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Abstract. We propose an entropy function for simplicial complices. Its
value gives the expected cost of the optimal encoding of sequences of
vertices of the complex, when any two vertices belonging to the same
simplex are indistinguishable. We focus on the computational properties
of the entropy function, showing that it can be computed efficiently.
Several examples over complices consisting of hundreds of simplices show
that the proposed entropy function can be used in the analysis of large
sequences of simplicial complices that often appear in computational
topology applications.
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1 Introduction

In several fields of visual computing, such as computer vision, CAD and graphics,
many applications require the processing of an input in the form of a set of
unorganized points, that is, a finite subset of a metric space, typically R2 or R3.
Often, the first step in the processing pipeline is the construction of a simplicial
complex, or a series of simplicial complices capturing spatial relations of the input
points. Such geometrically constructed simplicial complices commonly used in
practice include the Vietoris-Rips and Čech complices, see for example [15], the
alpha shapes [7] and the witness complices [6, 9].

The two simplest constructions, giving the Vietoris-Rips and the Čech com-
plices, emerged from studies in the field of algebraic topology. In the Vietoris-
Rips construction, we connect two points with an edge if their distance is less
than a fixed ε and the simplices of the complex are the cliques of the resulting
graph. In the Čech construction, the simplices are the sets of vertices that lie
inside a bounding sphere of radius ε.

Notice that the complices constructed in this way, apart from the input point
set which gives their vertex set, also depend on the parameter ε. In applications
where the goal is to extract topological information related to the input point
set, it is quite common to consider sequences of complices corresponding to
different values of ε and to study the evolution of their topological properties
as ε varies [16, 13]. Such investigations led to the development of the notion of
persistence, in the form for example of persistent homology, as one of the main
concepts in the field of computational topology [8, 5]. Indicative of the need for
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computational efficiency, persistent homology calculations based on millions of
distinct complices from the same input point set are now common and thus, the
efficient computation of such series of complices is an active research area [15,
4].

In this paper, our aim it to use information-theoretic tools to study sequences
of geometrically constructed complices corresponding to different values of ε. In
particular, we define an entropy function on simplicial complices; we show that it
can be computed efficiently; and demonstrate that it can be used to find critical
values of ε. Here, the value of ε is seen as a measure of spatial resolution and
thus, we interpret the simplices of the geometrically constructed complices as
sets of indistinguishable points.

The setting of our problem is very similar to one that gave rise to the con-
cept of graph entropy [11] and hypergraph entropy [10]. There, a graph or a
hypergraph describe indistinguishability relations between vertices and the sets
of indistinguishable vertices are derived as the independent sets of the graph or
hypergraph. In contrast, in our approach, the sets of indistinguishable vertices
are readily given as the simplices of the complex. In the next section, immedi-
ately after introducing the proposed simplicial complex entropy, we discuss in
more detail its relation to graph entropy.

2 Simplicial complex entropy

Let V = {v1, . . . , vn} be a point set consisting of n vertices. An abstract simpli-
cial complex C over V is given by its maximal simplices C1, . . . , Cm. These are
nonempty subsets of V whose union is the entire V and none of them is a subset
of another.

We are also given a probability distribution P over V , i.e. non-negative num-
bers p1, . . . , pn and such that

∑n
j=1 pj = 1. Assuming that all points that belong

to the same simplex Ci for some i, 1 ≤ i ≤ m are indistinguishable, we define
the simplicial complex entropy as

H(C,P ) = min
{qi}m

i=1

n∑
j=1

pj log
1∑

i∈Simpl(j)

qi
s.t. (1)

s.t.

m∑
i=1

qi = 1

qi ≥ 0 1 ≤ i ≤ m.

where Simpl (j) denotes the set of simplices containing vertex pj .
The above simplicial complex entropy is similar to the graph entropy [11, 12],

defined over a graph G with a probability distribution P on its vertices, given
by

H(G,P ) = min
a∈V P (G)

∑
pj log

1

aj
(2)
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where V P (G), the vertex packing polytope of a graph G, is the convex hull of
the characteristic vectors of its independent sets.

In its information theoretic interpretation, the graph entropy gives the ex-
pected number of bits per symbol required in an optimal encoding of the in-
formation coming from a source emitting vertices of G under the probability
distribution P , assuming that any two vertices are indistinguishable iff they are
not connected with an edge [12]. In other words, the independent sets of G are
the sets of mutually indistinguishable vertices.

Similarly, the information theoretic interpretation of the proposed simplicial
complex entropy is that of the expected bits per vertex required in an optimal
encoding of the information coming from the same source, under the assump-
tion that the sets of mutually indistinguishable vertices are exactly the simplices.
That is, the entropy gives the average expected compression ratio that can be
achieved by an optimal fuzzy encoder of vertex sequences, if instead of encoding
the actual vertex, each time we encode one of the simplices containing it. More-
over, when the simplices encode spatial information, as for example in the case
of Čech complices, the entropy acquires geometric meaning, that is, it quantifies
the information savings that can be achieved by considering points that are close
enough to be enclosed inside a sphere of radius ε as indistinguishable. We note
however, that in this paper we do not proceed to describe a simplicial complex
encoder, an efficient example of which can be found in [1].

In other information theoretic approaches into the study of simplicial com-
plices or similar geometric structures, [3] defined an entropy function on convex
corners of the non-negative orthant of the k-dimensional Euclidean space Rk

+.
Their construction is less general and as a result the minimising vector of the en-
tropy function is uniquely determined, unlike the qi’s in Eq. 1. In [2] hierarchical
systems modelled as simplicial complices are studied through the maximisation
of a Kullback-Liebler divergence. While in a fashion similar to [2], Eq. 1 could
be written as a mutual information minimisation problem, we note that in [2]
the computational aspects of that optimisation problem are not considered.

While the proposed simplicial complex entropy can be seen as a simplification
of the graph entropy, which however is at least as general. Indeed, on a graph
G we can define a simplicial complex C on the same vertex set as G and its
simplices being the independent sets of G. Then, the graph entropy of G is the
simplicial complex entropy of C. On the other hand, given a simplicial complex
C it is not immediately obvious how one can construct a graph G such that the
simplicial complex entropy of C is the graph entropy of G.

In an abstract context, the proposed simplification might seem quite arbi-
trary: instead of deriving the sets of indistinguishable vertices from the connec-
tivity of a graph, we consider them given in the form of simplices. However, in the
context of geometrically constructed simplicial complices embedded in a metric
space, the simplices are the natural choice of sets of indistinguishable points for
a given spatial resolution ε and there is no need, or indeed an obvious way, to
model the property of indistinguishability in terms of graph connectivity. One
notable exception to this is the special case of Vietoris-Rips complices which we
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discuss next, aiming at further highlighting differences and similarities between
simplicial entropy and graph entropy.

2.1 Example: Vietoris-Rips simplicial complex entropy

In the case of Vietoris Rips complices, there is a straightforward interpretation
of the simplicial complex entropy as graph entropy. Indeed, assume a probability
distribution P on a set of vertices V embedded in a metric space, and assume
that two vertices, are indistiguishable if their distance is less than ε. The graph
G with its edges connecting pairs of distinguishable vertices is the complement
of the underlying graph of the Vietoris-Rips complex constructed on V for the
same ε.

It is easy to see that the independent sets of G are exactly the simplices of the
Vietoris-Rips complex and thus, the graph entropy of G is the simplicial complex
entropy of the Vietoris-Rips complex. Indeed, if there are no edges connecting
points of a subset of V , it means that all distances between these points are less
than ε, therefore they form a simplex of the Vietoris-Rips complex.

The simplicial entropy of the Vietoris-Rips complices has a straightforward
graph entropy interpretation because Vietoris-Rips complices are completely de-
fined by their underlying graph. Indeed, their simplices are the cliques of the
underlying graph. However, this is not generally the case for geometrically con-
structed complices, with the Čech complex being a notable counterexample.

Indeed, consider as V the three vertices of an equilateral triangle of edge-
length 1, embedded in R2. Any pair of vertices corresponds to an edge of the
triangle and has a minimum enclosing sphere of radius 1/2. The V itself has
a minimum enclosing sphere of radius

√
3/3. Thus, for any 1/2 ≤ ε ≤

√
3/3

all three edges of the triangle are simplices of the Čech complex, i.e. pair-wise
indistinguishable, but the triangle itself is not a simplex of the Čech complex.

3 Properties of simplicial complex entropy

Solving the entropy minimisation turns out to be computationally tractable. Let
us denote

Sj (q)
def
=

∑
i∈Simpl(j)

qi

and rewrite Eq. 1 as a maximisation problem with an objective function

f (q)
def
=

n∑
j=1

pj logSj (q) . (3)

We can immediately prove the following

Proposition 1 The objective function in Eq. 3 is concave. The sums Sj (q) are
unique (i.e. the same) for all vectors q where the maximum is attained, while the
set of all maxima is a polyhedron.
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Proof. Let q′ and q′′ be two different feasible vectors. Clearly, the vector

q =
1

2
(q′ + q′′) (4)

is also feasible and

Sj (q) =
1

2
(Sj (q′) + Sj (q′′)) for 1 ≤ j ≤ n (5)

We then have

logSj (q) ≥ 1

2
(logSj (q′) + logSj (q′′)) , (6)

which proves the concavity of the objective function.
Imagine now that q′ and q′′ are two (different) optimal vectors (with f (q′) =

f (q′′)) and moreover there is a j, 1 ≤ j ≤ n such that Sj (q′) 6= Sj (q′′). For
those particular q′ and q′′, Eq. 6 is a strict inequality and after summing up all
inequalities, we get

f (q) >
1

2
(f (q′) + f (q′′)) (7)

which contradicts the optimality of both q′ and q′′. Thus, the sums logSj (q) are
unique over all optimal vectors q.

Finally, if we denote these sums (at an optimum) by sj , 1 ≤ j ≤ n, we notice
that the set of all optimal optimal vectors q is fully described by the following
linear system: ∑

i∈Simpl(j)

qi = sj 1 ≤ j ≤ n

m∑
i=1

qi = 1

qi ≥ 0 1 ≤ i ≤ m.

Let Pts (i) denote the set of vertices of the simplex i. Another useful charac-
terisation of an optimal vector q is given by

Proposition 2 Any optimal vector q satisfies the following “polynomial com-
plementarity” system:∑

j∈Pts(i)

pj
Sj (q)

{
= 1 if qi > 0

≤ 1 if qi = 0
1 ≤ i ≤ m

m∑
i=1

qi = 1

qi ≥ 0 1 ≤ i ≤ m

Proof. The gradient of the objective function, ∇f (q) is ∑
j∈Pts(1)

pj
Sj (q)

, · · ·
∑

j∈Pts(m)

pj
Sj (q)

T

.
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We start with Karush–Kuhn–Tucker conditions (for the maximisation problem)
that an optimal vector q should satisfy:

∑
j∈Pts(i)

pj
Sj (q)

= λ− µi 1 ≤ i ≤ m (8)

m∑
i=1

qi = 1 (9)

qi, µi ≥ 0, qiµi = 0, 1 ≤ i ≤ m (10)

for some λ and µi, 1 ≤ i ≤ m.

We first expand the inner product

〈q,∇f (q)〉 =

m∑
i=1

qi
∑

j∈Pts(i)

pj
Sj (q)

= (11)

=

n∑
j=1

pj
Sj (q)

∑
i∈Simpl(j)

qi =

n∑
j=1

pj = 1. (12)

On the other hand, from Eq. 8, Eq. 9 and Eq. 10, we get

m∑
i=1

qi
∑

j∈Pts(i)

pj
Sj (q)

=

m∑
i=1

qi (λ− µi) = (13)

= λ

m∑
i=1

qi −
m∑
i=1

qiµi = λ, (14)

and thus λ = 1.

3.1 Encoding/decoding accuracy rate

The ambiguity in the description of a point set by a simplicial complex, results
into an error when points are encoded as simplices and then simplices are decoded
back to points. Here, the main motivation for studying the accuracy rate of spe-
cific encoding/decoding processes is the observation that while the optimisation
problem in Eq. 1 has a unique solution, the optimising vector q is not necessarily
unique. Thus, we will use the maximisation of the encoding/decoding accuracy
rate, under maximisation of the entropy, as a second optimisation problem that
will return a unique probability distribution q on the simplices.

We will describe two encoding/decoding strategies, one randomised, which
is the one we will use to produce our examples in Section 4, and an adversarial
which generally results to higher error rates.
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Randomised encoder The encoder gets a point j, 1 ≤ j ≤ n, produced by a
memoryless random source under distribution p, and produces one of the cells
that contains j, under the distribution qi

Sj(q)
for all i ∈ Simpl (j). The overall

probability of seeing cell i as a result is∑
j∈Pts(i)

pj
qi

Sj (q)
= qi

∑
j∈Pts(i)

pj
Sj (q)

= qi (1− µi) = qi (15)

where µi is as in the proof of proposition 2 above and taking into account that
λ = 1, as expected.

The decoder sees a cell i and returns the vertex which according to the
distribution p had the highest probability to have been encoded as i. Thus,
the probability for accurate encoding/decoding, which we maximise through our
choice of qi’s, is

acc =

m∑
i=1

qi
maxj∈Pts(i) pj∑

j∈Pts(i) pj
. (16)

The adversarial encoder We can think of this encoding strategy as a game
between the encoder and the decoder, in which whenever the decoder sees a sim-
plex i, he responds with a guess of a point j ∈ Simpl (i) according to probabilities
rij , rij ≥ 0 and such that∑

j∈Pts(i)

rij = 1 for every 1 ≤ i ≤ m. (17)

These probabilities are known to the encoder, so if the source produced a
point j, the encoder minimises the success rate of the decoder by picking a cell i
that is arg mini∈Simpl(j) rij . In turn, the decoder tries to maximise the accurate
encoding/decoding rate as

acc = max

n∑
j=1

pjrj s.t. (18)

rij ≥ rj 1 ≤ j ≤ n and i ∈ Simpl (j) (19)∑
j∈Pts(i)

rij = 1 1 ≤ i ≤ m (20)

rij ≥ 0 1 ≤ j ≤ n and i ∈ Simpl (j) (21)

4 Examples

The computation of the simplicial complex entropy and the encoding/decoding
accuracy rate were implemented in Matlab. Apart from some code for input/output
operations and simplicial complex representation, fmincon and linprog were di-
rectly used to compute the entropy and the accuracy rate, respectively.

In all examples, we report:
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Fig. 1. The y-axis represents the normalised entropy (blue curve), the accuracy rate
(red curve) and their difference (green curve). The x-axis represents the parameter
ε (radius of the minimal enclosing sphere of a simplex) in the construction of the
Čech complex. Top: The input point set is the 5 × 5 block of vertices of a square
grid of edgelength 0.2 shown in the left. From left to right, uniform random noise
±0.5%,±5% and ±50% of the edgelength was added. The figures represent entropy
and accuracy rate computations on all possible Čech complices for that range of ε,
that is, 768, 746 and 685 distinct Čech complices, respectively. Bottom: As per the
top, but for triangular grid points. The figures correspond to 725, 694 and 672 distinct
Čech complices, respectively.

(i) the normalised entropy, that is, the simplicial complex entropy H(C,P ) di-
vided by the entropy of the vertex set V under the same probability distri-
bution P ,

(ii) the accuracy rate, which correlates nicely with the entropy since the more
bits we use the higher we expect the encoding/decoding accuracy,

(iii) the difference between these two values.

In a first example, Figure 1 (Top) shows the values of these two functions
on Čech complices constructed from vertex sets that are nodes of square grid
of edgelength 0.2 with some added noise. Figure 1 (Bottom) shows a similar
example with the vertices originally being nodes of a triangular grid. In all cases,
the probability distribution P on the vertex set is uniform.

In the case of a square grid without any added noise, as the values of the
parameter ε of the Čech complex construction parameter increase, they reach
the first critical value at ε = 0.1, when edges, i.e. simplices of degree 2, are
formed. The next critical value is ε ' 0.141, where the simplices of degree 4 are
formed, and the next critical value is ε = 0.2 when simplices of degree 5 are
formed. Similarly, the first critical values in the case of points from a triangular
grid are ε = 0.1, when simplices of degree 2 are formed and ε ' 0.115 when
simplices of degree 3 are formed.
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Fig. 2. The axes and the colour of the curves are as per Figure 1. Two left figures:
The input point set of size 50 is a computational solution to the Thomson problem with
uniform noise of ±0.01 units added on each coordinate. In the right figure the input
in an area uniform spherical random sample of the same size. The figures represent
entropy and accuracy rate computations from 2523 and 2661 distinct Čech complices,
respectively. Two right figures: As per the top, with point sets of size 100. Due
to the very large number of distinct Čech complices, each figure represents 100 Čech
complices, corresponding to a uniform sample of values of ε in [0,0.6].

These critical values are shown Figure 1 as sudden drops in the entropy
of the Čech complices constructed on the less noisy data sets. We also notice
simultaneous drops of the accuracy rates since they, as expected, correlate well
with entropy. As the level of noise increases the critical points become less visible
on either of these two curves. However, their difference, shown in green, seems
to be more robust against noise, and moreover, seems to peak at a favorable
place. That is, it peaks in values of ε that would neither return a large number
of non-connected components nor heavily overlapping simplices.

In the second example, the input set is a sample from the unit sphere in
R3. Figure 2 (left) shows results from regular samples of size 50 (top) and 100
(bottom), computed in [14] as solutions to the Thomson problem, with added
uniform noise of ±0.01 units. In [14], the minimum distances between a point and
its nearest neighbour in an optimal solution are ∼ 0.5 and ∼ 0.35, respectively,
and correspond to the steep entropy decreases at the half of these values, i.e.
when the first edges of the Čech complices are formed. Figure 2 (right) shows
results from random, area uniform samples of size 50 (top) and 100 (bottom).
While the input is much less regular than at the left hand side of the figure, the
peaks of the two green curves align well.

In the third example, the initial vertex sets are the nodes of a 4 × 4 square
grid of edgelength 1/3 and of a 4 × 4 × 4 cubic grid of the same edgelength.
Figure 3 (left) shows the results for the square grid, first with added uniform
noise of ±0.01% of the edgelength and then with ±0.1%. Figure 3 (right) shows
the results for the cubic grid, again under noise addition of ±0.01% and ±0.01%
of the edgelength. We notice that green line corresponding to the cubic grid
peaks higher and later than the green line of the square grid, reflecting the
higher dimensionality of the data.

In a fourth example, we solve the optimisation problem for the computation
of the entropy on triangle meshes and show the obtained values of the vector q, as
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Fig. 3. The axes and the colour of the curves are as per Figure 1. Left: The input point
set is a 4 × 4 block of vertices of a square grid of edgelength 1/3 with added uniform
random noise equal to ±0.01% and ±0.1% of the edgelength. The figures represent
entropy and accuracy rate computations on all possible Čech complices for a [0,0.35]
range of ε. Right: As per the left, but the input point set is a 4×4×4 block of vertices
of a cubic grid.

Fig. 4. Two left figures: The values qi in Eq. 1 are color-mapped on the mesh
triangles. Darker colors correspond to higher values. Two right figures: The proba-
bility distribution P on the vertices corresponds to the absolute values of the discrete
Gaussian curvature of the vertices. The two meshes consist of 512 and 1704 triangle,
respectively.

in Eq. 1, color-mapped on the mesh triangles. In Figure 4 (left), the probability
distribution on the mesh vertices is uniform, as it was in all previous examples.
On the right hand side of the figure, the probability distribution follows the
absolute value of the discrete Gaussian curvature of the vertices.

5 Conclusion

We presented an entropy function for simplicial complices which can be seen as
a simplification and generalisation of the graph entropy since all the maximal
sets of indistiguishable points are exactly the maximal simplices of the complex
and do not have to be computed as the independent sets of the graphs, which,
generally, are difficult to characterise. We show that this simplification makes
the simplicial complex entropy a function that can be efficiently computed.

Even though the entropy is defined on abstract simplicial complexes, which
are purely topological structures, in the examples we show that it can be relevant
to geometric applications. For example, by computing the entropy of geometri-
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cally constructed simplicial complices, such as the Čech complices, or by using
geometric properties of an embedded complex, such as a discrete curvature com-
puted on the vertices to obtain a probability distribution on them.

In the future we would like to study in more detail the function given as the
difference between normalised entropy and the decoding accuracy rates, which
seems to be a robust to noise descriptor of an appropriate level of geometric
detail defined by the variable ε of the Čech complex. We would also like to study
the relationship between the accuracy rate of the a randomised encoder we used
here and the that of the adversarial encoder discussed at the end of Section 3.1.
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