
Robust algorithms with polynomial loss for near-unanimity CSPs∗

Vı́ctor Dalmau† Marcin Kozik‡ Andrei Krokhin§ Konstantin Makarychev¶

Yury Makarychev‖ Jakub Opršal‡

Abstract
An instance of the Constraint Satisfaction Problem (CSP)
is given by a family of constraints on overlapping sets of
variables, and the goal is to assign values from a fixed domain
to the variables so that all constraints are satisfied. In the
optimization version, the goal is to maximize the number
of satisfied constraints. An approximation algorithm for
CSP is called robust if it outputs an assignment satisfying
a (1− g(ε))-fraction of constraints on any (1− ε)-satisfiable
instance, where the loss function g is such that g(ε)→ 0 as
ε→ 0.

We study how the robust approximability of CSPs de-
pends on the set of constraint relations allowed in instances,
the so-called constraint language. All constraint languages
admitting a robust polynomial-time algorithm (with some g)
have been characterised by Barto and Kozik, with the gen-
eral bound on the loss g being doubly exponential, specifi-
cally g(ε) = O((log log(1/ε))/ log(1/ε)). It is natural to ask
when a better loss can be achieved: in particular, polyno-
mial loss g(ε) = O(ε1/k) for some constant k. In this paper,
we consider CSPs with a constraint language having a near-
unanimity polymorphism. We give two randomized robust
algorithms with polynomial loss for such CSPs: one works
for any near-unanimity polymorphism and the parameter k
in the loss depends on the size of the domain and the ar-
ity of the relations in Γ, while the other works for a special
ternary near-unanimity operation called dual discriminator
with k = 2 for any domain size. In the latter case, the CSP
is a common generalisation of Unique Games with a fixed
domain and 2-Sat. In the former case, we use the algebraic
approach to the CSP. Both cases use the standard semidefi-
nite programming relaxation for CSP.

1 Introduction

The constraint satisfaction problem (CSP) provides a
framework in which it is possible to express, in a
natural way, many combinatorial problems encountered
in computer science and AI [17, 19, 26]. An instance of
the CSP consists of a set of variables, a domain of values,
and a set of constraints on combinations of values that

∗Marcin Kozik and Jakub Opršal were partially supported
by the National Science Centre Poland under grant no. UMO-

2014/13/B/ST6/01812; Jakub Opršal has also received funding
from the European Research Council (Grant Agreement no.

681988, CSP-Infinity). Yury Makarychev was partially supported

by NSF awards CAREER CCF-1150062 and IIS-1302662.
†University Pompeu Fabra
‡Jagiellonian University, Kraków
§Durham University
¶Microsoft Research
‖TTIC

can be taken by certain subsets of variables. The basic
aim is then to find an assignment of values to the
variables that satisfies the constraints (decision version)
or that satisfies the maximum number of constraints
(optimization version).

Since CSP-related algorithmic tasks are usually
hard in full generality, a major line of research in CSP
studies how possible algorithmic solutions depend on
the set of relations allowed to specify constraints, the
so-called constraint language, (see, e.g. [10, 17, 19, 26]).
The constraint language is denoted by Γ and the cor-
responding CSP by CSP(Γ). For example, when one
is interested in polynomial-time solvability (to optimal-
ity, for the optimization case), the ultimate sort of re-
sults are dichotomy results [8, 10, 26, 38, 50], pioneered
by [49], which characterise the tractable restrictions and
show that the rest are NP-hard. Classifications with re-
spect to other complexity classes or specific algorithms
are also of interest (e.g. [5, 6, 39, 44]). When approxi-
mating (optimization) CSPs, the goal is to improve, as
much as possible, the quality of approximation that can
be achieved in polynomial time, e.g. [15, 16, 28, 35, 48].
Throughout the paper we assume that P6=NP.

The study of almost satisfiable CSP instances fea-
tures prominently in the approximability literature. On
the hardness side, the notion of approximation resis-
tance (which, intuitively, means that a problem cannot
be approximated better than by just picking a random
assignment, even on almost satisfiable instances) was
much studied recently, e.g. [1, 14, 30, 37]. Many excit-
ing developments in approximability in the last decade
were driven by the Unique Games Conjecture (UGC)
of Khot, see survey [35]. The UGC states that it is
NP-hard to tell almost satisfiable instances of CSP(Γ)
from those where only a small fraction of constraints can
be satisfied, where Γ is the constraint language consist-
ing of all graphs of permutations over a large enough
domain. This conjecture (if true) is known to imply
optimal inapproximability results for many classical op-
timization problems [35]. Moreover, if the UGC is true
then a simple algorithm based on semidefinite program-
ming (SDP) provides the best possible approximation
for all optimization problems CSP(Γ) [48], though the

340 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

exact quality of this approximation is unknown.
On the positive side, Zwick [52] initiated the sys-

tematic study of approximation algorithms which, given
an almost satisfiable instance, find an almost satisfy-
ing assignment. Formally, call a polynomial-time al-
gorithm for CSP robust if, for every ε > 0 and every
(1 − ε)-satisfiable instance (i.e. at most a ε-fraction of
constraints can be removed to make the instance sat-
isfiable), it outputs a (1 − g(ε))-satisfying assignment
(i.e. that fails to satisfy at most a g(ε)-fraction of con-
straints). Here, the loss function g must be such that
g(ε) → 0 as ε → 0. Note that one can without loss
of generality assume that g(0) = 0, that is, a robust
algorithm must return a satisfying assignment for any
satisfiable instance. The running time of the algorithm
should not depend on ε (which is unknown when the al-
gorithm is run). Which problems CSP(Γ) admit robust
algorithms? When such algorithms exist, how does the
best possible loss g depend on Γ?

Related Work In [52], Zwick gave an SDP-based
robust algorithm with g(ε) = O(ε1/3) for 2-Sat and LP-
based robust algorithm with g(ε) = O(1/ log(1/ε)) for
Horn k-Sat. Robust algorithms with g(ε) = O(

√
ε)

were given in [16] for 2-Sat, and in [15] for Unique
Games(q) where q denotes the size of the domain.
For Horn-2-Sat, a robust algorithm with g(ε) = 2ε
was given in [28]. These bounds for Horn k-Sat
(k ≥ 3), Horn 2-Sat, 2-Sat, and Unique Games(q)
are known to be optimal [28, 34, 36], assuming the UGC.

The algebraic approach to CSP [10, 17, 33] has
played a significant role in the recent massive progress
in understanding the landscape of complexity of CSPs.
The key to this approach is the notion of a polymor-
phism, which is an n-ary operation (on the domain)
that preserves the constraint relations. Intuitively, a
polymorphism provides a uniform way to combine n so-
lutions to a system of constraints (say, part of an in-
stance) into a new solution by applying the operation
component-wise. The intention is that the new solu-
tion improves on the initial solutions in some problem-
specific way. Many classifications of CSPs with respect
to some algorithmic property of interest begin by prov-
ing an algebraic classification stating that every con-
straint language either can simulate (in a specific way,
via gadgets, – see e.g. [4, 23, 44] for details) one of a few
specific basic CSPs failing the property of interest or
else has polymorphisms having certain nice properties
(say, satisfying nice equations). Such polymorphisms
are then used to obtain positive results, e.g. to design
and analyze algorithms. Getting such a positive result
in full generality in one step is usually hard, so (typ-
ically) progress is made through a series of intermedi-

ate steps where the result is obtained for increasingly
weaker algebraic conditions. The algebraic approach
was originally developed for the decision CSP [10, 33],
and it was adapted for robust satisfiability in [23].

One such algebraic classification result [45] gives an
algebraic condition (referred to as SD(∧) or “omitting
types 1 and 2” – see [5, 41, 45] for details) equivalent to
the inability to simulate Lin-p – systems of linear equa-
tions over Zp, p prime, with 3 variable per equation.
H̊astad’s celebrated result [29] implies that Lin-p does
not admit a robust algorithm (for any g). This result
carries over to all constraint languages that can simulate
(some) Lin-p [23]. The remaining languages are pre-
cisely those that have the logico-combinatorial property
of CSPs called “bounded width” or “bounded treewidth
duality” [5, 9, 46]. This property says, roughly, that all
unsatisfiable instances can be refuted via local propaga-
tion – see [11] for a survey on dualities for CSP. Barto
and Kozik used SD(∧) in [5], and then in [4] they used
their techniques from [5] to prove the Guruswami-Zhou
conjecture [28] that each bounded width CSP admits a
robust algorithm.

The general bound on the loss in [4] is g(ε) =
O((log log(1/ε))/ log(1/ε)). It is natural to ask when a
better loss can be achieved. In particular, the problems
of characterizing CSPs where linear loss g(ε) = O(ε)
or polynomial loss g(ε) = O(ε1/k) (for constant k) can
be achieved have been posed in [23]. Partial results on
these problems appeared in [23, 24, 42]. For the Boolean
case, i.e. when the domain is {0, 1}, the dependence of
loss on Γ is fully classified in [23].

Our Contribution We study CSPs that admit a ro-
bust algorithm with polynomial loss. As explained
above, the bounded width property is necessary for
admitting any robust algorithm. Horn 3-Sat has
bounded width, but does not admit a robust algorithm
with polynomial loss (unless the UGC fails) [28]. The
algebraic condition that separates Lin-p and Horn 3-
Sat from the CSPs that can potentially be shown to
admit a robust algorithm with polynomial loss is known
as SD(∨) or “omitting types 1, 2 and 5” [23], see Sec-
tion 2.2 for the description of SD(∨) in terms of poly-
morphisms. The condition SD(∨) is also a necessary
condition for the logico-combinatorial property of CSPs
called “bounded pathwidth duality” (which says, roughly,
that all unsatisfiable instances can be refuted via local
propagation in a linear fashion), and possibly a sufficient
condition for it too [44].

From the algebraic perspective, the most general
natural condition that is (slightly) stronger than SD(∨)
is the near-unanimity (NU) condition [2]. CSPs with
a constraint language having an NU polymorphism

341 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

received a lot of attention in the literature (e.g. [26,
32, 6]). Bounded pathwidth duality for CSPs admitting
an NU polymorphism was established in a series of
papers [20, 22, 6], and we use some ideas from [22, 6] in
this paper.

We prove that any CSP with a constraint language
having an NU polymorphism admits a randomized
robust algorithm with loss O(ε1/k), where k depends
on the size of the domain. It is an open question
whether this dependence on the size of the domain is
necessary. We prove that, for the special case of a
ternary NU polymorphism known as dual discriminator
(the corresponding CSP is a common generalisation of
Unique Games with a fixed domain and 2-Sat), we
can always choose k = 2. Our algorithms use the
standard SDP relaxation for CSPs.

The algorithm for the general NU case is inspired
by [4] and follows the same general scheme:

1. Solve the SDP relaxation for a (1 − ε)-satisfiable
instance I.

2. Use the SDP solution to remove certain constraints
in I with total weightO(g(ε)) (in our case, O(ε1/k))
so that the remaining instance satisfies a certain
consistency condition.

3. Use the appropriate polymorphism (in our case,
NU) to show that any instance of CSP(Γ) with this
consistency condition is satisfiable.

Steps 1 and 2 in this scheme can be applied to any
CSP instance, and this is where essentially all work of
the approximation algorithm happens. Polymorphisms
are not used in the algorithm, they are used in Step
3 only to prove the correctness. Obviously, Step 2
prefers weaker conditions (achievable by removing not
too many constraints), while Step 3 prefers stronger
conditions (so that they can guarantee satisfiability), so
reaching the balance between them is the main technical
challenge in applying this scheme. Our algorithm
is quite different from the algorithm in [4]. That
algorithm is designed so that Steps 1 and 2 establish
a consistency condition that, in particular, includes the
1-minimality condition, and establishing 1-minimality
alone requires removing constraints with total weight
O(1/ log (1/ε)) [28], unless UGC fails. To get the
right dependency on ε we introduce a new consistency
condition somewhat inspired by [6, 40]. The proof that
the new consistency condition satisfies the requirements
of Steps 2 and 3 of the above scheme is one of the main
technical contributions of our paper.

Organization of the paper After some preliminaries,
we formulate the two main results of this paper in

Section 3. Section 4 then contains a description of SPD
relaxations that we will use further on. Sections 5 and 6
contain the description of the algorithms for constraint
languages compatible with NU polymorphism and dual
discriminator, respectively; the following chapters prove
the correctness of the two algorithms. Proof of Theorem
5.1 is omitted due to space constraints, it can be found
in the full version of this paper available on arXiv [21].

2 Preliminaries

2.1 CSPs Throughout the paper, let D be a fixed
finite set, sometimes called the domain. An instance
of the CSP is a pair I = (V, C) with V a finite
set of variables and C is a finite set of constraints.
Each constraint is a pair (x,R) where x is a tuple of
variables (say, of length r > 0), called the scope of
C and R an r-ary relation on D called the constraint
relation of C. The arity of a constraint is defined to
be the arity of its constraint relation. In the weighted
optimization version, which we consider in this paper,
every constraint C ∈ C has an associated weight wC ≥ 0.
Unless otherwise stated we shall assume that every
instance satisfies

∑
C∈C wC = 1.

An assignment for I is a mapping s : V → D.
We say that s satisfies a constraint ((x1, . . . , xr), R) if
(s(x1), . . . , s(xr)) ∈ R. For 0 ≤ β ≤ 1 we say that
assignment s β-satisfies I if the total weight of the
constraints satisfied by s is at least β. In this case we
say that I is β-satisfiable. The best possible β for I is
denoted by Opt(I).

A constraint language on D is a finite set Γ of
relations on D. The problem CSP(Γ) consists of all
instances of the CSP where all the constraint relations
are from Γ. Problems k-Sat, Horn k-Sat, Lin-p,
Graph H-colouring, and Unique Games |D|) are
all of the form CSP(Γ).

The decision problem for CSP(Γ) asks whether
an input instance I of CSP(Γ) has an assignment
satisfying all constraints in I. The optimization problem
for CSP(Γ) asks to find an assignment s where the
weight of the constraints satisfied by s is as large as
possible. Optimization problems are often hard to solve
to optimality, motivating the study of approximation
algorithms.

2.2 Algebra An n-ary operation f on D is a map
from Dn to D. We say that f preserves (or is a
polymorphism of) an r-ary relation R on D if for all
n (not necessarily distinct) tuples (ai1, . . . , a

i
r) ∈ R,

1 ≤ i ≤ n, the tuple (f(a1
1, . . . , a

1
n), . . . , f(ar1, . . . , a

r
n))

belongs to R as well. Say, if R is the edge relation of
a digraph H, then f is a polymorphism of R if and
only if, for any list of n (not necessarily distinct) edges

342 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

(a1, b1), . . . , (an, bn) of H, there is an edge in H from
f(a1, . . . , an) to f(b1, . . . , bn). If f is a polymorphism of
every relation in a constraint language Γ then f is called
a polymorphism of Γ. Many algorithmic properties of
CSP(Γ) depend only on the polymorphisms of Γ [10, 23,
33, 44].

An n-ary (n ≥ 3) operation f is a near-unanimity
(NU) operation if, for all x, y ∈ D, it satisfies

f(x, x, . . . , x, x, y) = f(x, x, . . . , x, y, x) = . . .

= f(y, x, . . . , x, x, x) = x.

Note that the behaviour of f on other tuples of argu-
ments is not restricted. An NU operation of arity 3 is
called a majority operation.

We mentioned in the introduction that (modulo
UGC) only constraint languages satisfying condition
SD(∨) can admit robust algorithms with polynomial
loss. The condition SD(∨) can be expressed in many
equivalent ways: for example, as the existence of ternary
polymorphisms d0, . . . , dt, t ≥ 2, satisfying the following
equations [31]:

d0(x, y, z) = x, dt(x, y, z) = z,(2.1)

di(x, y, x) = di+1(x, y, x) for all even i < t,(2.2)

di(x, y, y) = di+1(x, y, y) for all even i < t,(2.3)

di(x, x, y) = di+1(x, x, y) for all odd i < t.(2.4)

If line (2.2) is strengthened to di(x, y, x) = x for
all i, then, for any constraint language, having such
polymorphisms would be equivalent to having an NU
polymorphism of some arity [3].

NU polymorphisms appeared many times in the
CSP literature. For example, they characterize the so-
called “bounded strict width” property [26, 32], which
says, roughly, that, after establishing local consistency
in an instance, one can always construct a solution in a
greedy way, by picking values for variables in any order
so that constraints are not violated.

Theorem 2.1. [26, 32] Let Γ be a constraint language
with an NU polymorphism of some arity. There is a
polynomial-time algorithm that, given an instance of
CSP(Γ), finds a satisfying assignment or reports that
none exists.

A majority operation f is called the dual discrimi-
nator if f(x, y, z) = x whenever x, y, z are pairwise dis-
tinct. Binary relations preserved the dual discriminator
are known as implicational [7] or 0/1/all [18] relations,
they are the relations of one of four kinds:

1. relations x = a ∨ y = b for a, b ∈ D ,

2. relations x = π(y) where π is a permutation on D,

3. relations P1(x)×P2(y) where P1 and P2 are unary
relations,

4. intersections of a relation of type 1 or 2 with a
relation of type 3.

The relations of the first kind, when D = {0, 1},
are exactly the relations allowed in 2-Sat, while the
relations of the second kind are precisely the relations
allowed in Unique Games (|D|). We remark that
having such an explicit description of relations having a
given polymorphism is rare beyond the Boolean case.

3 Main result

Theorem 3.1. Let Γ be a constraint language on D.

1. If Γ has a near-unanimity polymorphism then
CSP(Γ) admits a randomized robust algorithm with
loss O(ε1/k) for k = 6|D|r + 7 where r is the max-
imal arity of a relation in Γ.
Moreover, if Γ contains only binary relations then
one can choose k = 6|D|+ 7.

2. if Γ has the dual discriminator polymorphism then
CSP(Γ) admits a randomized robust algorithm with
loss O(

√
ε).

It was stated as an open problem in [23] whether
every CSP that admits a robust algorithm with loss
O(ε1/k) admits one where k is bounded by an absolute
constant (that does not dependent onD). In the context
of the above theorem, the problem can be made more
specific: is dependence of k on |D| in this theorem
avoidable or there is a strict hierarchy of possible
degrees there? The case of a majority polymorphism is a
good starting point when trying to answer this question.

As mentioned in the introduction, robust algo-
rithms with polynomial loss and bounded pathwidth
duality for CSPs seem to be somehow related (at least,
in terms of algebraic properties), but it is unclear how
far connections between the two notions go. There
was a similar question about a hierarchy of bounds for
pathwidth duality, and the hierarchy was shown to be
strict [22], even in the presence of a majority polymor-
phism. We remark that another family of problems
CSP(Γ) with bounded pathwidth duality was shown to
admit robust algorithms with polynomial loss in [23],
where the parameter k depends on the pathwidth du-
ality bound. This family includes languages not having
an NU polymorphism of any arity – see [12, 13].

4 SDP relaxation

Associated to every instance I = (V, C) of CSP there is
a standard SDP relaxation. It comes in two versions:
maximizing the number of satisfied constraints and

343 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

minimizing the number of unsatisfied constraints. We
use the latter. We define it assuming that all constraints
are binary. The SDP has a variable xa for every x ∈ V
and a ∈ D. It also contains a special unit vector v0. The
goal is to assign (|V ‖D|)-dimensional real vectors to its
variables minimizing the following objective function:

(4.1)
∑

C=((x,y),R)∈C

wC
∑

(a,b)6∈R

xayb

subject to:

xayb ≥ 0 x, y ∈ V, a, b ∈ D(4.2)

xaxb = 0 x ∈ V, a, b ∈ D, a 6= b(4.3) ∑
a∈D xa = v0 x ∈ V(4.4)

‖v0‖ = 1(4.5)

In the intended integral solution, x = a if xa = v0.
In the fractional solution, we informally interpret ‖xa‖2
as the probability of x = a according to the SDP (the
constraints of the SDP ensure that

∑
a∈D ‖xa‖2 = 1).

If C = ((x, y), R) is a constraint and a, b ∈ D, one
can think of xayb as the weight given by the solution
of the SDP to the pair (a, b) in C. The optimal
SDP solution, then, gives as little weight as possible
to pairs that are not in the constraint relation. For a
constraint C = ((x, y), R), conditions (4.4) and (4.5)
imply that

∑
(a,b)∈R xayb is at most 1. Let loss(C) =∑

(a,b)6∈R xayb. For a subset A ⊆ D, let xA =
∑
a∈A xa.

Note that xD = yD(= v0) for all x, y ∈ D.
Let SDPOpt(I) be the optimum value of (4.1).

It is clear that, for any instance I, we have
Opt(I) ≥ SDPOpt(I) ≥ 0. SDPs can be solved
up to an arbitrarily small additive error ε′ in time
poly (|I|, log(1/ε′)) [51]. By letting ε′ be exponentially
small in |I|, we may assume that we can find a solution
to the SDP relaxation of value (1 + 2−|I|)Opt(I) (see
Appendix A for details). Since we are only interested
in the asymptotic performance of the algorithm, we can
ignore the 2−|I| error term and assume that the value
of the solution is at most Opt(I).

5 Overview of the proof of Theorem 3.1(1)

We assume throughout that Γ has a near-unanimity
polymorphism of arity n+ 1 (n ≥ 2).

It is sufficient to prove Theorem 3.1(1) for the case
when Γ consists of binary relations and k = 6|D| + 7.
The rest will follow by Proposition 13 of [4], which shows
how to reduce the general case to constraint languages
consisting of unary and binary relations in such a way
that the domain size increases from |D| to |D|r where r
is the maximal arity of a relation in Γ. Note that every
unary constraint (x,R) can be replaced by the binary
constraint ((x, x), R′) where R′ = {(a, a) | a ∈ R}.

Throughout the rest of this section, let I = (V, C)
be a (1− ε)-satisfiable instance of CSP(Γ).

5.1 Patterns and realizations A pattern in I is
then defined as a directed multigraph p whose vertices
are labeled by variables of I and edges are labeled by
constraints of I in such a way that the beginning of an
edge labeled by ((x, y), R) is labeled by x and the end
by y. Two of the vertices in p can be distinguished as
the beginning and the end of p. If these two vertices are
labeled by variables x and y, respectively, then we say
that p is a pattern is from x to y.

For two patterns p and q such that the end of p and
the beginning of q are labeled by the same variable, we
define p + q to be the pattern which is obtained as the
disjoint union of p and q with identifying the end of p
with the beginning of q and choosing the beginning of
p + q to be the beginning of p and the end of q to be
the end of q. We also define jp to be p+ · · ·+p where p
appears j times. A pattern is said to be a path pattern
if the underlying graph is an oriented path with the
beginning and the end being the two end vertices of the
path, and is said to be an n-tree pattern if the underlying
graph is an orientation of a tree with at most n leaves,
and both the beginning and the end are leaves. A path
of n-trees pattern is then any pattern which is obtained
as t1 + · · ·+ tj for some n-tree patterns t1, . . . , tj .

A realization of a pattern p is a mapping r from
the set of vertices of p to D such that if (vx, vy) is
an edge labeled by ((x, y), R) then (r(vx), r(vy)) ∈
R. Note that r does not have to map vertices of
p labeled with same variable to the same element in
D. A propagation of a set A ⊆ D along a pattern p
whose beginning vertex is b and ending vertex is e is
defined as follows. For A ⊆ D, define A + p = {r(e) |
r is a realization of p with r(b) ∈ A}. Also for a binary

relation R we put A + R = {b | (a, b) ∈ R and a ∈ A}.
Observe that we have (A+ p) + q = A+ (p+ q).

Further, assume that we have non-empty sets D`
x

where 1 ≤ ` ≤ |D| + 1 and x runs through all
variables in an instance I. Let p be a pattern in I
with beginning b and end e. We call a realization r
of p an `-realization (with respect to the family {D`

x})
if, for any vertex v of p labeled by a variable x, we
have r(v) ∈ D`+1

x . For A ⊆ D, define A +` p =
{r(e) | r is an `-realization of p with r(b) ∈ A}. Also,
for a constraint ((x, y), R) or ((y, x), R−1) and sets
A,B ⊆ D, we write B = A +` (x,R, y) if B = {b ∈
D`+1
y | (a, b) ∈ R for some a ∈ A ∩D`+1

x }.

5.2 The consistency notion Recall that we assume
that Γ contains only binary relations. Before we for-
mally introduce the new consistency notion, which is

344 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

the key to our result, as we explained in the introduc-
tion, we give an example of a similar simpler condition.
We mentioned before that 2-Sat is a special case of a
CSP that admits an NU polymorphism (actually, the
only majority operation on {0, 1}). There is a text-
book consistency condition characterizing satisfiable 2-
Sat instances, which can be expressed in our notation
as follows: for each variable x in a 2-Sat instance I,
there is a value ax such that, for any path pattern p in
I from x to x, we have ax ∈ {ax}+ p.

Let I be an instance of CSP(Γ) over a set V of
variables. We say that I satisfies condition (IPQ)n if
the following holds:

(IPQ)n For every y ∈ V , there exist non-empty sets

D1
y ⊆ . . . ⊆ D

|D|
y ⊆ D

|D|+1
y = D such that for any

x ∈ V , any ` ≤ |D|, any a ∈ D`
x, and any two

patterns p, q which are paths of n-trees in I from
x to x, there exists j such that

a ∈ {a}+` (j(p+ q) + p).

Note that + between p and q is the pattern addition
and thus independent of `. Note also that a in the above
condition belongs to D`

x, while propagation is performed
by using `-realizations, i.e., inside sets D`+1

y .
The following theorem states that this consistency

notion satisfies the requirements of Step 3 of the general
scheme (for designing robust approximation algorithms)
discussed in the introduction.

Theorem 5.1. Let Γ be a constraint language contain-
ing only binary relations such that Γ has an (n+ 1)-ary
NU polymorphism. If an instance I of CSP(Γ) satisfies
(IPQ)n, then I is satisfiable.

5.3 The algorithm Let k = 6|D|+7. We provide an
algorithm which, given a (1−ε)-satisfiable instance I of
CSP(Γ), removes O(ε1/k) constraints from it to obtain
a subinstance I ′ satisfying condition (IPQ)n. It then
follows from Theorem 5.1 that I ′ is satisfiable, and we
can find a satisfying assignment by Theorem 2.1.

5.3.1 Preprocessing The goals of preprocessing are:
First, we deal with instances which are (1−ε)-satisfiable
for 1/ε that is not bounded by a polynomial in the
number of constraints. Second, we precompute the sets
D`
x to be used for providing the (IPQ)n condition.

Let κ = 1/k (we will often use κ to avoid overload-
ing formulas). Assume that C = {C1, . . . , Cm} and that
wC1

≥ wC2
≥ . . . ≥ wCm .

Preprocessing step 1. Using the algorithm from
Theorem 2.1, find the largest j such that the subin-
stance Ij = (V, {C1, . . . , Cj}) is satisfiable. If the total

weight of the constraints in Ij is at least 1− 1/m then
return the assignment s satisfying Ij and stop.

Lemma 5.1. If ε ≤ 1/m2 then preprocessing step 1
returns an assignment that (1−

√
ε)-satisfies I.

Proof. Assume ε ≤ 1/m2. Let i be maximum with the
property that wCi > ε. It follows that the instance
Ii = (V, {C1, . . . , Ci}) is satisfiable since the assignment
(1 − ε)-satisfying I must satisfy every constraint with
weight larger than ε. It follows that i ≤ j and,
hence, the value of assignment satisfying Ij is at least
1−wCi+1

−· · ·−wCm ≥ 1−mwCi+1
≥ 1−mε ≥ 1−

√
ε.

If preprocessing step 1 returns an assignment then
we are done. So assume that it did not return an
assignment. Then we know that ε ≥ 1/m2. We solve
the SDP relaxation and obtain an optimal solution {xa}
(x ∈ V, a ∈ D). We have that SDPOpt(I) ≤ ε. Let
α = max{SDPOpt(I), 1/m2}. It is clear that α ≤ ε and
ακ = O(εκ). Furthermore, this gives us that 1/α ≤ m2.
This will be needed to argue that the main part of the
algorithm runs in the polynomial time.

Preprocessing step 2. For each x ∈ V and
1 ≤ ` ≤ |D| + 1, compute sets D`

x ⊆ D as follows.

Set D
|D|+1
x = D and, for 1 ≤ ` ≤ |D|, set D`

x = {a ∈
D | ‖xa‖ ≥ rx,`} where rx,` is the smallest number
of the form r = α3`κ(2|D|)i/2, i ≥ 0 integer, with
{b ∈ D | r(2|D|)−1/2 ≤ ‖xb‖ < r} = ∅. It is easy
to check that rx,` is obtained with i ≤ |D|.

It is clear that the sets D`
x ⊆ D, x ∈ V , 1 ≤ ` ≤ |D|,

can be computed in polynomial time.
The sets D`

x are chosen such that for smaller `’s D`
x

contains relatively ‘heavy’ elements (a’s such that ‖xa‖2
is large). The thresholds are chosen so that there is a big
gap (at least by a factor of 2|D|) between ‘heaviness’ of
elements in D`

x and outside.

5.3.2 Main part Given the preprocessing is done,
we have that 1/α ≤ m2, and we precomputed sets D`

x

for all x ∈ V and 1 ≤ ` ≤ |D| + 1. The description
below uses the number n, where n+1 is the arity of the
NU polymorphism of Γ.

Step 0. Remove every constraint C with
loss(C) > α1−κ.

Step 1. For every 1 ≤ ` ≤ |D| do the following.
Pick a value r` ∈ (0, α(6`+4)κ) uniformly at random.
Here we need some notation: for x, y ∈ V andA,B ⊆ D,
we write xA �` yB to indicate that there is no integer
j such that ‖yB‖2 < r` + jα(6`+4)κ ≤ ‖xA‖2. Then,
remove all constraints ((x, y), R) such that there are sets
A,B ⊆ D with B = A +` (x,R, y) and xA 6�` yB , or
with B = A+` (y,R−1, x) and yA 6�` xB .

Step 2. For every 1 ≤ ` ≤ |D| do the following.
Let m0 = bα−2κc. Pick a value s` ∈ {0, . . . ,m0 − 1}

345 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

uniformly at random. We define xA �`w yB to mean
that there is no integer j such that ‖yB‖2 < r` + (s` +
jm0)α(6`+4)κ ≤ ‖xA‖2. Obviously, if xA �` yB then
xA �`w yB . Now, if A ⊆ B ⊆ D`+1

x are such that
‖xB − xA‖2 ≤ (2n − 3)α(6`+4)κ and xA 6�`w xB , then
remove all the constraints in which x participates.

Step 3. For ever 1 ≤ ` ≤ |D| do the following.
Pick m` = dα−(3`+1)κe unit vectors independently
uniformly at random. For x, y ∈ V and A,B ⊆ D,
say that xA and yB are cut by a vector u if the
signs of u · (xA − xD\A) and u · (yB − yD\B) differ.
Furthermore, we say that xA and yB are `-cut if there
are cut by at least one of the chosen m` vectors. For
every variable x, if there exist subsets A,B ⊆ D such
that A ∩D`

x 6= B ∩D`
x and the vectors xA and xB are

not `-cut, then remove all the constraints in which x
participates.

Step 4. For every 1 ≤ ` ≤ |D|, remove every
constraint ((x, y), R) such that there are sets A,B ⊆ D
with B = A +` (x,R, y), and xA and yB are `-cut, or
with B = A+` (y,R−1, x), and yA and xB are `-cut.

Step 5. For every 1 ≤ ` ≤ |D| do the following.
For every variable x, if there exist subsets A,B such
that ‖xA − xB‖ ≤ (2n − 3)1/2α(3`+2)κ and xA and xB
are `-cut, remove all constraints in which x participates.

Step 6. By Proposition 5.2 and Theorem 5.1, the
remaining instance I ′ is satisfiable. Use the algorithm
given by Theorem 2.1 to find a satisfying assignment for
I ′. Assign all variables in I that do not appear in I ′
arbitrarily and return the obtained assignment for I.

Note that we chose to define the cut condition based
on xA − xD\A, rather than on xA, because the former
choice has the advantage that ‖xA − xD\A‖ = 1, which
helps in some calculations.

In Step 0 we remove constraints such that, accord-
ing to the SDP solution, these constraints have a high
probability to be violated. Intuitively, steps 1 and 2 en-
sure that a loss in ‖xA‖ after propagation by a path of
n-trees is not too big. This is achieved first by ensur-
ing that by following a path we do not lose too much
(step 1) which also gives a bound on how much we can
lose by following an n-tree pattern (see Lemma 7.13),
and then that by following a path of n-trees we do
not lose too much (step 2). This is needed in order
for {a} +` (j(p + q) + p) to be non-vanishing as j in-
creases. Steps 3–5 ensure that if A and B are connected
by paths of n-trees in both directions (i.e. A = B + p1

and B = A + p2), hence xA and xB do not differ too
much, then A ∩ D`

x = B ∩ D`
x. This is achieved by

separating the space into cones by cutting it using the
m` chosen vectors, removing the variables which have
two different sets that are not `-cut (step 3), and then

ensuring that if we follow an edge (step 4), or if we
drop elements that do not extend to an n-tree (step 5)
we don’t cross a borderline to another cone. This gives
us both that the sequence Aj = {a} +` (j(p + q) + p)
stabilizes and that, after it stabilizes, Aj contains a.
Providing the rest of condition (IPQ)n.

The algorithm runs in polynomial time. Since D is
fixed, it is clear that the steps 0–2 can be performed in
polynomial time. For steps 3–5, we also need that m`

is bounded by a polynomial in m which holds because
α ≥ 1/m2.

The correctness of the algorithm is given by the
two following propositions whose proof can be found
in Section 7. These propositions show that our new
consistency notion satisfies the requirements of Step 2 of
the general scheme (for designing robust approximation
algorithms).

Proposition 5.1. The expected total weight of con-
straints removed by the algorithm is O(εκ).

Proposition 5.2. The instance I ′ obtained after steps
0–5 satisfies the condition (IPQ)n (with the sets D`

x

computed in preprocessing step 2).

6 Overview of the proof of Theorem 3.1(2)

Note that a dual discriminator is a majority, hence every
relation in Γ is 2-decomposable. Therefore, it follows,
e.g. from Lemma 1 in [23], that to prove that CSP(Γ)
admits a robust algorithm with loss O(

√
ε), it suffices to

prove this for the case when Γ consists of all unary and
binary relations preserved by the dual discriminator.
Such binary constraints are of one of the four kinds
described in Section 2.2. Using this description, it
follows from Lemma 3.2 of [23] that it suffices to consider
the following three types of constraints:

1. Disjunction constraints of the form x = a ∨ y = b,
where a, b ∈ D;

2. Unique game (UG) constraints of the form x =
π(y), where π is any permutation on D;

3. Unary constraints of the form x ∈ P , where P is
an arbitrary non-empty subset of D.

We present an algorithm that given a (1 − ε)-
satisfiable instance I = (V, C) of the problem, finds
a solution satisfying constraints with expected total
weight 1 − O(

√
ε log |D|) (the hidden constant in the

O-notation does not depend on ε and |D|).
We now give an informal and somewhat imprecise

sketch of the algorithm and its analysis. We present
details in Section 8. We use the SDP relaxation from
Section 4. Let us call the value ‖xa‖2 the SDP weight
of the value a for variable x.

346 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The algorithm first solves the SDP relaxation.
Then, it partitions all variables into three groups V0,
V1, and V2 using a threshold rounding algorithm with
a random threshold. If most of the SDP weight for x
is concentrated on one value a ∈ D, then the algorithm
puts x in the set V0 and assigns x the value a. If most
of the SDP weight for x is concentrated on two values
a, b ∈ D, then the algorithm puts x in the set V1 and
restricts the domain of x to the set Dx = {a, b} (thus
we guarantee that the algorithm will eventually assign
one of the values a or b to x). Finally, if the SDP weight
for x is spread among 3 or more values, then we put x
in the set V2; we do not restrict the domain for such x.
After we assign values to x ∈ V0 and restrict the domain
of x ∈ V1 to Dx, some constraints are guaranteed to be
satisfied (say, the constraint (x = a)∨(y = b) is satisfied
if we assign x the value a and the constraint x ∈ P is
satisfied if Dx ⊆ P). Denote the set of such constraints
by Cs and let C′ = C \ Cs.

We then identify a set Cv ⊆ C′ of constraints that
we conservatively label as violated. This set includes all
constraints in C′ except those belonging to one of the
following 4 groups:

1. disjunction constraints (x = a) ∨ (y = b) with
x, y ∈ V1 and a ∈ Dx, b ∈ Dy;

2. UG constraints x = π(y) with x, y ∈ V1 and
Dx = π(Dy);

3. UG constraints x = π(y) with x, y ∈ V2;

4. unary constraints x ∈ P with x ∈ V2.

Our construction of sets V0, V1, and V2, which is based
on randomized threshold rounding, ensures that the
expected total weight of constraints in Cv is O(ε) (see
Lemma 8.2).

The constraints from the 4 groups above naturally
form two disjoint sub-instances of I: I1 (groups 1 and
2) on the set of variables V1, and I2 (groups 3 and 4) on
V2. We treat these instances independently as described
below.

Solving Instance I1 The instance I1 with the domain
of each x restricted to Dx is effectively an instance
of Boolean 2-CSP (i.e. each variable has a 2-element
domain and all constraints are binary). A robust
algorithm with quadratic loss for this problem was
given by Charikar et al. [16]. This algorithm finds a
solution violating an O(

√
ε) fraction of all constraints

if the optimal solution violates at most ε fraction of all
constraints or SDPOpt(I1) ≤ ε. However, we cannot
apply this algorithm to the instance I1 as is. The
problem is that the weight of violated constraints in

the optimal solution for I1 may be greater than ω(ε).
Note that the unknown optimal solution for the original
instance I may assign values to variables x outside
of the restricted domain Dx, and hence it is not a
feasible solution for I1. Furthermore, we do not have
a feasible SDP solution for the instance I1, since the
original SDP solution (restricted to the variables in
V1) is not a feasible solution for the Boolean 2-CSP
problem (because

∑
a∈Dx xa is not necessarily equal to

v0 and, consequently,
∑
a∈Dx ‖xa‖

2 may be less than 1).
Thus, our algorithm first transforms the SDP solution
to obtain a feasible solution for I1. To this end, it
partitions the set of vectors {xa : x ∈ V1, a ∈ Dx} into
two setsH and H̄ using a modification of the hyperplane
rounding algorithm by Goemans and Williamson [27].
In this partitioning, for every variable x, one of the
two vectors {xa : a ∈ Dx} belongs to H and the other
belongs to H̄. Label the elements of each Dx as αx and
βx so that so that xαx is the vector in H and xβx is
the vector in H̄. For every x, we define two new vectors
x̃αx = xαx and x̃βx = v0 − xαx . It is not hard to verify
that the set of vectors {x̃a : x ∈ V1, a ∈ Dx} forms
a feasible SDP solution for the instance I1. We show
that for each disjunction constraint C in the instance
I1, the cost of C in the new SDP solution is not greater
than the cost of C in the original SDP solution (see
Lemma 8.4). The same is true for all but O(

√
ε) fraction

of UG constraints. Thus, after removing UG constraints
for which the SDP value has increased, we get an SDP
solution of cost O(ε). Using the algorithm [16] for
Boolean 2-CSP, we obtain a solution for I1 that violates
constraints of total weight at most O(

√
ε).

Solving Instance I2 The instance I2 may contain
only unary and UG constraints as all disjunction con-
straints are removed from I2 at the preprocessing step.
We run the approximation algorithm for Unique Games
by Charikar et al. [15] on I2 using the original SDP so-
lution restricted to vectors {xa : x ∈ V2, a ∈ D}. This
is a valid SDP relaxation because in the instance I2,
unlike the instance I1, we do not restrict the domain
of variables x to Dx. The cost of this SDP solution is
at most ε. As shown in [15], the weight of constraints
violated by the algorithm [15] is at most O(

√
ε log |D|).

We get the solution for I by combining solutions
for I1 and I2, and assigning values chosen at the
preprocessing step to the variables from the set V0.

7 Full proof of Theorem 3.1(1)

In this subsection we prove Propositions 5.1 and 5.2.
The following equalities, which can be directly verified,
are used repeatedly in this section: for any subsets A,B
of D, it holds that ‖xA‖2 = xAyD and ‖yB − xA‖2 =

347 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

xD\AyB + xAyD\B .

7.1 Analysis of preprocessing steps In some of
the proofs it will be required that α ≤ c0 for some
constant c0 depending only on |D|. This can be assumed
without loss of generality, since we can adjust constants
in O-notation in Theorem 3.1(1) to ensure that ε ≤ c0
(and we know that α ≤ ε). We will specify the
requirements on the choice of c0 as we go along.

Lemma 7.1. There exists a constant c > 0 such that
the sets D`

x ⊆ D, x ∈ V , 1 ≤ ` ≤ |D|, obtained
in Preprocessing step 2, are non-empty and satisfy the
following conditions:

1. for every a ∈ D`
x, ‖xa‖ ≥ α3`κ,

2. for every a 6∈ D`
x, ‖xa‖ ≤ cα3`κ.

3. for every a ∈ D`
x, ‖xa‖2 ≥ 2‖xD\D`x‖

2

4. D`
x ⊆ D`+1

x (with D
|D|+1
x = D)

Proof. Let c = (2|D|)(|D|/2). It is straightforward to
verify that conditions (1)–(3) are satisfied. Let us show
condition (4). Since c only depends on |D| we can choose
c0 (an upper bound on α) so that cα3κ < 1. It follows
that cα3(`+1)κ < α3`κ. It follows from conditions (1)
and (2) that D`

x ⊆ D`+1
x .

Finally, let us show that D`
x is non-empty. By

condition (4) we only need to take care of case ` = 1.
We have by condition (2) that∑

a∈D\D1
x

‖xa‖2 ≤ |D|c2α6κ

Note that we can adjust c0 to also satisfy |D|c2α6κ < 1
because, again, c only depends on |D|.

7.2 Proof of Proposition 5.1

Lemma 7.2. The total weight of the constraints re-
moved at step 0 is at most ακ.

Proof. Follows from Lemma 3.3 of [52].

Lemma 7.3. Let ((x, y), R) be a constraint not removed
at step 0, and let A,B be such that B = A+` (x,R, y).
Then ‖yB‖2 ≥ ‖xA‖2 − cα(6`+6)κ for some constant
c > 0. The same is also true for a constraint ((y, x), R)
and A = B +` (y,R−1, x).

Proof. Consider the first case, i.e., a constraint
((x, y), R) and B = A+` (x,R, y). We have

xAyD\B =
∑

a∈A,b∈D\B
(a,b) 6∈R

xayb +
∑

a∈A,b∈D\B
(a,b)∈R

xayb.

The first term is bounded from above by the loss of
constraint ((x, y), R), and hence is at most α1−κ, since
the constraint has not been removed at step 0. Since
B = A +` (x,R, y) it follows that for every (a, b) ∈ R
such that a ∈ A and b ∈ D \ B we have that a 6∈ D`+1

x

or b 6∈ D`+1
y . Hence, the second term is at most

xD\D`+1
x

yD + xDyD\D`+1
y

= ‖xD\D`+1
x
‖2 + ‖yD\D`+1

y
‖2

which, by Lemma 7.1(2), is bounded from above by
dα(6`+6)κ for some constant d > 0. From the definition
of κ it follows that (6` + 6)κ ≤ 1 − κ, and hence we
conclude that xAyD\B ≤ (d + 1)α(6`+6)κ. Then, we
have that

‖yB‖2 = xAyB + xD\AyB ≥ xAyB =

xAyD − xAyD\B ≥ ‖xA‖2 − (d+ 1)α(6`+6)κ.

The proof of the second case is identical.

Lemma 7.4. The expected weight of the constraints re-
moved at step 1 is O(ακ).

Proof. Let ((x, y), R) be a constraint not removed at
step 0. We shall see that the probability that it is
removed at step 1 is at most cακ where c > 0 is a
constant.

Let A,B be such that B = A+` (x,R, y). It follows
from Lemma 7.3 that ‖yB‖2 ≥ ‖xA‖2 − dα(6`+6)κ for
some constant d > 0. Hence, the probability that a
value r` in step 1 makes that yB 6�` xA is at most

dα(6`+6)κ

α(6`+4)κ
= dα2κ ≤ dακ.

We obtain the same bound if we switch x and y, and
consider sets A,B such that A = B +` R−1. Taking
the union bound for all sets A,B and all values of ` we
obtain the desired bound.

Lemma 7.5. There exist constants c, d > 0 such that
for every pair of vectors xA and yB, the probability, p,
that a unit vector u chosen uniformly at random cuts
xA and yB satisfies

c · ‖yB − xA‖ ≤ p ≤ d · ‖yB − xA‖.

Proof. Let 0 ≤ x ≤ 1 and let 0 ≤ θ ≤ π be an angle
such that x = cos(θ). There exist constants a, b > 0
such that

a ·
√

1− x ≤ θ ≤ b ·
√

1− x.

Now, if θ is the angle between xA−xD\A and yB−yD\B
then

1− cos(θ) = 1− (xA − xD\A)(yB − yD\B)

= 2(xD\AyB + xAyD\B) = 2‖yB − xA‖2

Since p = θ/π, the result follows.

348 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Lemma 7.6. If the probability that all constraints in-
volving a variable x are removed in Step 2, Step 3, or
Step 5 is at most cακ for some constant c > 0, then the
total expected weight of constraints removed this way is
at most 2cακ.

Proof. Let wx denote the total weight of the constraints
in which x participates. The expected weight of con-
straints removed is at most∑

x∈V
wxcα

κ = (
∑
x∈V

wx)cακ = 2cακ

and the lemma is proved.

Lemma 7.7. The expected weight of the constraints re-
moved at step 2 is O(ακ).

Proof. Let x be a variable. We shall prove that the
probability that we remove all constraints involving x
at step 2 is at most cακ for some constant c > 0,
the rest is Lemma 7.6. Suppose that A ⊆ B are such
that ‖xB‖2 − ‖xA‖2 = ‖xB − xA‖2 ≤ (2n− 3)α(6`+4)κ.
Then the probability that one of the bounds of the form
r` + (s` + jm0)α(6`+4)κ separates ‖xB‖2 and ‖xA‖2 is
at most

(2n− 3)/m0 ≤ (2n− 3)/(α−2κ − 1) ≤ c1ακ

for ακ < 1/2. Therefore, the probability that this
happens for at least one pair of sets A, B is at most
22|D|c1α

κ = cακ.

Lemma 7.8. The expected weight of the constraints re-
moved at step 3 is O(ακ).

Proof. According to Lemma 7.6, it is enough to prove
that the probability that we remove all constraints in-
volving x at step 3 is at most cακ for some constant c.
Let A and B such that A∩D`

x 6= B∩D`
x. Let a be an ele-

ment in symmetric difference (A∩D`
x)4(B∩D`

x). Then
we have ‖xB − xA‖ =

√
xD\AxB + xAxD\B ≥ ‖xa‖ ≥

α3`κ, where the last inequality is by Lemma 7.1(1).
Then by Lemma 7.5 the probability that xA and xB
are not `-cut is at most

(1− α3κ`)m` ≤ 1

exp(α3κ`m`)
≤ 1

exp(α−κ)
≤ ακ.

Taking the union bound for all sets A,B and all values
of ` we obtain the desired bound.

Lemma 7.9. The expected weight of the constraints re-
moved at step 4 is O(ακ).

Proof. Let ((x, y), R) be a constraint not removed at
step 0. We shall prove that the probability that it is
removed at step 4 is at most cακ for some constant
c > 0.

Fix ` and A,B such that B = A +` (x,R, y) and
yB �` xA. Since B = A +` p we have that xAyD\B ≤
c1α

(6`+6)κ, as shown in the proof of Lemma 7.3. Since
‖xA‖2 = xA(yB + yD\B), it follows that xAyB ≥
‖xA‖2 − c1α(6`+6)κ.

Also, we have ‖yB‖2 = (xAyB+xD\AyB) is at most

‖xA‖2 + α(6`+4)κ because yB �` xA. Using the bound
on xAyB obtained above, it follows that xD\AyB is at

most α(6`+4)κ + c1α
(6`+6)κ ≤ (c1 + 1)α(6`+4)κ.

Putting the bounds together, we have that

‖yB − xA‖ =
√

xD\AyB + xAyD\B ≤√
c1α(6`+6)κ + (c1 + 1)α(6`+4)κ ≤ c2α(3`+2)κ

for some constant c2 > 0.
Applying the union bound and Lemma 7.5 we have

that the probability that xA and yB are `-cut is at most
m`dc2α

(3`+2)κ = O(ακ). We obtain the same bound if
we switch x and y, and take R−1 instead of R. Taking
the union bound for all sets A,B and all values of ` we
obtain the desired bound.

Lemma 7.10. The expected weight of the constraints
removed at step 5 is O(ακ).

Proof. Again, according to Lemma 7.6, it is enough to
prove that the probability that we remove all constraints
involving x at step 5 is at most cακ for some constant
c. Suppose that A, B are such that ‖xA−xB‖ ≤ (2n−
3)1/2α(3`+2)κ. Hence, by Lemma 7.5, the probability
that xA and xB are `-cut is at most

1− (1− c(2n− 3)α(3`+2)κ)m` ≤
1− (1−m`c(2n− 3)α(3`+2)κ) = m`c(2n− 3)α(3`+2)κ ≤

c(2n− 3)ακ + c(2n− 3)α(3`+2)κ ≤ c′(2n− 3)ακ.

Taking the union bound for all sets A, B and all values
of `, we obtain the desired bound.

7.3 Proof of Proposition 5.2 All patterns appear-
ing in this subsection are in I ′.

Lemma 7.11. Let 1 ≤ ` ≤ |D|, let p be a path pattern
from x to y, and let A,B be such that B = A+`p. Then
xA �` yB, and in particular, ‖xA‖ ≤ ‖yB‖+ α(6`+4)κ.

Proof. Since the relation �` is transitive, it is enough to
prove the lemma for path patterns containing only one

349 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

constraint. But this is true, since all the constraints
((x, y), R) or ((y, x), R) which would invalidate the
lemma have been removed in step 1.

Lemma 7.12. If p is a tree pattern with at most j + 1
leaves starting at x, and A ⊆ D`+1

x is such that A+`p =
∅ then ‖xA‖2 ≤ (2j − 1)α(6`+4)κ.

Proof. We will prove the statement by induction on the
number of leaves. For j = 1 this follows from Lemma
7.11. Suppose then that p is a tree pattern with j+1 > 2
leaves and the statement is true for any i < j. Choose y
to be the first branching vertex when following p from x,
and let p0 be the subpath of p starting at x and ending
at y, further let t1, . . . , th be all the (maximal) subtrees
of p starting at y excluding p0 (for each of them choose
any other leaf as the end vertex). Since y is a branching
vertex, we have that h ≥ 2, every ti has ji + 1 < j + 1
leaves, and

∑h
i=1 ji = j. Now, let Bi denote the set

{a ∈ D`+1
y : a +` ti = ∅}. Since ji < j, we know that

‖yBi‖2 ≤ (2ji − 1)α(6`+4)κ. Further, for B =
⋃n
i=1Bi,

we have

‖yB‖2 ≤
h∑
i=1

‖yBi‖2 ≤
h∑
i=1

(2ji − 1)α(6`+4)κ

= (2j − h)α(6`+4)κ ≤ (2j − 2)α(6`+4)κ.

Finally, since A +` p = ∅ then A +` p0 ⊆ B, and the
claim follows from Lemma 7.11.

Lemma 7.13. Let 1 ≤ ` ≤ |D|, let p be a pattern from
x to y which is a path of n-trees. If A,B ⊆ D such that
B +` p = A, then ‖yA‖2 ≥ ‖xB‖2 − α(6`+2)κ.

Proof. We will prove that for any n-tree pattern t and
A,B with B +` t = A, we have xB �`w yA, the
lemma is then a direct consequence. For a contradiction,
suppose that t is a smallest (by inclusion) n-tree that
does not satisfy the claim, and observe that t is not
a path (see Lemma 7.11). Let vx and vy denote the
beginning and the end vertex of t, respectively; and
let vz be the last branching vertex that appears on the
path connecting vx and vy, and let it be labeled by z.
Now, the vertex vz separates t into several subtrees,
namely t1, a tree connecting vx and vz, t2, a path
connecting vz and vy, and several trees p1, . . . , pj which
have vz as one vertex and are disjoint with the path
connecting vx and vy. For pi we choose vz to be the
beginning, and any other leaf to be the end. Further,
we know that for C = B +` t1 we have xB �`w zC .
Now, let Ci = {a ∈ D`+1

z : a +` pi = ∅}. Then by
Lemma 7.12, we get that ‖zCi‖2 ≤ (2ji − 1)α(6`+4)κ

where ji + 1 is the number of leaves of pi, therefore

for C ′ =
⋃
Ci we have ‖zC′‖2 ≤

∑
‖zCi‖2 ≤ (2n −

3)α(6`+4)κ. This implies that ‖zC\C′‖2 ≥ ‖zC‖2−(2n−
3)α(6`+4)κ, and consequently zC �`w zC\C′ as otherwise
all constraints containing z would have been removed
at step 2. Finally, observe that A = (C \C ′) +` t2, and
therefore zC\C′ �` yA. Putting this together with all

other derived �`w-relations, we get the required claim.

Lemma 7.14. Let 1 ≤ ` ≤ |D|, let p be a pattern from x
to x which is a path of n-trees, and let A,B be such that
B+` p = A. If A∩D`

x ⊆ B∩D`
x then A∩D`

x = B∩D`
x.

Proof. For a contradiction, suppose that there is an ele-
ment a ∈ (D`

x∩B)\A. From Lemma 7.1, conditions (3)
and (1) we get that ‖xB\A‖2 ≥ ‖xa‖2 ≥ 2‖xD\D`x‖

2 ≥
2‖xA\B‖2. Therefore, we have

‖xA‖2 = ‖xB‖2 − ‖xB\A‖2 + ‖xA\B‖2 ≤
‖xB‖2 − (1/2)‖xa‖2 ≤ ‖xB‖2 − (1/2)α6`κ.

On the other hand, since p is a path of n-trees, we
get from the previous lemma that ‖xA‖2 ≥ ‖xB‖2 −
α(6`+2)κ. If we adjust constant c0 from Section 7.1 so
that 1/2 > α2κ, the above inequalities give a contradic-
tion.

Lemma 7.15. Let x be a variable, let p and q be two
patterns from x to x which are paths of n-trees, let
1 ≤ ` ≤ |D|, and let A ⊆ D`

x. Then there exists some j
such that A ⊆ A+` (j(p+ q) + p).

Proof. For every A, define A0, A1, . . . in the following
way. If i = 2j is even then Ai = A +` (j(p + q)).
Otherwise, if i = 2j + 1 is odd then Ai = A +` (j(p +
q) + p).

We claim that for every sufficiently large u, we have
Au ∩ D`

x = Au+1 ∩ D`
x. From the finiteness of D, we

get that for every sufficiently large u there is u′ > u
such that Au = Au′ . It follows that there exists some
path of n-trees pattern p′ starting and ending in x such
that Au = Au+1 +` p′. To prove the claim we will
show that xAu and xAu+1 are not `-cut. Then the
claim follows as otherwise we would have removed all
constraints involving x at step 3.

Consider the path in p′ which connects the begin-
ning and end vertices of p′, and let v1, . . . , vu be the ver-
tices which appear on the path in this order with v1 be-
ing the beginning and vu being the end vertex of p′. Fur-
ther, let Ri = R if the i-th edge of the path is concurrent
and labeled by ((xi, xi+1), R), and let Ri = R−1 if the i-
th edge is not concurrent and labeled by ((xi+1, xi), R).
Now define a sequence B1, B

′
2, B2, . . . , Bm inductively

by setting B1 = Au+1, B′i+1 = Bi+
` (xi, Ri, xi+1). Fur-

ther, if xi+1 is not a branching vertex, put Bi+1 = B′i+1.

350 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

If xi+1 is a branching vertex, then let Φi be the set of
all subtrees of p′ starting at xi except those two that
contain (parts of) p′′, and define Bi+1 = {b ∈ B′i+1 :
b +` t 6= ∅ for all t ∈ Φi}. Since p′ is a path of n-trees,
we know that the sum of the numbers of leaves of the
trees from Φi that are also leaves of p′ is strictly less then
n−1. Finally, if xAu are xAu+1

are `-cut then, for some
i, vectors xiBi and xi+1B′

i+1
are `-cut, or vectors xiBi

and xiB′
i

are `-cut. The first case is impossible since

B′i+1 = Bi +` (xi, Ri, xi+1), and hence if xB′
i+1

and xBi
are `-cut, then either of the constraints ((xi, xi+1), Ri)
or ((xi+1, xi), R

−1) would have been removed at step 4.
The second case is impossible, since from Lemma 7.12
we get ‖xiCt‖2 ≤ (2jt − 1)α(6`+4)κ for any t ∈ Φi,
Ct = {b ∈ B′i : b +` t = ∅}, and jt being the number of
leaves of t, and consequently,

‖xiB′
i
− xiBi‖

2 ≤
∑
t∈Φi

‖xiCt‖
2 ≤

∑
t∈Φi

(2jt − 1)α(6`+4)κ ≤ (2n− 3)α(6`+4)κ.

Therefore, if xiBi and xiB′
i

were `-cut, then all con-
straints that include xi would have been removed at
step 5. We conclude that indeed we have Au ∩ D`

x =
Au+1 ∩D`

x for all sufficiently large u.
Now, take u = 2j + 1 large enough. We have that

(A ∪ Au+1) +` (j(p + q) + p) = Au ∪ A2u+1. And also
(Au∪A2u+1)∩D`

x = Au+1∩D`
x ⊆ (A∪Au+1)∩D`

x, hence
by Lemma 7.14 we get that (A∪Au+1)∩D`

x = Au+1∩D`
x.

Since A ⊆ D`
x by assumption of the lemma, we have

A ⊆ Au+1 ∩D`
x ⊆ Au = A+` (j(p+ q) + p).

8 Full proof of Theorem 3.1(2)

In this section, we prove Theorem 3.1(2). A brief outline
of the proof is given in Section 6. Throughout this
section, I = (V, C) is a (1 − ε)-satisfiable instance of
CSP(Γ) where Γ consists of implicational constraints.

8.1 SDP Relaxation We use (essentially) the same
SDP relaxation of the problem as in Section 4. Minimize

(8.1)
∑

C∈C equals (x=a)∨(y=b)

wC(v0 − xa)(v0 − yb)

+
1

2

∑
C∈C equals x=π(y)

∑
a∈D

wC‖xπ(a) − ya‖2

+
∑

C∈C equals x∈P

wC

 ∑
a∈D\P

‖xa‖2

subject to

xayb ≥ 0 x, y ∈ V, a, b ∈ D(8.2)

xaxb = 0 x ∈ V, a, b ∈ D, a 6= b(8.3) ∑
a∈D

xa = v0 x ∈ V(8.4)

‖xa − zc‖2 ≤ ‖xa − yb‖2 + ‖yb − zc‖2(8.5)

x, y, z ∈ V, a, b, c ∈ D
‖v0‖2 = 1.(8.6)

We solve the relaxation and find an optimal SDP
solution {xa}. Denote SDPOpt(I) by SDP. We have,
SDP ≤ ε. Note that every feasible SDP solution satisfies
the following conditions.

‖xa‖2 = xa ·
(
v0 −

∑
b6=a

xb
)

= xav0,(8.7)

xayb = xa · (v0 −
∑

b′∈D\{b}

yb′)(8.8)

= ‖xa‖2 −
∑

b′∈D\{b}

xayb′

≤ ‖xa‖2,
‖xa‖2 − ‖yb‖2 = ‖xa − yb‖2 + 2(xayb − ‖yb‖2)(8.9)

≤ ‖xa − yb‖2,

(v0 − xa)(v0 − yb) =
∑
a′ 6=a

xa′
∑
b′ 6=b

yb′ ≥ 0.

(8.10)

8.2 Preprocessing Step In this section, we describe
the first step of our algorithm. In this step, we assign
values to some variables, partition all variables into
three groups V0, V1 and V2 and then split the instance
into two sub-instances I1 and I2.

Preprocessing Step Choose a number r ∈ (0, 1/6)
uniformly at random. Do the following for every
variable x.

1. Let Dx = {a : 1/2− r < xav0}.

2. Depending on the size of Dx do the following:

(a) If |Dx| = 1, add x to V0 and assign x = a,
where a is the single element of Dx.

(b) If |Dx| > 1, add x to V1 and restrict x to Dx

(see below for details).

(c) If Dx = ∅, add x to V2.

Note that each variable in V0 is assigned a value;
each variable x in V1 is restricted to a set Dx; each
variable in V2 is not restricted.

351 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Lemma 8.1. (i) If xav0 >
1
2 + r then x ∈ V0. (ii) For

every x ∈ V1, |Dx| = 2.

Proof. (i) Note that for every b 6= a, we have xav0 +
xbv0 ≤ 1 and, therefore, xbv0 < 1/2−r. Hence, b /∈ Dx.
We conclude that DX = {a} and x ∈ V0.

(ii) Now consider x ∈ V1. We have,

|Dx| < 3(1/2− r)|Dx| =

3
∑
a∈Dx

(1/2− r) ≤ 3
∑
a∈Dx

xav0 ≤ 3.

Therefore, |Dx| ≤ 2. Since x ∈ V1, |Dx| > 1. We get,
|Dx| = 2.

We say that an assignment is admissible if it assigns
a value in Dx to every x ∈ V1 and it is consistent with
the partial assignment to variables in V0. From now on
we restrict our attention only to admissible assignments.
We remove those constraints that are satisfied by every
admissible assignment (our algorithm will satisfy all of
them). Specifically, we remove the following constraints:

1. UG constraints x = π(y) with x, y ∈ V0 that are
satisfied by the partial assignment;

2. disjunction constraints (x = a) ∨ (y = b) such that
either x ∈ V0 and x is assigned value a, or y ∈ V0

and y is assigned value b;

3. unary constraints x ∈ P such that either x ∈ V0

and the value assigned to x is in P , or x ∈ V1 and
Dx ⊆ P .

We denote the set of satisfied constraints by Cs. Let
C′ = C \ Cs be the set of remaining constraints. We now
define a set of violated constraints — those constraints
that we conservatively assume will not be satisfied by
our algorithm (even though some of them might be
satisfied by the algorithm). We say that a constraint
C ∈ C′ is violated if at least one of the following
conditions holds:

1. C is a unary constraint on a variable x ∈ V0 ∪ V1.

2. C is a disjunction constraint (x = a) ∨ (y = b) and
either x /∈ V1, or y /∈ V1 (or both).

3. C is a disjunction constraint (x = a)∨ (y = b), and
x, y ∈ V1, and either a /∈ Dx, or b /∈ Dy (or both).

4. C is a UG constraint x = π(y), and at least one of
the variables x, y is in V0.

5. C is a UG constraint x = π(y), and one of the
variables x, y is in V1 and the other is in V2.

6. C is a UG constraint x = π(y), x, y ∈ V1 but
Dx 6= π(Dy).

We denote the set of violated constraints by Cv and let
C′′ = C′ \ Cv.

Lemma 8.2. E[w(Cv)] = O(ε).

Proof. We analyze separately constraints of each type
in Cv.

Unary constraints A unary constraint x ∈ P in C
is violated if and only if x ∈ V0 ∪ V1 and Dx 6⊆ P (if
Dx ⊆ P then C ∈ Cs and thus C is not violated). Thus
the SDP contribution of each violated constraint C of
the form x ∈ P is at least

wC
∑

a∈D\P

‖xa‖2 ≥ wC
∑

a∈Dx\P

‖xa‖2

= wC
∑

a∈Dx\P

xa · v0 ≥ wC
(1

2
− r
)
≥ wC

3
.

The last two inequalities hold because the set Dx \ P
is nonempty; xav0 ≥ 1/2 − r for all a ∈ Dx by the
construction; and r ≤ 1/6. Therefore, the expected
total weight of violated unary constraints is at most
3 SDP ≤ 3ε.

Disjunction constraints Consider a disjunction con-
straint (x = a) ∨ (y = b). Denote it by C. Assume
without loss of generality that xav0 ≥ ybv0. Consider
several cases. If xav0 > 1/2 + r then x ∈ V0 and x is
assigned value a. Thus, C is satisfied. If xav0 ≤ 1/2+r
and ybv0 > 1/2 − r then we also have xav0 > 1/2 − r
and hence x, y ∈ V0 ∪ V1 and a ∈ Dx, b ∈ Dy. Thus, C
is not violated (if at least one of the variables x and y
is in V0, then C ∈ Cs; otherwise, C ∈ C′). Therefore, C
is violated only if

xav0 ≤ 1/2 + r and ybv0 ≤ 1/2− r,

or equivalently,

(8.11) xav0 − 1/2 ≤ r ≤ 1/2− ybv0.

Since we choose r uniformly at random in (0, 1/6), the
probability density of the random variable r is 6 on
(0, 1/6). Thus the probability of event (8.11) is at most

6 max
((

(1/2− ybv0

)
−
(
xav0 − 1/2)

)
, 0
)

= 6 max
(

(v0 − xa)(v0 − yb)− xayb, 0
)

by (8.1) and (8.10)

≤ 6(v0 − xa)(v0 − yb).

352 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The expected weight of violated constraints is at most,∑
C∈C equals
(x=a)∨(y=b)

6wC(v0 − xa)(v0 − yb) ≤ 6 SDP ≤ 6ε.

UG constraints Consider a UG constraint x = π(y).
Assume that it is violated. Then Dx 6= π(Dy) (note
that if x and y do not lie in one set Vt then |Dx| 6= |Dy|
and necessarily Dx 6= π(Dy)). Thus, at least one of
the sets π(Dy) \ Dx or Dx \ π(Dy) is not empty. If
π(Dy) \Dx 6= ∅, there exists b ∈ π(Dy) \Dx. We have,

Pb ≡ Pr (b ∈ π(Dy) \Dx)

≤ Pr
(
‖yb‖2 > 1/2− r and ‖xπ(b)‖2 ≤ 1/2− r

)
= Pr

(
1/2− ‖yb‖2 < r ≤ 1/2− ‖xπ(b)‖2

)
≤ 6 max(‖yb‖2 − ‖xπ(b)‖2, 0)

≤ 6‖yb − xπ(b)‖2.

By the union bound, the probability that there is b ∈
π(Dy) \Dx is at most 6

∑
b∈D ‖yb − xπ(b)‖2. Similarly,

the probability that there is b ∈ Dx \ π(Dy) is at most
6
∑
b∈D ‖yb − xπ(b)‖2. Therefore, the weight of the

violated UG constraints is at most 24SDP = O(ε), in
expectation.

We restrict our attention to the set C′′. There are four
types of constraints in C′′.

1. disjunction constraints (x = a) ∨ (y = b) with
x, y ∈ V1 and a ∈ Dx, b ∈ Dy;

2. UG constraints x = π(y) with x, y ∈ V1 and
Dx = π(Dy);

3. UG constraints x = π(y) with x, y ∈ V2;

4. unary constraints x ∈ P with x ∈ V2.

Denote the set of type 1 and 2 constraints by C1, and
type 3 and 4 constraints by C2. Let I1 be the sub-
instance of I on variables V1 with constraints C1 in
which every variable x is restricted to Dx, and I2 be
the sub-instance of I on variables V2 with constraints
C2.

In Sections 8.3 and 8.4, we show how to solve I1 and
I2, respectively. The total weight of constraints violated
by our solution for I1 will be at most O(

√
ε); The total

weight of constraints violated by our solution for I2 will
be at most O(

√
ε log |D|). Thus the combined solution

will satisfy a subset of the constraints of weight at least
1−O(

√
ε log |D|).

8.3 Solving Instance I1 In this section, we present
an algorithm that solves instance I1. The algorithm
assigns values to variables in V1 so that the total weight
of violated constraints is at most O(

√
ε).

Lemma 8.3. There is a randomized algorithm that
given instance I1 and the SDP solution finds a set of
UG constraints Cbad ⊆ C1 and values αx, βx ∈ Dx for
every x ∈ V1 such that the following conditions hold.

• Dx = {αx, βx}.

• for each UG constraints x = π(y) in C1 \ Cbad, we
have αx = π(αy) and βx = π(βy).

• E[w(Cbad)] ≤ O(
√
ε).

Proof. We use the algorithm of Goemans and
Williamson for Min Uncut [27] to find values αx, βx. Re-
call that in the Min Uncut problem (also known as Min
2CNF≡ deletion) we are given a set of Boolean variables
and a set of constraints of the form (x = a)↔ (y = b).
Our goal is to find an assignment that minimizes the
weight of unsatisfied constraints.

Consider the set of UG constraints in C1. Since
|Dx| = 2 for every variable x ∈ V1, each constraint
x = π(y) is equivalent to the Min Uncut constraint (x =
π(a))↔ (y = a) where a is an element of Dy (it does not
matter which of the two elements of Dy we choose). We
define an SDP solution for the Goemans—Williamson
relaxation of Min Uncut as follows. Consider x ∈ V1.
Denote the elements of Dx by a and b (in any order).
Let

x∗a =
xa − xb
‖xa − xb‖

and x∗b = −x∗a =
xb − xa
‖xa − xb‖

.

Note that the vectors xa and xb are nonzero orthogonal
vectors, and, thus, ‖xa−xb‖ is nonzero. The vectors x∗a
and x∗b are unit vectors. Now we apply the random hy-
perplane rounding scheme of Goemans and Williamson:
We choose a random hyperplane and let H be one of
the half-spaces the hyperplane divides the space into.
Note that for every x exactly one of the two antipodal
vectors in {x∗a : a ∈ Dx} lies in H (almost surely). De-
fine αx and βx so that x∗αx ∈ H and x∗βx /∈ H. Let Cbad
be the set of UG constraints such that αx 6= π(αy), or
equivalently x∗π(αy) /∈ H.

Values αx and βx satisfy the first condition. If a UG
constraint x = π(y) is in C1\Cbad, then αx = π(αy); also
since Dx = π(Dy), βx = π(βy). So the second condition
holds. Finally, we verify the last condition. Consider
a constraint x = π(y). Let A = xπ(αy) − xπ(βy) and
B = yαy − yβy . Since x ∈ V1, we have ‖xπ(αy)‖2 >

1/2 − r > 1/3 and ‖xπ(βy)‖2 > 1/3. Hence ‖A‖2 =

353 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

‖xπ(αy)‖2 + ‖xπ(βy)‖2 > 2/3. Similarly, ‖B‖2 > 2/3.
Assume first that ‖A‖ ≥ ‖B|. Then,

‖x∗π(αy) − y∗αy‖
2 =

∥∥∥∥ A

‖A‖
− B

‖B‖

∥∥∥∥2

= 2− 2AB

‖A‖‖B‖

=
2

‖B‖2
×
(
‖B‖2 − ‖B‖

‖A‖
AB

)
.

We have 2
(
‖B‖2 − ‖B‖‖A‖ AB

)
≤ ‖A−B‖2, since

‖A−B‖2 − 2
(
‖B‖2 − ‖B‖

‖A‖
AB

)
=
(
‖A‖ − ‖B‖

)(
‖A‖+ ‖B‖ − 2AB

‖A‖

)
≥ 0,

because ‖A‖ ≥ AB/‖A‖ and ‖B‖ ≥ AB/‖A‖. We
conclude that

‖x∗π(αy) − y∗αy‖
2 ≤ ‖A−B‖2

‖B‖2
≤ 3

2
‖A−B‖2

=
3

2
‖(xπ(αy) − yαy)− (xπ(βy) − yβy)‖2

≤ 3 ‖xπ(αy) − yαy‖2 + 3 ‖xπ(βy) − yβy‖.

If ‖A‖ ≤ ‖B‖, we get the same bound on ‖x∗π(αy)−y
∗
αy‖

2

by swapping A and B in the formulas above. Therefore,∑
C∈Cbad

is of the form
x=π(y)

wC‖x∗π(αy) − y∗αy‖
2 ≤ 3 SDP = O(ε).

The analysis by Goemans and Williamson shows that
the total weight of the constraints of the form x = π(y)
such that

x∗π(αy) /∈ H and y∗αy ∈ H

is at most O(
√
ε), see [27] (or Lemma 7.5 in this

paper for a similar argument). Therefore, E[w(Cbad)] ≤
O(
√
ε).

We remove all constraints Cbad from I1 and obtain
an instance I ′1. Now we construct an SDP solution {x̃a}
for I ′1. We let

x̃αx = xαx and x̃βx = v0 − xαx .

We define Sxαx = {αx} and Sxβx = D \ Sxαx . Since
x̃βx = v0 − xαx =

∑
a∈Sxβx

xa, we have,

(8.12) x̃a =
∑

a′∈Sxa

xa′ for every a ∈ Dx.

Note that a ∈ Sxa for every a ∈ Dx.

Lemma 8.4. The solution {x̃a} is a feasible solution for
SDP relaxation (8.1)–(8.6) without triangle inequalities
(8.5) for I ′1. Its cost is O(ε).

Proof. We verify that the SDP solution is feasible.
First, we have

∑
a∈Dx x̃a = v0 and

x̃αx x̃βx = xαx · (v0 − xαx) = xαxv0 − ‖xαx‖2 = 0.

Then for a ∈ Dx and b ∈ Dy, we have x̃aỹb =∑
a′∈Sxa,b′∈Syb xa′yb′ ≥ 0. We now show that the SDP

cost is O(ε).
First, we consider disjunction constraints. We prove

that the contribution of each constraint (x = a)∨(y = b)
to the SDP for I ′1 is at most its contribution to the SDP
for I. That is,

(8.13) (v0 − x̃a)(v0 − ỹb) ≤ (v0 − xa)(v0 − yb).

Observe that

(v0 − xa)(v0 − yb)− (v0 − x̃a)(v0 − ỹb) =

(v0 − x̃a)(ỹb − yb) + (x̃a − xa)(v0 − ỹb)

+ (x̃a − xa)(ỹb − yb).

We prove that all terms on the right hand side are
nonnegative, and thus inequality (8.13) holds. Using
the identities (8.12) and

∑
a′∈D xa′ = v0 as well as the

inequality xa′yb′ ≥ 0 (for all a′, b′ ∈ D), we get

(v0 − x̃a)(ỹb − yb) =
∑

a′∈D\Sxa
b′∈Syb\{b}

xa′yb′ ≥ 0.

Similarly, (x̃a − xa)(v0 − ỹb) ≥ 0, and

(x̃a − xa)(ỹb − yb) =
∑

a′∈Sxa\{a}
b′∈Syb\{b}

xa′yb′ ≥ 0.

Now we consider UG constraints. The contribution
of a UG constraint x = π(y) in C1\Cbad to the SDP for I ′1
equals the weight of the constraint times the following
expression.

‖x̃π(αy) − ỹαy‖2 + ‖x̃π(βy) − ỹβy‖2

= ‖x̃αx − ỹαy‖2 + ‖x̃βx − ỹβy‖2

= ‖xαx − yαy‖2 + ‖(v0 − xαx)− (v0 − yαy)‖2

= 2‖xαx − yαy‖2 = 2‖xπ(αy) − yαy‖2.

Thus, the contribution is at most twice the contribution
of the constraint to the SDP for I. We conclude that
the SDP contribution of all the constraints in C1 \ Cbad
is at most 2 SDP = O(ε).

354 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Finally, we note that I ′1 is a Boolean 2-CSP in-
stance. We round solution {x̃a} using the rounding pro-
cedure by Charikar et al. for Boolean 2-CSP [16] (when
|D| = 2, the SDP relaxation used in [16] is equivalent
to SDP (8.1)–(8.6) without triangle inequalities (8.5)).
We get an assignment of variables in V1. The weight
of constraints in C1 \ Cbad violated by this assignment is
at most O(

√
ε). Since w(Cbad) = O(

√
ε), the weight of

constraints in C1 violated by the assignment is at most
O(
√
ε).

8.4 Solving Instance I2 Instance I2 is a unique
games instance with additional unary constraints. We
restrict the SDP solution for I to variables x ∈ V2 and
get a solution for the unique game instance I2. Note
that since we do not restrict the domain of variables x ∈
V2 to Dx, the SDP solution we obtain is feasible. The
SDP cost of this solution is at most SDP. We round this
SDP solution using the algorithm by Charikar et al. [15];
given a (1 − ε)-satisfiable instance of Unique Games it
finds a solution with the weight of violated constraints
at most O(

√
ε log |D|). We remark that paper [15]

considers only unique game instances. However, in [15],
we can restrict the domain of any variable x to a set
Sx by setting xa = 0 for a ∈ D \ Sx. Hence, we can
model unary constraints as follows. For every unary
constraint x ∈ P , we introduce a dummy variable zx,P
and restrict its domain to the set P . Then we replace
each constraint x ∈ P with the equivalent constraint
x = zx,P . The weight of the constraints violated by the

obtained solution is at most O(
√
ε log |D|).

Finally, we combine results proved in Sections 8.2, 8.3,
and 8.3 and obtain Theorem 3.1(2).

A Solving instances with exponentially small
constraint weights

In this section, we explain how we solve instances with
exponentially small constraint weights. As noted in the
introduction, we can solve an SDP with an additive
error ε′ in time poly(n, ε′), where n is the size of the
SDP. Therefore, given a (1− ε)-satisfiable instance, we
can find an SDP solution of value (1 + 2−n)ε in time
poly(n, log 1/ε), which is polynomial in n unless ε is
exponentially small. We now outline how we can handle
instances with small values of ε.

Consider a (1 − ε) satisfiable instance I and an
optimal combinatorial solution. Let w̃ be the weight of
the heaviest constraint that is violated by the solution.
Note that w̃ ≤ ε ≤ mw̃ since there are at most m
unsatisfied constraints and each of them has weight at
most w̃. Since w̃ is the weight of one of the constraints
in C, our algorithm may guess the value of w̃ (more

precisely, we can run the algorithm for each w̃ ∈ {wC :
C ∈ C} and then output the best of the assignments we
found).

Given w̃, we perform the following steps to solve
the SDP.

• Partition the constraints into two sets

Clight = {C ∈ C : wC ≤ w̃}

and
Cheavy = {C ∈ C : wC > w̃}.

Note that the optimal solution satisfies all the
constraints in Cheavy.

• Rescale the weights of constraints in Clight so
that they add up to 1; specifically, let w′C =
wC/w(Clight).

• Write the following SDP relaxation for the problem
with a new objective function and extra constraints
(A.2): Minimize

(A.1)
∑

C=((x,y),R)∈Clight

w′C
∑

(a,b)6∈R

xayb

subject to∑
(a,b)6∈R

xayb = 0 ((x, y), R) ∈ Cheavy(A.2)

xayb ≥ 0 x, y ∈ V, a, b ∈ D
xaxb = 0 x ∈ V, a, b ∈ D, a 6= b∑

a∈D
xa = v0 x ∈ V

‖v0‖ = 1.

We will refer to this SDP as the auxiliary SDP and
to the original SDP (described in Section 4) as the
standard SDP. The intuition behind the auxiliary
SDP is as follows: its objective function (A.1)
measures only the weight of violated constraints
in Clight (w.r.t. weights w′C); it has additional
SDP constraints (A.2) that ensure that all the
constraints in Cheavy are satisfied.

• Observe that the integral SDP solution correspond-
ing to the optimal combinatorial solution is a feasi-
ble SDP solution for the auxiliary SDP; namely, it
satisfies SDP constraints (A.2) since the combina-
torial solution satisfies all the constraints in Cheavy.
The value of this SDP solution (w.r.t. to the ob-
jective (A.1)) equals the weight of the constraints
violated by the optimal solution w.r.t. weights w′C .
Therefore, the optimal SDP value is at most ε̃ =
ε/w(Clight). Note that ε̃ ≥ w̃/(mw̃) = 1/m.

355 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

• We solve the SDP relaxation with an additive error
2−n/m in polynomial-time and obtain an SDP
solution {xa}x∈V,a∈D of value at most (1 + 2−n)ε̃.
Note that {xa}x∈V,a∈D is a feasible SDP solution
to the standard SDP, since the auxiliary SDP has
all the SDP constraints from the standard SDP.
As a solution to the standard SDP, it has value
(4.1) at most

∑
C=((x,y),R)∈C

wC
∑

(a,b) 6∈R

xayb

=
∑

C=((x,y),R)∈Clight

wC
∑

(a,b)6∈R

xayb

+
∑

C=((x,y),R)∈Cheavy

wC
∑

(a,b)6∈R

xayb

by (A.2)
= w(Clight)

∑
C=((x,y),R)∈Clight

w′C
∑

(a,b)6∈R

xayb

+
∑

C=((x,y),R)∈Cheavy

0

≤ w(Clight)× (1 + 2−n)ε̃ = (1 + 2−n)ε.

• Thus, we obtain an SDP solution to the standard
SDP relaxation of value (1 + 2−n)ε.

References

[1] P. Austrin and J. H̊astad. On the usefulness of pred-
icates. ACM Transactions on Computation Theory,
5(1):1, 2013.

[2] K. Baker and A. Pixley. Polynomial interpolation
and the chinese remainder theorem. Mathematische
Zeitschrift, 143:165–174, 1975.

[3] L. Barto. Finitely related algebras in congruence dis-
tributive varieties have near unanimity terms. Cana-
dian Journal of Mathematics, 65(1):3–21, 2013.

[4] L. Barto and M. Kozik. Robust satisfiability of con-
straint satisfaction problems. In STOC’12, pages 931–
940, 2012.

[5] L. Barto and M. Kozik. Constraint satisfaction prob-
lems solvable by local consistency methods. Journal of
the ACM, 61(1):Article 3, 2014.

[6] L. Barto, M. Kozik, and R. Willard. Near unanimity
constraints have bounded pathwidth duality. In LICS,
pages 125–134, 2012.

[7] W. Bibel. Constraint satisfaction from a deductive
viewpoint. Artificial Intelligence, 35:401–413, 1988.

[8] A. Bulatov. A dichotomy theorem for constraint
satisfaction problems on a 3-element set. Journal of
the ACM, 53(1):66–120, 2006.

[9] A. Bulatov. Bounded relational width, 2009.
manuscript.

[10] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying
complexity of constraints using finite algebras. SIAM
Journal on Computing, 34(3):720–742, 2005.

[11] A. Bulatov, A. Krokhin, and B. Larose. Dualities
for constraint satisfaction problems. In Complexity of
Constraints, volume 5250 of LNCS, pages 93–124. 2008.

[12] C. Carvalho, V. Dalmau, and A. Krokhin. CSP duality
and trees of bounded pathwidth. Theoretical Computer
Science, 411(34-36):3188–3208, 2010.

[13] C. Carvalho, V. Dalmau, and A. Krokhin. Two
new homomorphism dualities and lattice operations.
Journal of Logic and Computation, 21(6):1065–1092,
2011.

[14] S. O. Chan. Approximation resistance from pairwise
independent subgroups. In STOC’13, pages 447–456,
2013.

[15] M. Charikar, K. Makarychev, and Y. Makarychev.
Near-optimal algorithms for unique games. In
STOC’06, pages 205–214, 2006.

[16] M. Charikar, K. Makarychev, and Y. Makarychev.
Near-optimal algorithms for maximum constraint sat-
isfaction problems. ACM Transactions on Algorithms,
5(3), 2009.

[17] D. Cohen and P. Jeavons. The complexity of constraint
languages. In F. Rossi, P. van Beek, and T. Walsh, ed-
itors, Handbook of Constraint Programming, chapter 8.
Elsevier, 2006.

[18] M. Cooper, D. Cohen, and P. Jeavons. Characterising
tractable constraints. Artificial Intelligence, 65:347–
361, 1994.

[19] N. Creignou, S. Khanna, and M. Sudan. Complex-
ity Classifications of Boolean Constraint Satisfaction
Problems, volume 7 of SIAM Monographs on Discrete
Mathematics and Applications. 2001.

[20] V. Dalmau. Linear Datalog and bounded path duality
for relational structures. Logical Methods in Computer
Science, 1(1), 2005. (electronic).

[21] V. Dalmau, M. Kozik, A. Krohkin, K. Makarychev,
Y. Makarychev, and J. Opršal. Robust algorithms with
polynomial loss for near-unanimity CSPs. Available on
arXiv, http://arxiv.org/abs/1607.04787, 2016.

[22] V. Dalmau and A. Krokhin. Majority constraints
have bounded pathwidth duality. European Journal
of Combinatorics, 29(4):821–837, 2008.

[23] V. Dalmau and A. Krokhin. Robust satisfiability
for CSPs: Hardness and algorithmic results. ACM
Transactions on Computation Theory, 5(4):Article 15,
2013.

[24] V. Dalmau, A. Krokhin, and R. Manokaran. Towards
a characterization of constant-factor approximable Min
CSPs. In SODA’15, pages 847–857, 2015.

[25] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the
complexity of list homomorphisms. Journal of Graph
Theory, 42:61–80, 2003.

[26] T. Feder and M. Vardi. The computational structure
of monotone monadic SNP and constraint satisfaction:
A study through Datalog and group theory. SIAM
Journal on Computing, 28:57–104, 1998.

356 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[27] M. Goemans and D. Williamson. Improved approxi-
mation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM, 42(6):1115–1145, 1995.

[28] V. Guruswami and Y. Zhou. Tight bounds on the
approximability of Almost-satisfiable Horn SAT and
Exact Hitting Set. Theory of Computing, 8:Article 11,
2012.

[29] J. H̊astad. Some optimal inapproximability results.
Journal of the ACM, 48:798–859, 2001.

[30] J. H̊astad. On the NP-hardness of Max-Not-2. SIAM
Journal on Computing, 43(1):179–193, 2014.

[31] D. Hobby and R. McKenzie. The Structure of Fi-
nite Algebras, volume 76 of Contemporary Mathemat-
ics. American Mathematical Society, Providence, R.I.,
1988.

[32] P. Jeavons, D. Cohen, and M. Cooper. Constraints,
consistency and closure. Artificial Intelligence, 101(1–
2):251–265, 1998.

[33] P. Jeavons, D. Cohen, and M. Gyssens. Closure
properties of constraints. Journal of the ACM, 44:527–
548, 1997.

[34] S. Khot. On the power of unique 2-prover 1-round
games. In STOC’02, pages 767–775, 2002.

[35] S. Khot. On the unique games conjecture. In CCC’10,
pages 99–121, 2010.

[36] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell.
Optimal inapproximability results for Max-Cut and
other 2-variable CSPs? SIAM Journal on Computing,
37(1):319–357, 2007.

[37] S. Khot, M. Tulsiani, and P. Worah. A characterization
of strong approximation resistance. In STOC’14, pages
634–643, 2014.

[38] V. Kolmogorov, A. Krokhin, and M. Rolinek. The
complexity of general-valued CSPs. In FOCS’15, pages
1246–1258, 2015.

[39] V. Kolmogorov, J. Thapper, and S. Živný. The power
of linear programming for general-valued CSPs. SIAM
Journal on Computing, 44(1):1–36, 2015.

[40] M. Kozik Weak consistency notions for all the CSPs
of bounded width. arXiv:1605.00565.

[41] M. Kozik, A. Krokhin, M. Valeriote, and R. Willard.
Characterizations of several Maltsev conditions. Alge-
bra Universalis, 73(3–4):205–224, 2015.

[42] G. Kun, R. O’Donnell, T. Suguru, Y. Yoshida, and
Y. Zhou. Linear programming, width-1 CSPs, and
robust satisfaction. In ITCS’12, pages 484–495, 2012.

[43] B. Larose, C. Loten, L. Zádori. A polynomial-time
algorithm for near-unanimity graphs. J. Algorithms,
55(2):177–191, 2005.

[44] B. Larose and P. Tesson. Universal algebra and hard-
ness results for constraint satisfaction problems. The-
oretical Computer Science, 410(18):1629–1647, 2009.

[45] B. Larose, M. Valeriote, and L. Zádori. Omitting types,
bounded width and the ability to count. Internat. J.
Algebra Comput., 19(5):647–668, 2009.

[46] B. Larose and L. Zádori. Bounded width problems and
algebras. Algebra Universalis, 56(3–4):439–466, 2007.

[47] M. Maróti and L. Zádori. Reflexive digraphs with
near unanimity polymorphisms. Discrete Mathematics,
312(15):2316–2328, 2012.

[48] P. Raghavendra. Optimal algorithms and inapprox-
imability results for every CSP? In STOC’08, pages
245–254, 2008.

[49] T. Schaefer. The complexity of satisfiability problems.
In STOC’78, pages 216–226, 1978.

[50] J. Thapper and S. Živný. The complexity of finite-
valued CSPs. In STOC’13, pages 695–704, 2013.

[51] L. Vandenberghe and S. Boyd. Semidefinite program-
ming. SIAM Review, 38(1):49–95, 1996.

[52] U. Zwick. Finding almost-satisfying assignments. In
STOC’98, pages 551–560, 1998.

357 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

6/
17

 to
 1

29
.2

34
.3

9.
13

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

