AS
nc,

n(qn−s − 1) if y ∈ AS
c .

Let δ : A2 → {0, 1} be the Kronecker’s delta function. Since (AG
nc)τ = AG

nc, we have

w =
∑

x∈AG
nc

|(x)τ |k =
∑

y∈AS

Ny(1− δ((y)µ, k))

= nqn−s
∑

y∈AS
nc

(1− δ((y)µ, k)) + n(qn−s − 1)
∑

y∈AS
c

(1− δ((y)µ, k)).

Because k 6∈ (AG
c )τ , we know that (y)µ 6= k for all y ∈ AS

c . Therefore,

w

n
= qn−s

∑

y∈AS
nc

(1− δ(y)µ,k) + (qn−s − 1)q.

As s < n, this implies that w
n
is an integer divisible by q, which is a contradiction.

7



One of the fundamental problems in the study of a finite monoid M is the determination of
the cardinality of a smallest generating subset of M ; this is called the rank of M and denoted
by Rank(M):

Rank(M) := min{|T | : T ⊆M and 〈T 〉 =M}.

It is well-known that, if X is any finite set, the rank of the full transformation monoid Tran(X)
is 3, while the rank of the symmetric group Sym(X) is 2 (see [6, Ch. 3]). Ranks of various finite
monoids have been determined in the literature before (e.g. see [1, 2, 7, 8, 10]).

In [3], the rank of CA(Zn, A), where Zn is the cyclic group of order n, was studied and
determined when n ∈ {p, 2k, 2kp : k ≥ 1, p odd prime}. Moreover, the following problem was
proposed:

Problem 1. For any finite group G and finite set A, determine Rank(CA(G;A)).

For any finite monoidM and U ⊆M , the relative rank of U inM , denoted by Rank(M : U),
is the minimum cardinality of a subset V ⊆ M such that 〈U ∪ V 〉 = M . For example, for any
finite set X,

Rank(Tran(X) : Sym(X)) = 1,

as any τ ∈ Tran(X) with |(X)τ | = |X| − 1 satisfies 〈Sym(X) ∪ {τ}〉 = Tran(X). One of the
main tools that may be used to determine Rank(CA(G;A)) is based on the following result (see
[2, Lemma 3.1]).

Lemma 4. Let G be a finite group and A a finite set. Then,

Rank(CA(G;A)) = Rank(CA(G;A) : ICA(G;A)) + Rank(ICA(G;A)).

We shall determine the relative rank of ICA(G;A) in CA(G;A) for any finite abelian group
G and finite set A. In order to achieve this, we prove two lemmas that hold even when G is
nonabelian and have relevance in their own right.

Lemma 5. Let G be a finite group and A a finite set of size q ≥ 2. Let x ∈ AG. If (xG)τ = xG,
then τ |xG ∈ Sym(xG).

Proof. It is enough to show that τ |xG : xG→ xG is surjective because xG is finite. Let y ∈ xG.
Since (x)τ ∈ xG, there is g ∈ G such that y = (x)τ ·g. By G-equivariance, y = (x ·g)τ ∈ (xG)τ ,
and the result follows.

Notation 4. Denote by CG the set of conjugacy classes of subgroups of G. For any [H1], [H2] ∈
CG, write [H1] ≤ [H2] if H1 ≤ g−1H2g, for some g ∈ G.

Remark 4. The relation ≤ defined above is a well-defined partial order on CG. Clearly, ≤
is reflexive and transitive. In order to show antisymmetry, suppose that [H1] ≤ [H2] and
[H2] ≤ [H1]. Then, H1 ≤ g−1H2g and H2 ≤ f−1H2f , for some f, g ∈ G, which implies that
|H1| ≤ |H2| and |H2| ≤ |H1|. As H1 and H2 are finite, |H1| = |H2|, and H1 = g−1H2g. This
shows that [H1] = [H2].

Lemma 6. Let G be a finite group and A a finite set of size q ≥ 2. Let x, y ∈ AG be such that

xG 6= yG. There exists a non-invertible τ ∈ CA(G;A) such that (xG)τ = yG if and only if

[Gx] ≤ [Gy].

Proof. Suppose that [Gx] ≤ [Gy]. Then, Gx ≤ g−1Gyg, for some g ∈ G. We define an idempo-
tent τx,y : AG → AG that maps xG to yG:

(z)τx,y :=

{

y · gh if z = x · h,

z otherwise,
∀z ∈ AG.

8



We verify that τx,y is well-defined. If x · h1 = x · h2, for hi ∈ G, then h1h
−1
2 ∈ Gx. As

Gx ≤ g−1Gyg, for some s ∈ Gy, we have h1h
−1
2 = g−1sg. Thus, gh1 = sgh2 implies that

y · gh1 = y · gh2, and (x · h1)τ = (x · h2)τ . Clearly, τx,y is non-invertible and G-equivariant, so
τx,y ∈ CA(G;A).

Conversely, suppose there exists τ ∈ CA(G;A) such that (xG)τ = yG. Then, (x)τ = y · h,
for some h ∈ G. Let s ∈ Gx. By G-equivariance,

y · h = (x)τ = (x · s)τ = (x)τ · s = y · hs.

Thus hsh−1 ∈ Gy and s ∈ h−1Gyh. This shows that [Gx] ≤ [Gy].

Corollary 3. Suppose that G is finite abelian. Let x, y ∈ AG be such that xG 6= yG. There

exists τx,y ∈ CA(G;A) such that (x)τx,y = y and (z)τx,y = z for all z ∈ AG \ xG if and only if

Gx ≤ Gy.

Notation 5. Consider the directed graph (CG, EG) with vertex set CG and edge set

EG :=
{

([Hi], [Hj ]) ∈ C2
G : [Hi] ≤ [Hj ]

}

.

When G is abelian, this graph coincides with the lattice of subgroups of G.

Remark 5. Lemma 6 may be restated in terms of EG. By Lemma 5, loops ([Hi], [Hi]) do not
have corresponding non-invertible CA when α[Hi](G;A) = 1.

Theorem 4. Let G be a finite abelian group and A a finite set of size q ≥ 2. Let H1,H2, . . . ,Hr

be the list of different subgroups of G with H1 = G. For each 1 ≤ i ≤ r, let αi := α[Hi](G;A).
Then,

Rank(CA(G;A) : ICA(G;A)) = |EG| −
r

∑

i=2

δ(αi, 1),

where δ : N2 → {0, 1} is Kronecker’s delta function.

Proof. For all 1 ≤ i ≤ r, let Bi := B[Hi]. Fix orbits xiG ⊆ Bi, so Hi = Gxi
. Assume that the

list of subgroups of G is ordered such that

|x1G| ≤ · · · ≤ |xrG|, or, equivalently, |Gx1
| ≥ · · · ≥ |Gxr |.

For every αi ≥ 2, fix orbits yiG ⊆ Bi such that xiG 6= yiG. We claim that CA(G,A) = M :=
〈ICA(G;A) ∪ U〉, where

U :=
{

τxi,xj
: [Gxi

] < [Gxj
]
}

∪ {τxi,yi : αi ≥ 2} ,

and τxi,xj
, τxi,yi are the idempotents defined in Corollary 3. For any τ ∈ CA(G;A), consider

τi ∈ CA(G;A), 1 ≤ i ≤ r, defined by

(x)τi =

{

(x)τ if x ∈ Bi

x otheriwse.

By Lemmas 3 and 6, (Bi)τ ⊆
⋃

j≤iBj for all i. Hence, we have the decomposition

τ = τ1τ2 . . . τr.

For each i, decompose τi further as τi = τ ′iτ
′′
i , where (Bi)τ

′
i ⊆

⋃

j<iBj and (Bi)τ
′′
i ⊆ Bi. We

shall prove that τ ′i ∈M and τ ′′i ∈M .
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1. We show that τ ′i ∈ M . If Bi = ∪αi

s=1Ps is the decomposition of Bi into its G-orbits, we
may write τ ′i = τ ′i |P1

. . . τ ′i |Pαi
, where τ ′i |Ps acts as τ ′i on Ps and fixes everything else. Note

that Qs = (Ps)τ
′
i |Ps is a G-orbit in Bj for some j < i. By Theorem 2, there exist

φs ∈
(

(G/Gxi
) ≀ Symαi

)

×
(

(G/Gxj
) ≀ Symαj

)

≤ ICA(G;A)

such that φs acts as the double transposition (xiG,Ps)(xjG,Qs). Since G/Gxi
and G/Gxj

are transitive on their respective orbits, we may take φs such that (xi)φsτ
′
i |Psφ

−1
s = xj.

Then,
τ ′i |Ps = φ−1

s τxi,xj
φs ∈M.

2. We show τ ′′i ∈ M . In this case, τ ′′i ∈ Tran(Bi). In fact, as τ ′′i preserves the partition of
Bi into G-orbits, Lemma 5 implies that τ ′′i ∈ (G/Gxi

) ≀ Tranαi
. If αi ≥ 2, the semigroup

Tranαi
is generated by Symαi

≤ ICA(G,A) togerher with the idempotent τxi,yi . Hence,
τ ′′i ∈M .

Therefore, we have established that CA(G;A) = 〈ICA(G;A) ∪ U〉.
Suppose now that there exists V ⊆ CA(G;A) such that |V | < |U | and

〈ICA(G;A) ∪ V 〉 = CA(G;A).

Hence, for some τ ∈ U , we must have

V ∩ 〈ICA(G;A), τ〉 = ∅.

If τ = τxi,yi , for some i with αi ≥ 2, this implies that there is no ξ ∈ V with

ker(ξ) =
{

{a, b}, {c} : a ∈ xiG, b ∈ yiG, c ∈ AG \ (xiG ∪ yiG)
}

.

Hence, there is no ξ ∈ 〈ICA(G;A) ∪ V 〉 = CA(G;A) with kernel of this form, which is a
contradiction because τxi,yi itself has kernel of this form. We obtain a similar contradiction if
τ = τxi,xj

with [Gxi
] < [Gxj

].

Corollary 4. Let G be a finite abelian group with Rank(G) = m and A a finite set of size

q ≥ 2. With the notation of Theorem 4,

Rank(CA(G;A)) ≤
r

∑

i=2

mαi + 2r + |EG| − δ(q, 2) −
r

∑

i=2

(3δ(αi, 1) + δ(αi, 2))

≤
r

∑

i=2

mαi + 2r + r2.

Proof. Using the fact Rank((G/Hi) ≀Symαi
) ≤ mαi+2−2δ(αi, 1)− δ(αi, 2) and Rank((G/H1) ≀

Symq) = 2− δ(q, 2), the result follows by Theorem 4, Corollary 2 and Lemma 4.

The bound of Corollary 4 may become tighter if we actually know Rank(G/Hi), for all
Hi ≤ G, as in Example 2.

Example 3. Let G = Z2 × Z2 be the Klein-four group and A = {0, 1}. With the notation of
Example 1, Figure 1 illustrates the Hasse diagram of the subgroup lattice of G (i.e. the actual
lattice of subgroups is the transitive and reflexive closure of this graph).

Hence, by Theorem 4 and Example 2,

Rank(CA(G;A) : ICA(G;A)) = |EG| − 3 = 12− 3 = 9,

Rank(CA(G;A)) ≤ 9 + 9 = 18, as Rank(ICA(G;A)) ≤ 9.
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H5
∼= Z1

H4
∼= Z2H3

∼= Z2H2
∼= Z2

H1 = G

Figure 1: Lattice of subgroups of G = Z2 × Z2.

Because of Theorem 4, it is particularly relevant to determine in which situations α[H](G;A) =
1. We finish this paper with some partial results in this direction that hold for arbitrary finite
groups.

Denote by [G : H] the index of H ≤ G (i.e. the number of cosets of H in G).

Lemma 7. Let G be a finite group and A a finite set of size q ≥ 2. Assume there is H ≤ G
with [G : H] = 2. Then, α[H](G;A) = 1 if and only if q = 2.

Proof. As H ≤ G has index 2, it is normal. Fix s ∈ G \H. Define x ∈ AG by

(g)x =

{

0 if g ∈ H

1 if g ∈ sH = Hs.

Clearly Gx = H and x ∈ B[H].
Suppose first that A = {0, 1}. Let y ∈ B[H]. As H is normal, [H] = {H}, so Gy = H. For

any h ∈ H,
(h)y = (e)y · h−1 = (e)y and (sh)y = (s)y · h−1 = (s)y,

so y is constant on the cosets H and sH = Hs. Therefore, either y = x, or

(g)y =

{

1 if g ∈ H

0 if g ∈ sH = Hs.

In the latter case, y · s = x and y ∈ xG. This shows that there is a unique G-orbit contained in
B[H], so α[H](G;A) = 1.

If |A| ≥ 3, we may use a similar argument as above, except that now y ∈ B[H] may satisfy
(g)y ∈ A \ {0, 1} for all g ∈ H, so y 6∈ xG and α[H](G;A) ≥ 2.

Lemma 8. Let G be a finite group and A a finite set of size q ≥ 2. Suppose there is H ≤ G
such that α[H](G;A) = 1. Then, q | [G : H] = |G|

|H| .

Proof. Let x ∈ B[H] be such that Gx = H. As α[H](G;A) = 1, B[H] = xG. First we show that

x : G→ A is surjective. If (G)x ⊂ A, let a ∈ (G)x and b ∈ A \ (G)x. Define y ∈ AG by

(g)y :=

{

b if (g)x = a

(g)x otherwise.

Then y ∈ B[H], as Gy = Gx, but y 6∈ xG, which is a contradiction. For a ∈ A, let (a)x−1 :=
{g ∈ G : (g)x = a}. Now we show that, for any a, b ∈ A,

|(a)x−1| = |(b)x−1|.
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Suppose that |(a)x−1| < |(b)x−1|. Define z ∈ AG by

(g)z :=











b if (g)x = a

a if (g)x = b

(g)x otherwise.

Again, z ∈ B[H], as Gz = Gx, but z 6∈ xG, which is a contradiction. As x is constant on the
left cosets of H in G, for each a ∈ A, (a)x−1 is a union of left cosets. All cosets have the
same size, so (a)x−1 and (b)x−1 contain the same number of them, for any a, b ∈ A. Therefore,
q | [G : H].

Corollary 5. Let G be a finite abelian group and A a finite set of size q ≥ 2 such that q ∤ |G|.
With the notation of Theorem 4,

Rank(CA(G;A) : ICA(G;A)) = |EG|.
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[1] Araújo, J., Bentz, W., Mitchell, J.D., Schneider, C.: The rank of the semigroup of trans-
formations stabilising a partition of a finite set. Mat. Proc. Camb. Phil. Soc. 159, 339–353
(2015).
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