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Abstract—Smart grid (SG) represents intelligent tech-
nologies used to address the climate change. Demand
side management (DSM) is an essential part of the SG.
This paper establishes a layered model for the DSM.
The model involves three participants: power generators,
including renewable energy sources, demand response
(DR) aggregator, and consumers. The revenue of the DR
aggregator is analyzed. The discomfortable level caused by
the DSM is considered for consumers. This model leads
to a multiobjective (MO) problem. An MO evolutionary
algorithm is used to find the Pareto front, facilitating the
selection of a fair solution. Simulation results illustrate the
feasibility of the proposed approach.

Keywords—Demand side management, demand response
aggregator, multiobjective problem, multiobjective evolu-
tionary algorithm, smart grid.

I. INTRODUCTION

Cimate change is a public concern. To deal with it,
the UK government issued the Carbon Plan in December
2011. The plan aims to achieve at least 30% carbon
emission reductions by 2020, and 80% by 2050 relative
to 1990 level. In the UK, energy supply results in
443 million tons of carbon dioxide emissions [1]. As
such, the UK government encourages innovation in low-
carbon technologies for energy markets [2]. Renewable
energy sources (RESs) can be one of the choices. More
energy is expected to be supplied by the RESs in the
grid, such as wind, photovoltaic, and tidal energy. RESs
have contributed more than 25% of electricity generation
to the UK in the second quarter of 2015, which exceeds
that of the coal [3]. But the time-varying nature of RESs
causes indeterminacy problems to the electricity supply.

The smart grid (SG) is an intelligent power system
that addresses these problems in many aspects. It in-
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volves high-speed bidirectional communication network,
advanced power equipments, advanced control methods,
and advanced decision support systems [4]. Compared to
the conventional power grid, SG has six advantages: 1)
Because of the strong power grid system and technical
support system, it can tolerate different kinds of external
disturbances and attacks. The stability of the grid is
reinforced and improved; 2) It can obtain a panoramic
view of information, and timely discover/foresee the
possibility of failure. When a fault happens, the grid can
quickly isolate it and realize self-recovery to avoid the
blackouts; 3) The control of the grid is more flexible,
and can adapt to a large number of distributed power
supplies, micro power grids and electric vehicles; 4)
Through the modern management technologies, it can
greatly improve the efficiency of power equipments and
reduce the losses of transmission, making the operations
of the grid more economic and efficient; 5) The highly
integrated real-time and non-real-time information can
show a comprehensive and complete grid operation state,
therefore providing decision supports, control schemes
and corresponding response plans; 6) By means of the
two-way interactive service mode, the utility can obtain
consumers’ electricity information in detail to provide
more value-added services; consumers can acknowledge
the real-time status of the power supply ability, power
quality and the price, thus exploiting electric equipments
[5]. Because of the advantages the SG provides, the UK
government had made over £16 billion of investment
between 2010 and 2014. From 2014 to 2020, £34
billion investment is forecast to be put in place [6]. The
government estimated that smart meters will be installed
in every house by 2020.

One important aspect of SG is demand side man-
agement (DSM). Electricity demands always fluctuate
dramatically in some short time frames. To meet the
demand, the system needs to adjust the supply by in-
creasing/decreasing the generation, or adding/curtailing
additional resources (e.g., RESs and energy storages



[7]). Some standby generators may be needed, but they
can yield extra costs and lead to system instability. For
these reasons, the idea of DSM has emerged. DSM
involves combinations of electricity tariffs that are re-
lated to the consumption pattern. Through DSM, the
system can be better balanced while possessing various
benefits [8], e.g., peak clipping, valley filling, load
shifting, strategic conservation, strategic load growth,
and flexible load shaping.

Two types of DSM programs are often considered:
incentive-based program (IBP) and price-based program
(PBP) [9] [10]. An IBP directly provides rewards to
consumers, while a PBP indirectly uses the price signals
to adjust consumers’ power consumption. In an IBP,
direct load control and interruptible/curtailable service
are categorised as classical methods, while emergency
service, demand bidding, capacity market and ancillary
service market are categorized as market-based methods.
In a PBP, price signals are based on the real-time balance
of demand and supply and generation costs. Existing
price mechanisms include time of use price, critical peak
price, extreme day price, and real-time price. Regarding
the DSM in the UK, a Short Term Operating Reserve
program has been operated by National Grid since 2005.
It aims at dealing with the demand shortage and/or
plant unavailability. It is a process of gathering various
existing onsite standby power generators or promoting
the reduction of consumption to offset the extra demand
in times of critical need [11].

When implementing the DSM, the generation side
is not likely to communicate with consumers directly.
For one reason, there will be numerous information
exchanges, which can delay the system response time.
For the other reason, the generation side is designed
to address a large-scale demand, and the effect of
individual’s pattern is almost negligible to the system.
Therefore, the demand response (DR) emerges as an
intermediary between the generation side and consumer
side, establishing more efficient communication between
both sides [12]. The interactions between the genera-
tion side and the DR aggregator are often categorized
as two different types: 1) Mutual interaction, where
information and predicted demand curve are provided
by the generation side in advance. The DR aggregator
then acts as a retailer who buys electricity energy in
a day-ahead market by biding on the bulk and price
of it. 2) Direct interaction, where the generation side
announces that a certain amount of power needs to be
curtailed in particular time slots. The DR aggregator then
attempts to achieve the goal, and if so, the aggregator
can be rewarded by the generation side. In the UK,
the DR aggregator firms alreadly exist, e.g., Flexitricity,
Open Energi, and Kiwi Power. Open Energi works with
hospitals, universities, industries, etc. Kiwi Power works

with hotels, commercial companies, hospitals, etc. A
great potential market is to be expected in the future.

There are a number of studies about DSM and
the DR aggregator. DSM has been proved useful for
the residential sector, commercial sector, and industry
sector [13]–[16]. It has been realized in practice in
recent years, supporting many appliances, such as space
heating [17], water heaters [18], and electric vehicles
[19]. In [12], [14]–[16] and [20], the participation of
DR aggregator was emphasized. In [14], the aggregator
decided whenever to call the critical peak price to
stabilize the system in economic and technical perspec-
tives. In [15], an efficient real-time pricing scheme was
proposed, where the Arrow-d’Aspremont-Gerard-Varet
(AGV) mechanism was used to ensure the truthfulness
of information. Consumers would report the usage plan
to the DR aggregator honestly, otherwise would be
punished. In [16], once the demand and supply were
imbalanced, a signal would be sent to the DR aggregator.
Then the DR aggregator would solve a quadratic prob-
lem. In [12], the DR aggregator sent bidding information
between the generation side and consumers to obtain a
Nash equilibrium. In [20], power generators realized
curtailment targets, and the DR aggregator facilitated
this process by giving rewards to consumers.

While the concepts of DSM and the DR aggregator
have been extensively discussed, related approaches
in the literature suffer from certain drawbacks. For
example, in [17]–[19], the proposed methods need to
acknowledge the complete usage of the current and
future state; otherwise, the adjustment could not be
accomplished. Meanwhile, the safeguard operations for
consumers privacy and system security were not dis-
cussed. In [14]–[16], the DR aggregators were men-
tioned as the intermediary, but the revenue of it was not
considered. In [13], the electricity bill of consumers was
emphasized, but the associated discomfort level was not
taken into account. In [12] and [20], only conventional
generation was considered.

RESs are more and more important for the electricity
generation, but the inherent intermittent characteristic
is the major impediment to their development. This
paper considers wind turbines as one of the genera-
tion methods, and proposes a feasible DSM scheme
to eliminate the fluctuation. The DR aggregator is an
independent unity in the market, and its benefit cannot
be neglected. This paper considers the DR aggregator as
an individual, showing its ability to support the business.
For consumers, the solely consideration of electricity bill
is not enough, and cannot guarantee active participation
of the DSM in real-world situations. The discomfort
level caused by DSM program needs be added as a
factor, represented by a discomfortable function in our
paper.



The rest of the paper is organized as follows. Section
II gives an explanation of the proposed layered model.
This model leads to a multiobjective problem (MOP).
Section III introduces a multiobjective (MO) evolu-
tionary algorithm to solve the aforementioned MOP.
Section IV presents simulation results. Finally, Section
V concludes this paper.

II. MODEL DESCRIPTION

To tackle existing challenges in conventional power
grids, a layered model is proposed as shown in Fig.
1. This model can make the system transparent [12].
Generators are at the first layer. The DR aggregator is
at the second layer and consumers are at the third layer.

Fig. 1. System operation model.

A. Generators

The conventional power generation uses fossil fuels,
like coal, oil and gas, as primary resources. These
resources are limited and will be exhausted some day.
The output power by these sources are predictable
and easy to control. But during the process of power
generation, these sources produce a large amount of
carbon emission and waste, which has a negative impact
on the environment. By contrast, renewable generation
uses RESs as primary resources. These sources are clean
and sustainable, which are preferable to the system.
But the output power by these RESs is intermittent and
susceptible to many external conditions.

On the basis of the different sources, the generation
cost can be calculated in two ways. For conventional
generation, the cost function is assumed to be convex.
As the output power increases, the cost and marginal
cost should also increase. We use t to denote the time
index, and g

t

and c
g

(·) to denote the conventional gener-
ation output power and cost, respectively. For renewable
generation, the cost function is assumed to be fixed. It
means the cost is independent of the output power. The
main cost comes from the installation and maintenance.

We use r
t

and C
r

to denote the renewable generation
output power and cost, respectively. C

r

is assumed to
be a constant. The total generation cost function f

cost

can be expressed as
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The aim of generators is to minimize the generation
cost to satisfy the demand as much as possible. The
DSM can help modify consumers’ power consumption
therefore to obtain a relatively flat pattern. In this
situation, generators can reduce the generation cost. To
reward contribution of the DR aggregator in this process,
generators will give part of the DSM gain to the DR
aggregator. We use g

0

t

to denote the ouput power from
conventional generations after DSM. The reward can be
calculated as
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where ↵ is the reward coefficient and ↵ 2 [0, 1].
Therefore, the objective function for generators becomes

min
g

0
t

f1(g
0

t

) =
X

t2T

[c
g

(g
t

0) + C
r

+ ↵�c
g

(g
t

)] (4)

s.t. 0 6 ↵ 6 1,
X

t2T

g
0

t

=
X

t2T

g
t

, (5)

g
0

t,min

6 g
0

t

6 g
0

t,max

.

B. DR aggregator

The DR aggregator operates in the market as an
individual unit. It can facilitate the DSM by bundling
separated consumers into a group. On one hand, it
provides the DSM service to generators and receives
reward from generators; on the other hand, it persuades
consumers to be involved in the DSM and compensates
consumers for any induced discomfort. The compensa-
tion is related to the generator’ expected output power
and consumers’ demand. The ideal situation for gener-
ators is that demand follows generation rather than the
contrary. The best case for conventional generators is to
produce a constant amount of electricity. It indicates a
relatively stable system, and no need to activate standby
power generators. We use G to denote this constant
output power, and use d

t

and d
0

t

to denote consumers’
demand before and after DSM, respectively. The com-
pensation function is assumed to be concave. As the
difference between generators’ expected output power
and consumers’ demand increases, the corresponding



compensation should decrease. The compensation func-
tion can be written as
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where � and � are compensation coefficients.
The aim of the DR aggregator is to maximize the

net income, pertaining to the received reward from
generators and the given compensation to consumers.
Therefore, the objective function for the DR aggregator
becomes

max
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C. Consumers

We assume consumers are price-sensitive, which
means their electricity consumption can be influenced
by market prices. We also assume a flat price for the
per kWh electricity and there is no conservation for
consumption after DSM. This means the market price
only varies with the compensation that comes from DR
aggregator. Having financial compensation, consumers
are willing to participate in the DSM program. They
would adjust their consumption patterns to a certain
extent according to the command of the DR aggregator.
Because this process would cause inconvenience to
consumers, a function is introduced to quantify the
associated discomfort. The discomfortable function is
assumed to be convex. As the difference between the
demand before the DSM and the demand after the DSM
increases, the corresponding discomfortable level should
increase. The compensation function can be written as
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where � is the discomfortable coefficient for consumers.
Every consumer has their unique consumption habit,
therefore a different coefficient.

The aim of consumers is to maximize the net profit,
pertaining to the received compensation from the DR
aggregator and the corresponding discomfortable caused
by DSM. Therefore, the objective function for con-
sumers becomes

max
d
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III. METHODOLOGY

The objectives described by (4), (8), and (12) lead to
an MOP. We consider three objectives: minimize gen-
eration costs for generators; maximize the net income
for the DR aggregator; and maximize the net profit for
consumers. An MO evolutionary algorithm is modified
from [21] to solve this problem. An approximate Pareto
front can be obtained in the end. To introduce the
algorithm, Pareto terminology is introduced first.

Pareto domination: A point is Pareto dominated if
there exists one point that can provide better perfor-
mance to at least one objective without hurting any other
objectives. A point is nondomiated if it is not dominated
by other points.

Pareto front: The image of all nondominated so-
lutions through the mapping of objective functions is
termed the Pareto front.

Fig. 2. Example of a Pareto front.

Fig. 2 shows an example of the Pareto front of a
minimization problem. In Fig. 2, all points are assumed
to be feasible. Point N is dominated by point P and
point Q. With the same value of f1, point P can provide
a smaller value of f2 than point N . Similarly, with the
same value of f2, point Q can provide a smaller value
of f1 than point N . For points P and Q, they are not
dominated by others. A Pareto front can then be obtained
by connecting all the nondominated points.

To solve the previously mentioned MOP, we propose
an MO evolutionary algorithm described in Fig. 3. De-
scriptions of the pseudo code are presented as follows.

Step 1: Randomly generate solutions S(0) =
(s10, s

2
0, ...s

n

0 ) from interval [s
min

, s
max

].



Input: Objective functions, initial solution size n, and
maximum iteration time t

max

.
Step 1) Initialization: Generate a group of solutions to
form S(0).
Step 2) Selection: Remove dominated solutions from
S(0).
Let t = 0.
While t  t

max

Step 3) Diversification: Apply gene operations to
S(t).
Step 4) Selection: Remove infeasible points and
dominated solutions from S(t).

Let t := t+ 1.
End While
Output: The solution that does not favor any particular
objectives.

Fig. 3. Pseudo code of the proposed MO evolutionary algorithm.

Step 2: Remove dominated individuals from S(0). Let
t = 0.

Step 3: To obtain a diversified solution group, the gene
operations, normally mutation and crossover, are applied
to solutions in S(t).

Step 4: Remove infeasible and dominated solutions
from S(t). Let t := t+ 1.

Stopping criterion: Repeat Steps 3 and 4 until the
current iteration time t reaches the maximum iteration
time t

max

.
Output criterion: A fair solution can be selected

according to

s? = arg max
s2S(t

max

)
min

i=1,2,3

f
i,max

� f
i

(s)

f
i,max

� f
i,min

(14)

This solution can maximize the minimum improvement
in all dimensions.

IV. NUMERICAL RESULTS

This section presents our numerical results to justify
the proposed MO approach. We divided one day into 12
time slots. For customers, we assumed 20% of electricity
demand can be adjusted in different time slots. For
RESs, 100 wind turbines were considered. The output
power r

t

generated from wind turbines can be calculated
from the wind speed according to the experimental
equation [22]

r
t

=
1

2
⇡r2⇢v3

t

C
p

(15)

where r is the blade length, ⇢ is the air density, v
t

is
the wind speed and C

p

is the performance coefficient.
Table I lists other model parameters.

TABLE I
MODEL PARAMETERS

Parameter ↵ � � � ⇢ r

Value 0.4 3 20 500 1.225 20

Fig. 4. Example of the output power [MW] generated from the wind
turbine.

Fig. 4 shows an example of the output power gen-
erated from the wind turbine. It fluctuates dramatically
during one day, and there is no pattern to follow. A
number of factors, e.g., air pressure, temperature, jet
streams, humidity, Rossby waves, weather and season,
can influence the wind speed and, therefore, influence
the output power.

Fig. 5. Daily electricity in the UK, January 2016.

Fig. 5 shows daily electricity demand in the UK,
January 2016 [23]. Generally, there is a peak demand
from 5 pm to 12 pm, and a valley demand from 12
pm to 6 am. We chose two different days, Jan. 1st (a
holiday) and Jan. 29th (a normal working day), as test
subjects and applied the proposed approach.

Fig. 6 and Fig. 7 show the optimized load profile
and referenced load profile on Jan. 1st and Jan. 29th in
the UK, respectively. On both dates, the load profiles
present a relatively flat pattern. The optimized demand
increases during the off-peak time, while the optimized
demand decreases during the peak time. On Jan. 1st,
after the optimization, the valley demand increases from
2.336⇤104 MW to 2.474⇤104 MW, and the peak demand
decreases from 3.641⇤104 MW to 3.421⇤104 MW. The
peak-to-average ratio can be reduced by approximately



Fig. 6. Optimized load profile on January 1st, 2016.

Fig. 7. Optimized load profile on January 29th, 2016.

6.4%. Generation cost can be reduced from £11.213
million to £11.134 million. The DR aggregator can have
a net income of £11542. Customers can save £3711 for
the electricity bill. On Jan. 29th, after the optimization,
the valley demand increases from 2.398⇤104 MW to
2.572⇤104 MW, and the peak demand decreases from
4.398⇤104 MW to 4.142⇤104 MW. The peak-to-average
ratio can be reduced by approximately 6.1%. Generation
cost can be reduced from £15.779 million to £15.65
million. The DR aggregator can have a net income of
£20537. Customers can save £4670 for the electricity
bill. These results fully embody the aim of the proposed
DSM program.

V. CONCLUSION

This paper discussed the MO optimization for the
DSM. First, an overview of the smart grid, DSM and
the DR aggregator was given. A layered model was
then proposed, involving the generators, DR aggregator,
and consumers. Compared to existing studies, the RESs
were considered and the DR aggregator was modelled
as an individual unit. Through the use of proposed MO
evolutionary algorithm, a Pareto front was obtained.
After that, a Pareto optimal solution was selected. Our
numerical results illustrated the effectiveness of the
proposed model and approach to load profile adjustment.
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