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Abstract—Isolated regions and remote islands are facing
problems such as imported fossil-fuel dependency, increasing
electricity prices, and low electricity quality. Isolated microgrids
technologies which integrate large scale of renewable energy
resources, energy storages, flexible loads, traditional fossil-fuel
generators and advanced electric electrical devices have been
seen as the answer the above problems. In addition, a closed-
loop based energy management operation framework is needed
to accommodate the fluctuated renewable energy generation
with a comprehensive energy management optimization strategy
considering integer variables/discrete constraints and complex
operation constraints in generators and energy storage models.
To this end, this paper proposed a model predictive control
(MPC) based energy management and operation framework
for isolated microgrids where the optimal energy management
for the microgrid is formulated as a mixed integer quadratic
programming problem (MIQP). Numerical results demonstrate
the effectiveness of our approach.

Index Terms—Isolated microgrids, renewable energy, model
predictive control.

I. INTRODUCTION

The concept of microgrid has drawn great attention from the
research and industrial community over the last decade, due
to its great potential to reliably and efficiently integrate large
scale renewable energy resources (RESs) into today’s power
system and future smart grid in a distributed way [1]. The
microgrid can be coordinated and perceived as a single unit
by the external grid, and it can be operated in grid-connected
mode and isolated mode.

Isolated microgrids for remote communities are turning to
renewable energy resources and energy storages in order to
reduce the dependency on fossil fuels [2], which can help
improve the power quality, provide spinning reserve, and
reduce the transmission and distribution costs [3]. The energy
storage system and traditional fossil generators are regarded as
two key components to guarantee a stable and reliable isolated
microgrids. However, it is well recognized that the energy
management models for energy storage and fossil generator
are very challenging due to inherent integer variables and
corresponding discrete constraints.

The research on tackling challenges on energy management
system (EMS) for isolated microgrids can be approximately
categorized into two groups: open loop based and closed
loop based strategies. For open loop based strategies, [4]
proposed a mixed-integer linear programming and a virtual
power producer to manage the operation generation and their

load control of isolated microgrids. [4] investigated the impacts
of uncertainty and risk aversion on unit commitment decisions
in isolated power systems with high renewable energy penetra-
tion. [5] proposed an energy management strategy of battery
storage in isolated microgrid where the simulation results
show that the security and reliability of the microgrid can be
improved significantly. Although the above literatures present
valuable insights on isolated microgrids energy management,
they are all open-loop based energy management strategies
and their control performances will degrade sharply when the
renewable energy penetration level increases.

For closed loop based strategy, [6] proposed a mathemati-
cal formulation of a centralized energy management system
for island microgrids, and model predictive control (MPC)
technique is implemented to reduce the negative impacts
introduced by uncertainties of renewable energy generations.
Later, the same author also proposed a stochastic-predictive
energy management system for the isolated microgrids [7].
A combined unit commitment and optimal power flow model
based on MPC implementation is proposed in [8] for inte-
grated energy management in isolated microgrids whereas a
sustainable energy management system considering generation
carbon emission and demand response is proposed in [9]
for isolated microgrids. Note that the above literatures only
consider automatic generation control (AGC) based generators
in their models whereas traditional generators [10] which do
not have automatic generation control (AGC) functions and
usually have discrete model constraints are not considered.

Motivated by the above analysis, in this paper we propose
a comprehensive MPC based energy management framework
for isolated microgrids where all important microgrids com-
ponents (including various types of generators) and their
corresponding key features are modelled. Compared to the
above recent works of isolated microgrids energy management,
the main contributions of our study are summarized as follow:

• We model traditional generators with minimum up/down
times and discrete generation constraints explicitly in
our microgrid energy management framework, which is
currently missing in the existing literatures.

• A comprehensive energy management framework based
on model predictive control is proposed, which simulta-
neously considers generation-side (unit commitment for
all types of generators) and demand-side (smart loads) en-
ergy management problems, as well as charge/discharge



dynamics of energy storage systems under the penetration
of renewable energy resources.

• A comparison study is conducted in this paper to elab-
orate the effectiveness of our proposed approach by
comparing with other state-of-the-art approach.

The remainder of this paper are organized as follows: Sec-
tion II provides the detailed problem formulation for microgrid
energy management model; Section III presents the MPC
based microgrid operation framework; Simulation results are
given in Section IV and this paper is concluded in Section V.

II. PROBLEM FORMULATION

The basic structure of an isolated microgrid discussed in
present paper is illustrated as Fig. 1. This microgrid comprises
RESs such as wind and PV, controllable fossil generators
(CFG)such as diesel and micro-turbines, energy storage sys-
tems (ESSs) such as battery, and smart loads such as critical,
power flexible loads. The high power quality, stable voltage
and frequency, and energy management of the microgrid is
support by EMS through coordinating operation schedules
of traditional fossil generators, charging/discharging actions
of ESSs and the power adjustment of flexible loads. The
optimization and control sequence is calculated according to
power outputs of RESs and load demand. We should note that,
some fossil generators known as traditional discrete output
generators (TDOG), are deployed decades ago, and they do not
have AGC function. Therefore, the power generation schedules
should be operated by corresponding operators. To reduce the
operation burden of such operators, the operation plan of these
generators sent from the EMS is in staircase and discrete form,
and the operation status of the TDOGs will be kept the same
over certain periods.

A. Objective Function

The mathematical formulations of the energy management
problem for isolated microgrid are shown as follows. It aims
to minimize the expected microgrid operation cost CMG.

min
∑T

t=1

{∑N
i=1

[
C
(
Pi,DG(t)

)
+

Cup
i,DG ×max{δi,DG(t) − δi,DG(t− 1), 0} +
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]
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)
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]
+

cO&M
ESS

(
PESSc(t) + PESSd(t)

)
4t +

ccurtF θF (t)lF (t)4t
}

(1)

where T is the control and prediction horizon of the opti-
mization problem; N and M are the number of TDOGs and
AGC based generators respectively. Pi,DG (t) and δi,DG (t) are
power production and running state of the ith TDOG in period
t where Pi,DG (t) is a discrete integer variable and δi,DG (t)
is a binary variable. Cup

i,DG and Cdown
i,DG are the start-up and

shut-down cost coefficients for the ith TDOG. C (Pi,DG (t))
is the fuel cost for the ith TDOG. Pi,AGC (t) and δi,AGC (t)
are the power production and running state of the ith AGC
based generators in period t where Pi,AGC (t) is a continuous
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Fig. 1: Schematic diagram of an isolated microgrid.

variable and δi,AGC (t) is a binary variable. Cup
i,AGC and

Cdown
i,AGC are the start-up and shut-down cost coefficients for

the ith AGC based generators. C (Pi,AGC (t)) is the fuel cost
for the ith AGC based generator. cO&M

ESS is the maintenance
and degradation cost coefficient for ESS unit. PESSc (t) and
PESSd (t) are charging and discharging power at period t
respectively. ccurt

F is the penalty cost coefficient for flexible
loads. θF (t) and lF (t) are the power curtailment ratio and
the forecast flexible load demand in period t respectively. 4t
is the duration of each optimization period.

When the optimization scheme is applied, the total operation
cost over the control horizon is calculated according to Eq.
(1) where relevant constraints are to be shown in the follow-
ing subsection. It is a mixed integer quadratic programming
(MIQP) problem. The first term of Eq.(1) denotes the operation
cost of the TDOG units which includes the fuel consuming
cost, start-up action cost, and shut down action cost; the second
term denotes the operation cost of the AGC based generators
which also includes the fuel consuming cost, start-up action
cost, and shut down action cost; the third term is the operation
and maintenance cost of the ESS units; and the last term is
the flexible power curtailment penalty cost.

B. Constraints

1) Power balance constraint: The essential work of the
isolated microgrid is to guarantee the supply-demand balance
in each period, which is shown as Eq. (2).

N∑
i=1

Pi,DG (t) +

M∑
i=1

Pi,AGC (t) + Pwind (t)+

PPV (t) + PESSd (t) = PESSc (t) + lload (t)

(2)

where Pwind (t), PPV (t) are the power output of wind gener-
ation and PV generation in period t respectively. lload (t) is
the total load demand in period t. The loads in this microgrid
include critical loads and flexible loads as shown in Eq. (3).

lload (t) = lcri (t) + lF (t) (1− θF (t)) (3)

where lcri (t) is the power of critical loads in period t.



2) Load constraints: The operation constraints for different
kinds of loads are shown as follows:

0 ≤ θF (t) ≤ θmax
F (4)

0 ≤ lF (t) ≤ lmax
F (5)

0 ≤ lcri (t) ≤ lmax
cri (6)

where θmax
F , lmax

F are the maximum curtailment ratio and the
maximum power demand of the flexible loads respectively.
lmax
cri is the maximum power demand of the critical loads.

For power flexible loads, the adjustment ratio and power
consumption must be bounded in certain ranges to keep users’
comfort, as shown in Eqs. (4)-(5). We should note that, the
power curtailment for the flexible loads should be punished
with high penalty cost; therefore, the curtailment action will
only be implemented in emergency conditions. For critical
loads, although their demands cannot be adjusted, the forecast
power must be within a certain range to keep the system run
reliably, which is reflected as Eq. (6).

3) ESS operation constraints: ESS units need to satisfy
energy level, charging/ discharging power, operation status,
and energy dynamic varying constraints as Eqs. (7) -(11).

Emin
ESS ≤ EESS(t) ≤ Emax

ESS (7)

δESSc(t)P
min
ESSc ≤ PESSc(t) ≤ δESSc(t)P

max
ESSc (8)

δESSd(t)P
min
ESSd ≤ PESSd(t) ≤ δESSd(t)P

max
ESSd (9)

δESSc(t) + δESSd(t) ≤ 1 (10)

EESS(t+ 1) = EESS(t) +
(
ηESScPESSc(t)− (11)

1/ηESSdPESSd(t)
)
4t− εESS

where EESS (t) is the ESS energy level in period t. ηESSc
and ηESSd are the charge and discharge efficiencies of ESS
respectively. εESS is the self-discharge loss of ESS unit. Pmin

ESSc
and Pmax

ESSc are the minimum and maximum charging power
respectively whereas Pmin

ESSdand Pmax
ESSd are the minimum and

maximum discharging power respectively.
In the above, Eq. (11) indicates that the energy level of

energy storage system at time t+ 1 is equal to that at t plus
the electricity charged minus the electricity discharged and the
electricity loss due to self-discharge. The ESS dynamics model
Eq. (11) can effectively express the mixed logic dynamic
feature of ESS without introducing extra auxiliary variables.

4) Fossil generators: The fossil generators used in this
isolated microgrid have two types: TDOG and AGC based
generators [10]. The first type generators (TDOG) are tra-
ditional generators deployed decades ago, and they must be
operated manually. The power outputs of such generators are
discrete. The second type generators (AGC) are modern gener-
ators, which can be automatic controlled by embedded digital
system. Note that the TDOG units usually have larger output
power than AGC based generators. Therefore, it should include
the minimum up and down time constraints in the model of
TDOG whereas AGC based generators can be frequently start
up and shut down and do not need such constraints.

As a result, for TDOG, it needs to satisfy the power
output, minimum up time, minimum down time, and ramp

up/down power constraints, which are as shown in Eqs. (12)-
(15) respectively.

Pmin
i,DGδi,DG (t) ≤ Pi,DG (t) ≤ δi,DG (t)Pmax

i,DG (12)

δi,DG (t)− δi,DG (t− 1) ≤ δi,DG (τ1) (13)
δi,DG (t− 1)− δi,DG (t) ≤ δi,DG (τ2) (14)

−Ri,DG ≤ Pi,DG (t)− Pi,DG (t− 1) ≤ Ri,DG (15)

where τ1 = t, · · · ,min{t + T up
i,DG − 1, T}, and τ2 =

t, · · · ,min{t+T down
i,DG−1, T} are auxiliary variables and used

for expressing the minimum up and down time constraints
respectively. T up

i,DG and T down
i,DG are the minimum up and down

times of the ith TDOG. Ri,DG is the maximum ramp power;
Pmax
i,DG and Pmin

i,DG are the maximum and minimum power
outputs of the ith TDOG unit respectively.

The AGC based generators needs to satisfy the power
output, and ramp up/down power constraints, as shown in Eqs.
(16)-(17) respectively.

Pmin
i,AGCδi,AGC (t) ≤ Pi,AGC (t) ≤ δi,AGC (t)Pmax

i,AGC (16)

−Ri,AGC ≤ Pi,AGC (t)− Pi,AGC (t− 1) ≤ Ri,AGC (17)

where Ri,AGC is the maximum ramp power of ith AGC based
generator. Pmax

i,AGC and Pmin
i,AGC are maximum and minimum

power outputs of ith AGC based generator respectively.
The fuel cost functions of the TDOGs and the AGC based

generators both can be expressed by quadratic function [11].

C (Pi,DG (t)) = ai,DG(Pi,DG(t))
2+ (18)

bi,DGPi,DG(t) + ci,DG

C (Pi,AGC (t)) = ai,AGC (Pi,AGC (t))
2
+ (19)

bi,AGCPi,AGC (t) + ci,AGC

where ai,DG, bi,DG, ci,DG are the cost coefficients for the ith

TDOG unit respectively, and ai,AGC, bi,AGC, ci,AGC are the cost
coefficients for the ith AGC based generators respectively.

We should note that the power output Pi,DG (t) of the
ith TDOG is a discrete and integer viable. However, the
power output Pi,AGC (t) of the ith AGC based generator
is a continuous variable. Therefore, the optimization model
integrates TDOG unit is more complex than the case with
only AGC based generators.

5) Renewable generations: Due to the forecast uncertain-
ties of RESs generation, to reduce negative impacts introduced
by forecast uncertainties, the forecasts of PV and wind in each
period must be bounded in their rated capacities.

0 ≤ PPV (t) ≤ Pmax
PV (20)

0 ≤ Pwind (t) ≤ Pmax
wind (21)

where Pmax
PV and Pmax

wind are the rated capacities of the PV plant
and wind farm respectively.



In order to promote the power supply capability and reduce
negative impacts introduced by high penetration level of RESs,
additional spinning reserve constraints should be implemented.

N∑
i=1

δi,DG (t)Pmax
i,DG +

N∑
i=1

δi,AGC (t)Pmax
i,AGC + PPV (t) (22)

+Pwind (t) + PESSd (t)− PESSc (t) ≥ (1 + Res) lload (t)

where Res is the spinning reserve coefficient. Eq. (22) indicates
that the maximum power supply ability of isolated microgrid
must be greater than the forecast load demand.

III. MPC BASED ENERGY MANAGEMENT FRAMEWORK

The performance of the traditional open-loop based day-
ahead programming energy management strategy deteriorates
rapidly when the penetration level of the RESs becomes
high due to their intermittent and random nature. The MPC
technique has been widely used in a variety of complex
dynamic system. Recently, MPC also has drawn much at-
tention of the power system community due to it can in-
corporate both forecasts and newly updated information to
decide the future behaviors of system and handle different
kinds of system constraints efficiently. The proposed MPC
based energy management strategy is illustrated in Figure 2,
which consists of two stages: the pre-scheduling stage, and
the real-time power compensation stage. The operation of the
pre-scheduling stage is to determine the microgrid schedule for
time periods from t+1 to t+T by solving Eq. (1) according
to the generation and load forecasts at time t; the operation
of real-time power compensation stage is implemented for
time period t+1 by adjusting operations of flexible units (i.e.
AGC based generators and curtailable loads in this study) to
compensate the power imbalances incurred by the renewable
generation/load forecast error at time period t.

Finally, the detailed MPC based energy management pro-
cedure is given in Algorithm 1.

IV. SIMULATION AND RESULTS

A. Test description

In order to verify the proposed MPC based energy manage-
ment strategy, we consider an isolated microgrid system as
shown in Fig. 1. There are two TDOG units, two AGC based
generators, one battery energy storage system, a wind farm, a
PV plant, several power flexible loads and critical loads.

The simulations are carried out with history data of renew-
able generation/load given as in Fig. 3. The wind, PV and
load data is collected and modified form ELIA, the Belgium’s
electricity transmission system operator [12]. The capacity of
the PV plant is 1.5 MW, the capacity of the wind farm is
1.2 MW, and the maximum load demand is 4 MW. Due to
there is not enough history data of flexible load, we assume
the ratio of power demand of flexible loads in each period to
that of critical loads is 0.4. Further, we assume the maximum
curtailment ratio θmax

F of flexible loads is 0.5.

Fig. 2: Schematic MPC based energy management framework.

Algorithm 1 MPC based energy management procedure

1: Step 1: At the end of time interval t, obtain the forecasts
of RESs generation and load demand for time periods
between t+1 and t+T according their forecasting models.

2: Step 2: Obtain the microgrid control sequence over the
control horizon by solving Eq. (1) based on renewable
energy/demand forecasts and system operation constraints.

3: Step 3: Implement only the first control action of the
control sequence obtained in Step 2 for time period t+1.

4: Step 4: When obtaining the actual RESs generation/load
status at time t+ 1, adjust the real-time power output of
AGC based generators and flexible loads if necessary to
meet the power balance constraint.

5: Step 5: t = t+ 1, go to Step 1 till the end of simulation
time horizon.
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Fig. 3: History data of the microgrid.

The parameters for fossil generators are shown in Table I.
The power varying intervals for both TDOG units are 20 kW.
The spinning reserve ratio for the isolated microgrid is 0.05.

For ESS, the maximum charging/discharging power for
is 300 kW, and the minimum charging/discharging power
is 1 kW. The energy capacity is 800 kWh, and the depth
of discharge (DoD) is 75%. The charging and discharging
efficiencies are both set to 0.95 in this study. The self-discharge
rate is 0.01 kW. We treat each 30 minutes as one time
period. We set the prediction and control horizon to 24 hours
respectively, that is T=48.



TABLE I: Parameters of the fossil generators
Device type Max/Min power Min up/down time Ramp rate Start-up/ shut-down cost Fuel coefficients

TDOG 1 2000/40 4/4 1500 15/6 (10, 0.28, 7× 10−4)
TDOG 2 3000/60 4/4 2000 21/8 (20, 0.36, 8.2× 10−4)
AGC 1 400/5 – 300 6/5 (5, 0.86, 4× 10−3)
AGC 2 100/1 – 100 5/4 (4, 0.74, 1.2× 10−2)
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Fig. 4: Operation schedules of TDOG units under the MPC
strategy and the DAP strategy.

B. Simulation Results

All simulations were run on a PC with Intel(R) Core(TM)
i5-3470 CPU @3.2GHz and 8.00GB memory. The ILOG’s
CPLEX v.12 optimization solver is utilized for solving the
MIQP model.

In order to evaluate the performance of our proposed
method, we will implement the traditional day-ahead program-
ming (DAP) strategy [13] as a benchmark, which also has
two stages: the pre-scheduling stage and the real-time power
compensation stage. Different from MPC based strategy, in the
pre-scheduling stage of DAP, Eq. (1) is only solved once to
obtain the control sequence of microgrid at the beginning of
each day. The real-time compensation stage of DAP is similar
to that of MPC and is omitted here.

The detailed operation schedules for dispatchable units in
the isolated microgrid under MPC strategy and DAP strategy
are shown in Figs. 4 - 6 whereas the corresponding total
energy outputs or charge/discharge are summarized in Table
II. Note that the ‘Difference’ in Table II is calculated using
DAP as the reference.

As illustrated in Figs. 4 and 5, the operation schedules
of TDOG units and ESS unit under MPC strategy are less
fluctuated than those under DAP. In addition, from Table II,
we could see that the total energy generations of TDOG units
and the ESS unit under MPC strategy over the simulation
horizon are more than those under DAP strategy with an
absolute percentage difference of 0.22%, 0.15%, and 2.95%/
3.53% respectively. For ESS unit, due to the energy loss during
charging or discharging action and the self-discharge over the
simulation horizon, the total discharged energy is less than
total charged energy.

Although there exist differences in operation schedules for
MPC strategy and DAP strategy that can be seen from the
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Fig. 5: Operation schedules of ESS unit under the MPC
strategy and the DAP strategy.
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Fig. 6: Operation schedules of AGC based generators under
the MPC strategy and the DAP strategy.

above results of TDOG units and ESS unit, such differences
are not significant. The reason lies in that these units do not
participate in real-time power compensation adjustments. Fur-
ther, the superiority of the MPC strategy can be more clearly
shown by comparing the operation schedules of AGC based
generators (which take part in the real time compensation)
under MPC and DAP, which is shown as Fig. 6.

From Fig. 6, we can find out that operation schedules of
AGC based generators under DAP are far more fluctuated
than those under MPC. For instance, for more than half of
the total simulation horizon (51.8%, i.e. 174 out of 336 total
time periods), power outputs of AGC 1 under DAP are larger
than those under MPC. Furthermore, there are 63 time periods
(almost 19% of total simulation periods) where the power
outputs of AGC 1 under DAP are greater than 150 kW whereas
only 15 time periods (less than 4.5%) happened for AGC 1
under the MPC strategy. In addition, when look at Table II,
we could find out that total energy generations of AGC1 and



TABLE II: Operation details of Dispatchable Units
Device Total Energy Generation or Charge/Discharge Under MPC Total Energy Generation or Charge/Discharge Under DAP Difference (%)

TDOG 1 144370 kWh 144050 kWh 0.22%
TDOG 2 130650 kWh 130450 kWh 0.15%
AGC 1 18640 kWh 19520 kWh –4.51%
AGC 2 6881 kWh 6981 kWh –1.43%

ESS 3942 /3510 kWh 3829/3390 kWh 2.95% / 3.53%

TABLE III: Microrgid operation costs
Strategies Prescheduling costs ($) Total costs ($)
MPC strategy 4.3254× 105 4.3266× 105

DAP strategy 4.2686× 105 4.6118× 105
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Fig. 7: Power mismatch in the isolated microgrid under MPC
strategy and DAP strategy.

AGC2 under MPC over the simulation horizon are less than
than those under DAP with an absolute percentage difference
of 4.51% and 1.43% respectively.

Due to high penalty cost, there are no flexible loads being
curtailed under both strategies. Further, the power mismatch of
the isolated microgrid under MPC and DAP are shown in Fig.
7. Due to the close-loop nature of MPC strategy, the power
mismatch under MCP is much less than DAP. The largest
power mismatch under MPC is less than 20 kW whereas the
largest power mismatch under DAP is greater than 100 kW.

Finally, the operation costs for the isolated microgrid under
MPC strategy and DAP strategy are shown in Table. III.
Table. III indicates that the operation costs of microgrid in the
pre-scheduling stage under DAP strategy and MPC strategy
are almost the same. Actually, the cost in pre-scheduling
stage under DAP (e.g., due to lower energy generations of
TDOG units and charge/discharge energy outputs of ESS unit
under DAP ) is even a little lower than that under MPC.
However, due to the open-loop nature, the negative impacts
introduced by forecast errors under DAP are more significant
than those under MPC, which results in a higher adjustment
operation cost in real-time power compensation stage (e.g.,
due to a much higher energy outputs of real time compensation
adjustment units (AGC)) and therefore a higher total cost under
DAP than that under MPC.

V. CONCLUSIONS

This paper proposes a model predictive control based energy
optimization and scheduling strategy for an isolated microgrid

which has wind and PV based renewable energy resource,
discrete power output and continuous output fossil generators,
energy storage system, and smart loads. The energy manage-
ment model for the isolated microgrid at each time interval can
be denoted as a mixed integer quadratic programming model.
By comparing with the traditional day-ahead programming
based open-loop strategy, simulation results confirm the supe-
riority of the proposed strategy. Future work will be focused
on cooperative operations of multiple isolated microgrids for
maximum utilization of renewable energy resources.
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[6] D. E. Olivares, C. A. Cañizares, and M. Kazerani, “A centralized energy
management system for isolated microgrids,” IEEE Transactions on
smart grid, vol. 5, no. 4, pp. 1864–1875, 2014.

[7] D. E. Olivares, J. D. Lara, C. A. Cañizares, and M. Kazerani,
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