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Abstract

An instance of the Constraint Satisfaction Problem
(CSP) is given by a family of constraints on over-
lapping sets of variables, and the goal is to assign
values from a fixed domain to the variables so that
all constraints are satisfied. In the optimization ver-
sion, the goal is to maximize the number of satisfied
constraints. An approximation algorithm for CSP is
called robust if it outputs an assignment satisfying
a (1 − g(ε))-fraction of constraints on any (1 − ε)-
satisfiable instance, where the loss function g is such
that g(ε) → 0 as ε → 0.

We study how the robust approximability of CSPs
depends on the set of constraint relations allowed
in instances, the so-called constraint language. All
constraint languages admitting a robust polynomial-
time algorithm (with some g) have been charac-
terised by Barto and Kozik, with the general bound
on the loss g being doubly exponential, specifically
g(ε) = O((log log(1/ε))/ log(1/ε)). It is natural to
ask when a better loss can be achieved: in partic-
ular, polynomial loss g(ε) = O(ε1/k) for some con-
stant k. In this paper, we consider CSPs with a con-
straint language having a near-unanimity polymor-
phism. We give two randomized robust algorithms
with polynomial loss for such CSPs: one works for
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any near-unanimity polymorphism and the parame-
ter k in the loss depends on the size of the domain
and the arity of the relations in Γ, while the other
works for a special ternary near-unanimity operation
called dual discriminator with k = 2 for any domain
size. In the latter case, the CSP is a common gen-
eralisation of Unique Games with a fixed domain
and 2-Sat. In the former case, we use the algebraic
approach to the CSP. Both cases use the standard
semidefinite programming relaxation for CSP.

1 Introduction

The constraint satisfaction problem (CSP) provides a
framework in which it is possible to express, in a nat-
ural way, many combinatorial problems encountered
in computer science and AI [17, 19, 25]. An instance
of the CSP consists of a set of variables, a domain
of values, and a set of constraints on combinations of
values that can be taken by certain subsets of vari-
ables. The basic aim is then to find an assignment of
values to the variables that satisfies the constraints
(decision version) or that satisfies the maximum num-
ber of constraints (optimization version).
Since CSP-related algorithmic tasks are usually

hard in full generality, a major line of research
in CSP studies how possible algorithmic solutions
depend on the set of relations allowed to specify
constraints, the so-called constraint language, (see,
e.g. [10, 17, 19, 25]). The constraint language is de-
noted by Γ and the corresponding CSP by CSP(Γ).
For example, when one is interested in polynomial-
time solvability (to optimality, for the optimization
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case), the ultimate sort of results are dichotomy re-
sults [8, 10, 25, 37, 49], pioneered by [48], which
characterise the tractable restrictions and show that
the rest are NP-hard. Classifications with respect
to other complexity classes or specific algorithms
are also of interest (e.g. [5, 6, 38, 43]). When ap-
proximating (optimization) CSPs, the goal is to im-
prove, as much as possible, the quality of approx-
imation that can be achieved in polynomial time,
e.g. [15, 16, 27, 34, 47]. Throughout the paper we
assume that P 6=NP.
The study of almost satisfiable CSP instances fea-

tures prominently in the approximability literature.
On the hardness side, the notion of approximation
resistance (which, intuitively, means that a problem
cannot be approximated better than by just picking
a random assignment, even on almost satisfiable in-
stances) was much studied recently, e.g. [1, 14, 29, 36].
Many exciting developments in approximability in
the last decade were driven by the Unique Games
Conjecture (UGC) of Khot, see survey [34]. The
UGC states that it is NP-hard to tell almost satis-
fiable instances of CSP(Γ) from those where only a
small fraction of constraints can be satisfied, where
Γ is the constraint language consisting of all graphs
of permutations over a large enough domain. This
conjecture (if true) is known to imply optimal inap-
proximability results for many classical optimization
problems [34]. Moreover, if the UGC is true then a
simple algorithm based on semidefinite programming
(SDP) provides the best possible approximation for
all optimization problems CSP(Γ) [47], though the
exact quality of this approximation is unknown.
On the positive side, Zwick [51] initiated the sys-

tematic study of approximation algorithms which,
given an almost satisfiable instance, find an almost
satisfying assignment. Formally, call a polynomial-
time algorithm for CSP robust if, for every ε > 0 and
every (1 − ε)-satisfiable instance (i.e. at most a ε-
fraction of constraints can be removed to make the
instance satisfiable), it outputs a (1−g(ε))-satisfying
assignment (i.e. that fails to satisfy at most a g(ε)-
fraction of constraints). Here, the loss function g
must be such that g(ε) → 0 as ε → 0. Note that one
can without loss of generality assume that g(0) = 0,
that is, a robust algorithm must return a satisfying

assignment for any satisfiable instance. The running
time of the algorithm should not depend on ε (which
is unknown when the algorithm is run). Which prob-
lems CSP(Γ) admit robust algorithms? When such
algorithms exist, how does the best possible loss g
depend on Γ?

Related Work

In [51], Zwick gave an SDP-based robust algorithm
with g(ε) = O(ε1/3) for 2-Sat and LP-based robust
algorithm with g(ε) = O(1/ log(1/ε)) for Horn k-
Sat. Robust algorithms with g(ε) = O(

√
ε) were

given in [16] for 2-Sat, and in [15] for Unique
Games(q) where q denotes the size of the domain.
For Horn-2-Sat, a robust algorithm with g(ε) =
2ε was given in [27]. These bounds for Horn k-
Sat (k ≥ 3), Horn 2-Sat, 2-Sat, and Unique
Games(q) are known to be optimal [27, 33, 35], as-
suming the UGC.
The algebraic approach to CSP [10, 17, 32] has

played a significant role in the recent massive progress
in understanding the landscape of complexity of
CSPs. The key to this approach is the notion of a
polymorphism, which is an n-ary operation (on the
domain) that preserves the constraint relations. In-
tuitively, a polymorphism provides a uniform way to
combine n solutions to a system of constraints (say,
part of an instance) into a new solution by apply-
ing the operation component-wise. The intention is
that the new solution improves on the initial solu-
tions in some problem-specific way. Many classifica-
tions of CSPs with respect to some algorithmic prop-
erty of interest begin by proving an algebraic classi-
fication stating that every constraint language either
can simulate (in a specific way, via gadgets, – see
e.g. [4, 22, 43] for details) one of a few specific basic
CSPs failing the property of interest or else has poly-
morphisms having certain nice properties (say, satis-
fying nice equations). Such polymorphisms are then
used to obtain positive results, e.g. to design and
analyze algorithms. Getting such a positive result in
full generality in one step is usually hard, so (typi-
cally) progress is made through a series of intermedi-
ate steps where the result is obtained for increasingly
weaker algebraic conditions. The algebraic approach
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was originally developed for the decision CSP [10, 32],
and it was adapted for robust satisfiability in [22].
One such algebraic classification result [44] gives an

algebraic condition (referred to as SD(∧) or “omitting
types 1 and 2” – see [5, 40, 44] for details) equivalent
to the inability to simulate Lin-p – systems of linear
equations over Zp, p prime, with 3 variable per equa-
tion. H̊astad’s celebrated result [28] implies that Lin-
p does not admit a robust algorithm (for any g). This
result carries over to all constraint languages that can
simulate (some) Lin-p [22]. The remaining languages
are precisely those that have the logico-combinatorial
property of CSPs called “bounded width” or “bounded
treewidth duality” [5, 9, 45]. This property says,
roughly, that all unsatisfiable instances can be re-
futed via local propagation – see [11] for a survey on
dualities for CSP. Barto and Kozik used SD(∧) in [5],
and then in [4] they used their techniques from [5] to
prove the Guruswami-Zhou conjecture [27] that each
bounded width CSP admits a robust algorithm.
The general bound on the loss in [4] is g(ε) =

O((log log(1/ε))/ log(1/ε)). It is natural to ask when
a better loss can be achieved. In particular, the
problems of characterizing CSPs where linear loss
g(ε) = O(ε) or polynomial loss g(ε) = O(ε1/k)
(for constant k) can be achieved have been posed
in [22]. Partial results on these problems appeared
in [22, 23, 41]. For the Boolean case, i.e. when the
domain is {0, 1}, the dependence of loss on Γ is fully
classified in [22].

Our Contribution

We study CSPs that admit a robust algorithm with
polynomial loss. As explained above, the bounded
width property is necessary for admitting any robust
algorithm. Horn 3-Sat has bounded width, but
does not admit a robust algorithm with polynomial
loss (unless the UGC fails) [27]. The algebraic con-
dition that separates Lin-p and Horn 3-Sat from
the CSPs that can potentially be shown to admit
a robust algorithm with polynomial loss is known
as SD(∨) or “omitting types 1, 2 and 5” [22], see
Section 2.2 for the description of SD(∨) in terms of
polymorphisms. The condition SD(∨) is also a neces-
sary condition for the logico-combinatorial property

of CSPs called “bounded pathwidth duality” (which
says, roughly, that all unsatisfiable instances can be
refuted via local propagation in a linear fashion), and
possibly a sufficient condition for it too [43].
From the algebraic perspective, the most general

natural condition that is (slightly) stronger than
SD(∨) is the near-unanimity (NU) condition [2].
CSPs with a constraint language having an NU poly-
morphism received a lot of attention in the litera-
ture (e.g. [25, 31, 6]). Bounded pathwidth duality
for CSPs admitting an NU polymorphism was estab-
lished in a series of papers [20, 21, 6], and we use
some ideas from [21, 6] in this paper.
We prove that any CSP with a constraint language

having an NU polymorphism admits a randomized
robust algorithm with loss O(ε1/k), where k depends
on the size of the domain. It is an open question
whether this dependence on the size of the domain
is necessary. We prove that, for the special case of
a ternary NU polymorphism known as dual discrim-
inator (the corresponding CSP is a common general-
isation of Unique Games with a fixed domain and
2-Sat), we can always choose k = 2. Our algorithms
use the standard SDP relaxation for CSPs.
The algorithm for the general NU case is inspired

by [4] and follows the same general scheme:

1. Solve the SDP relaxation for a (1− ε)-satisfiable
instance I.

2. Use the SDP solution to remove certain con-
straints in I with total weight O(g(ε)) (in our
case, O(ε1/k)) so that the remaining instance
satisfies a certain consistency condition.

3. Use the appropriate polymorphism (in our case,
NU) to show that any instance of CSP(Γ) with
this consistency condition is satisfiable.

Steps 1 and 2 in this scheme can be applied to any
CSP instance, and this is where essentially all work
of the approximation algorithm happens. Polymor-
phisms are not used in the algorithm, they are used in
Step 3 only to prove the correctness. Obviously, Step
2 prefers weaker conditions (achievable by remov-
ing not too many constraints), while Step 3 prefers
stronger conditions (so that they can guarantee sat-
isfiability), so reaching the balance between them is
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the main technical challenge in applying this scheme.
Our algorithm is quite different from the algorithm
in [4]. That algorithm is designed so that Steps 1
and 2 establish a consistency condition that, in par-
ticular, includes the 1-minimality condition, and es-
tablishing 1-minimality alone requires removing con-
straints with total weight O(1/ log (1/ε)) [27], unless
UGC fails. To get the right dependency on ε we
introduce a new consistency condition somewhat in-
spired by [6, 39]. The proof that the new consistency
condition satisfies the requirements of Steps 2 and
3 of the above scheme is one of the main technical
contributions of our paper.

Organization of the paper

After some preliminaries, we formulate the two main
results of this paper in Section 3. Section 4 then con-
tains a description of SPD relaxations that we will use
further on. Sections 5 and 6 contain the description
of the algorithms for constraint languages compati-
ble with NU polymorphism and dual discriminator,
respectively; the following chapters prove the correct-
ness of the two algorithms.

2 Preliminaries

2.1 CSPs

Throughout the paper, let D be a fixed finite set,
sometimes called the domain. An instance of the CSP
is a pair I = (V, C) with V a finite set of variables
and C is a finite set of constraints. Each constraint
is a pair (x,R) where x is a tuple of variables (say,
of length r > 0), called the scope of C and R an r-
ary relation on D called the constraint relation of C.
The arity of a constraint is defined to be the arity
of its constraint relation. In the weighted optimiza-
tion version, which we consider in this paper, every
constraint C ∈ C has an associated weight wC ≥ 0.
Unless otherwise stated we shall assume that every
instance satisfies

∑

C∈C wC = 1.
An assignment for I is a mapping s : V → D.

We say that s satisfies a constraint ((x1, . . . , xr), R)
if (s(x1), . . . , s(xr)) ∈ R. For 0 ≤ β ≤ 1 we say that
assignment s β-satisfies I if the total weight of the

constraints satisfied by s is at least β. In this case we
say that I is β-satisfiable. The best possible β for I
is denoted by Opt(I).
A constraint language on D is a finite set Γ of re-

lations on D. The problem CSP(Γ) consists of all
instances of the CSP where all the constraint rela-
tions are from Γ. Problems k-Sat, Horn k-Sat,
Lin-p, Graph H-colouring, and Unique Games
|D|) are all of the form CSP(Γ).
The decision problem for CSP(Γ) asks whether an

input instance I of CSP(Γ) has an assignment satis-
fying all constraints in I. The optimization problem
for CSP(Γ) asks to find an assignment s where the
weight of the constraints satisfied by s is as large as
possible. Optimization problems are often hard to
solve to optimality, motivating the study of approxi-
mation algorithms.

2.2 Algebra

An n-ary operation f on D is a map from Dn to
D. We say that f preserves (or is a polymorphism
of) an r-ary relation R on D if for all n (not nec-
essarily distinct) tuples (ai1, . . . , a

i
r) ∈ R, 1 ≤ i ≤ n,

the tuple (f(a11, . . . , a
1
n), . . . , f(a

r
1, . . . , a

r
n)) belongs to

R as well. Say, if R is the edge relation of a di-
graph H , then f is a polymorphism of R if and only
if, for any list of n (not necessarily distinct) edges
(a1, b1), . . . , (an, bn) of H , there is an edge in H from
f(a1, . . . , an) to f(b1, . . . , bn). If f is a polymorphism
of every relation in a constraint language Γ then f is
called a polymorphism of Γ. Many algorithmic prop-
erties of CSP(Γ) depend only on the polymorphisms
of Γ [10, 22, 32, 43].
An n-ary (n ≥ 3) operation f is a near-unanimity

(NU) operation if, for all x, y ∈ D, it satisfies

f(x, x, . . . , x, x, y) = f(x, x, . . . , x, y, x) = . . .

= f(y, x, . . . , x, x, x) = x.

Note that the behaviour of f on other tuples of ar-
guments is not restricted. An NU operation of arity
3 is called a majority operation.
We mentioned in the introduction that (modulo

UGC) only constraint languages satisfying condition
SD(∨) can admit robust algorithms with polynomial
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loss. The condition SD(∨) can be expressed in many
equivalent ways: for example, as the existence of
ternary polymorphisms d0, . . . , dt, t ≥ 2, satisfying
the following equations [30]:

d0(x, y, z) = x, dt(x, y, z) = z,(2.1)

di(x, y, x) = di+1(x, y, x) for all even i < t,(2.2)

di(x, y, y) = di+1(x, y, y) for all even i < t,(2.3)

di(x, x, y) = di+1(x, x, y) for all odd i < t.(2.4)

If line (2.2) is strengthened to di(x, y, x) = x for
all i, then, for any constraint language, having such
polymorphisms would be equivalent to having an NU
polymorphism of some arity [3].
NU polymorphisms appeared many times in the

CSP literature. For example, they characterize the
so-called “bounded strict width” property [25, 31],
which says, roughly, that, after establishing local con-
sistency in an instance, one can always construct a so-
lution in a greedy way, by picking values for variables
in any order so that constraints are not violated.

Theorem 1. [25, 31] Let Γ be a constraint language
with an NU polymorphism of some arity. There is a
polynomial-time algorithm that, given an instance of
CSP(Γ), finds a satisfying assignment or reports that
none exists.

A majority operation f is called the dual discrim-
inator if f(x, y, z) = x whenever x, y, z are pairwise
distinct. Binary relations preserved the dual discrim-
inator are known as implicational [7] or 0/1/all [18]
relations, they are the relations of one of four kinds:

1. relations x = a ∨ y = b for a, b ∈ D ,

2. relations x = π(y) where π is a permutation on
D,

3. relations P1(x) × P2(y) where P1 and P2 are
unary relations,

4. intersections of a relation of type 1 or 2 with a
relation of type 3.

The relations of the first kind, when D = {0, 1}, are
exactly the relations allowed in 2-Sat, while the re-
lations of the second kind are precisely the relations

allowed in Unique Games (|D|). We remark that
having such an explicit description of relations hav-
ing a given polymorphism is rare beyond the Boolean
case.

3 Main result

Theorem 2. Let Γ be a constraint language on D.

1. If Γ has a near-unanimity polymorphism then
CSP(Γ) admits a randomized robust algorithm
with loss O(ε1/k) for k = 6|D|r + 7 where r is
the maximal arity of a relation in Γ.
Moreover, if Γ contains only binary relations
then one can choose k = 6|D|+ 7.

2. if Γ has the dual discriminator polymorphism
then CSP(Γ) admits a randomized robust algo-
rithm with loss O(

√
ε).

It was stated as an open problem in [22] whether
every CSP that admits a robust algorithm with loss
O(ε1/k) admits one where k is bounded by an abso-
lute constant (that does not dependent on D). In
the context of the above theorem, the problem can
be made more specific: is dependence of k on |D|
in this theorem avoidable or there is a strict hierar-
chy of possible degrees there? The case of a majority
polymorphism is a good starting point when trying
to answer this question.

As mentioned in the introduction, robust algo-
rithms with polynomial loss and bounded pathwidth
duality for CSPs seem to be somehow related (at
least, in terms of algebraic properties), but it is un-
clear how far connections between the two notions
go. There was a similar question about a hierarchy
of bounds for pathwidth duality, and the hierarchy
was shown to be strict [21], even in the presence of
a majority polymorphism. We remark that another
family of problems CSP(Γ) with bounded pathwidth
duality was shown to admit robust algorithms with
polynomial loss in [22], where the parameter k de-
pends on the pathwidth duality bound. This family
includes languages not having an NU polymorphism
of any arity – see [12, 13].
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4 SDP relaxation

Associated to every instance I = (V, C) of CSP there
is a standard SDP relaxation. It comes in two ver-
sions: maximizing the number of satisfied constraints
and minimizing the number of unsatisfied constraints.
We use the latter. We define it assuming that all con-
straints are binary. The SDP has a variable xa for
every x ∈ V and a ∈ D. It also contains a special unit
vector v0. The goal is to assign (|V ‖D|)-dimensional
real vectors to its variables minimizing the following
objective function:

(4.1)
∑

C=((x,y),R)∈C

wC

∑

(a,b) 6∈R

xayb

subject to:

xayb ≥ 0 x, y ∈ V, a, b ∈ D(4.2)

xaxb = 0 x ∈ V, a, b ∈ D, a 6= b(4.3)
∑

a∈D xa = v0 x ∈ V(4.4)

‖v0‖ = 1(4.5)

In the intended integral solution, x = a if xa = v0.
In the fractional solution, we informally interpret
‖xa‖2 as the probability of x = a according to
the SDP (the constraints of the SDP ensure that
∑

a∈D ‖xa‖2 = 1). If C = ((x, y), R) is a constraint
and a, b ∈ D, one can think of xayb as the weight
given by the solution of the SDP to the pair (a, b)
in C. The optimal SDP solution, then, gives as lit-
tle weight as possible to pairs that are not in the
constraint relation. For a constraint C = ((x, y), R),
conditions (4.4) and (4.5) imply that

∑

(a,b)∈R xayb

is at most 1. Let loss(C) =
∑

(a,b) 6∈R xayb. For

a subset A ⊆ D, let xA =
∑

a∈A xa. Note that
xD = yD(= v0) for all x, y ∈ D.
Let SDPOpt(I) be the optimum value of (4.1).

It is clear that, for any instance I, we have
Opt(I) ≥ SDPOpt(I) ≥ 0. SDPs can be solved
up to an arbitrarily small additive error ε′ in time
poly (|I|, log(1/ε′)) [50]. By letting ε′ be exponen-
tially small in |I|, we may assume that we can
find a solution to the SDP relaxation of value (1 +
2−|I|)Opt(I) (see Appendix A for details). Since we
are only interested in the asymptotic performance of

the algorithm, we can ignore the 2−|I| error term
and assume that the value of the solution is at most
Opt(I).

5 Overview of the proof of The-

orem 2(1)

We assume throughout that Γ has a near-unanimity
polymorphism of arity n+ 1 (n ≥ 2).
It is sufficient to prove Theorem 2(1) for the case

when Γ consists of binary relations and k = 6|D|+7.
The rest will follow by Proposition 13 of [4], which
shows how to reduce the general case to constraint
languages consisting of unary and binary relations in
such a way that the domain size increases from |D|
to |D|r where r is the maximal arity of a relation in
Γ. Note that every unary constraint (x,R) can be
replaced by the binary constraint ((x, x), R′) where
R′ = {(a, a) | a ∈ R}.
Throughout the rest of this section, let I = (V, C)

be a (1− ε)-satisfiable instance of CSP(Γ).

5.1 Patterns and realizations

A pattern in I is then defined as a directed multi-
graph p whose vertices are labeled by variables of
I and edges are labeled by constraints of I in such
a way that the beginning of an edge labeled by
((x, y), R) is labeled by x and the end by y. Two
of the vertices in p can be distinguished as the be-
ginning and the end of p. If these two vertices are
labeled by variables x and y, respectively, then we
say that p is a pattern is from x to y.
For two patterns p and q such that the end of p and

the beginning of q are labeled by the same variable,
we define p + q to be the pattern which is obtained
as the disjoint union of p and q with identifying the
end of p with the beginning of q and choosing the
beginning of p + q to be the beginning of p and the
end of q to be the end of q. We also define jp to
be p + · · · + p where p appears j times. A pattern
is said to be a path pattern if the underlying graph
is an oriented path with the beginning and the end
being the two end vertices of the path, and is said
to be an n-tree pattern if the underlying graph is an
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orientation of a tree with at most n leaves, and both
the beginning and the end are leaves. A path of n-
trees pattern is then any pattern which is obtained as
t1 + · · ·+ tj for some n-tree patterns t1, . . . , tj.
A realization of a pattern p is a mapping r from

the set of vertices of p to D such that if (vx, vy) is
an edge labeled by ((x, y), R) then (r(vx), r(vy)) ∈
R. Note that r does not have to map vertices of p
labeled with same variable to the same element in
D. A propagation of a set A ⊆ D along a pattern
p whose beginning vertex is b and ending vertex is
e is defined as follows. For A ⊆ D, define A + p =
{r(e) | r is a realization of p with r(b) ∈ A}. Also
for a binary relation R we put A + R = {b | (a, b) ∈
R and a ∈ A}. Observe that we have (A + p) + q =
A+ (p+ q).
Further, assume that we have non-empty sets Dℓ

x

where 1 ≤ ℓ ≤ |D| + 1 and x runs through all vari-
ables in an instance I. Let p be a pattern in I
with beginning b and end e. We call a realization
r of p an ℓ-realization (with respect to the family
{Dℓ

x}) if, for any vertex v of p labeled by a variable
x, we have r(v) ∈ Dℓ+1

x . For A ⊆ D, define A +ℓ

p = {r(e) | r is an ℓ-realization of p with r(b) ∈ A}.
Also, for a constraint ((x, y), R) or ((y, x), R−1) and
sets A,B ⊆ D, we write B = A +ℓ (x,R, y) if
B = {b ∈ Dℓ+1

y | (a, b) ∈ R for some a ∈ A ∩Dℓ+1
x }.

5.2 The consistency notion

Recall that we assume that Γ contains only binary
relations. Before we formally introduce the new con-
sistency notion, which is the key to our result, as we
explained in the introduction, we give an example of a
similar simpler condition. We mentioned before that
2-Sat is a special case of a CSP that admits an NU
polymorphism (actually, the only majority operation
on {0, 1}). There is a textbook consistency condition
characterizing satisfiable 2-Sat instances, which can
be expressed in our notation as follows: for each vari-
able x in a 2-Sat instance I, there is a value ax such
that, for any path pattern p in I from x to x, we have
ax ∈ {ax}+ p.
Let I be an instance of CSP(Γ) over a set V of

variables. We say that I satisfies condition (IPQ)n if
the following holds:

(IPQ)n For every y ∈ V , there exist non-empty sets

D1
y ⊆ . . . ⊆ D

|D|
y ⊆ D

|D|+1
y = D such that for

any x ∈ V , any ℓ ≤ |D|, any a ∈ Dℓ
x, and any

two patterns p, q which are paths of n-trees in I
from x to x, there exists j such that

a ∈ {a}+ℓ (j(p+ q) + p).

Note that + between p and q is the pattern addi-
tion and thus independent of ℓ. Note also that a in
the above condition belongs to Dℓ

x, while propagation
is performed by using ℓ-realizations, i.e., inside sets
Dℓ+1

y .
The following theorem states that this consistency

notion satisfies the requirements of Step 3 of the gen-
eral scheme (for designing robust approximation al-
gorithms) discussed in the introduction.

Theorem 3. Let Γ be a constraint language contain-
ing only binary relations such that Γ has an (n+ 1)-
ary NU polymorphism. If an instance I of CSP(Γ)
satisfies (IPQ)n, then I is satisfiable.

5.3 The algorithm

Let k = 6|D| + 7. We provide an algorithm which,
given a (1 − ε)-satisfiable instance I of CSP(Γ), re-
moves O(ε1/k) constraints from it to obtain a subin-
stance I ′ satisfying condition (IPQ)n. It then follows
from Theorem 3 that I ′ is satisfiable, and we can find
a satisfying assignment by Theorem 1.

5.3.1 Preprocessing

The goals of preprocessing are: First, we deal with
instances which are (1 − ε)-satisfiable for 1/ε that
is not bounded by a polynomial in the number of
constraints. Second, we precompute the sets Dℓ

x to
be used for providing the (IPQ)n condition.
Let κ = 1/k (we will often use κ to avoid overload-

ing formulas). Assume that C = {C1, . . . , Cm} and
that wC1

≥ wC2
≥ . . . ≥ wCm

.
Preprocessing step 1. Using the algorithm

from Theorem 1, find the largest j such that the
subinstance Ij = (V, {C1, . . . , Cj}) is satisfiable. If
the total weight of the constraints in Ij is at least
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1 − 1/m then return the assignment s satisfying Ij
and stop.

Lemma 1. If ε ≤ 1/m2 then preprocessing step 1
returns an assignment that (1−√

ε)-satisfies I.

Proof. Assume ε ≤ 1/m2. Let i be maximum with
the property that wCi

> ε. It follows that the in-
stance Ii = (V, {C1, . . . , Ci}) is satisfiable since the
assignment (1−ε)-satisfying I must satisfy every con-
straint with weight larger than ε. It follows that i ≤ j
and, hence, the value of assignment satisfying Ij is at
least 1−wCi+1

−· · ·−wCm
≥ 1−mwCi+1

≥ 1−mε ≥
1−√

ε.

If preprocessing step 1 returns an assignment then
we are done. So assume that it did not return an
assignment. Then we know that ε ≥ 1/m2. We solve
the SDP relaxation and obtain an optimal solution
{xa} (x ∈ V, a ∈ D). We have that SDPOpt(I) ≤ ε.
Let α = max{SDPOpt(I), 1/m2}. It is clear that
α ≤ ε and ακ = O(εκ). Furthermore, this gives us
that 1/α ≤ m2. This will be needed to argue that
the main part of the algorithm runs in the polynomial
time.
Preprocessing step 2. For each x ∈ V and 1 ≤

ℓ ≤ |D| + 1, compute sets Dℓ
x ⊆ D as follows. Set

D
|D|+1
x = D and, for 1 ≤ ℓ ≤ |D|, set Dℓ

x = {a ∈
D | ‖xa‖ ≥ rx,ℓ} where rx,ℓ is the smallest number
of the form r = α3ℓκ(2|D|)i/2, i ≥ 0 integer, with
{b ∈ D | r(2|D|)−1/2 ≤ ‖xb‖ < r} = ∅. It is easy to
check that rx,ℓ is obtained with i ≤ |D|.
It is clear that the sets Dℓ

x ⊆ D, x ∈ V , 1 ≤ ℓ ≤
|D|, can be computed in polynomial time.
The sets Dℓ

x are chosen such that for smaller ℓ’s
Dℓ

x contains relatively ‘heavy’ elements (a’s such that
‖xa‖2 is large). The thresholds are chosen so that
there is a big gap (at least by a factor of 2|D|) be-
tween ‘heaviness’ of elements in Dℓ

x and outside.

5.3.2 Main part

Given the preprocessing is done, we have that 1/α ≤
m2, and we precomputed sets Dℓ

x for all x ∈ V and
1 ≤ ℓ ≤ |D| + 1. The description below uses the
number n, where n + 1 is the arity of the NU poly-
morphism of Γ.

Step 0. Remove every constraint C with
loss(C) > α1−κ.
Step 1. For every 1 ≤ ℓ ≤ |D| do the follow-

ing. Pick a value rℓ ∈ (0, α(6ℓ+4)κ) uniformly at ran-
dom. Here we need some notation: for x, y ∈ V and
A,B ⊆ D, we write xA �ℓ yB to indicate that there
is no integer j such that ‖yB‖2 < rℓ + jα(6ℓ+4)κ ≤
‖xA‖2. Then, remove all constraints ((x, y), R) such
that there are sets A,B ⊆ D with B = A+ℓ (x,R, y)
and xA 6�ℓ yB, or with B = A +ℓ (y,R−1, x) and
yA 6�ℓ xB .
Step 2. For every 1 ≤ ℓ ≤ |D| do the following.

Let m0 = ⌊α−2κ⌋. Pick a value sℓ ∈ {0, . . . ,m0 − 1}
uniformly at random. We define xA �ℓ

w yB to mean
that there is no integer j such that ‖yB‖2 < rℓ+(sℓ+
jm0)α

(6ℓ+4)κ ≤ ‖xA‖2. Obviously, if xA �ℓ yB then
xA �ℓ

w yB . Now, if A ⊆ B ⊆ Dℓ+1
x are such that

‖xB − xA‖2 ≤ (2n− 3)α(6ℓ+4)κ and xA 6�ℓ
w xB, then

remove all the constraints in which x participates.
Step 3. For ever 1 ≤ ℓ ≤ |D| do the following.

Pick mℓ = ⌈α−(3ℓ+1)κ⌉ unit vectors independently
uniformly at random. For x, y ∈ V and A,B ⊆ D,
say that xA and yB are cut by a vector u if the
signs of u · (xA − xD\A) and u · (yB − yD\B) differ.
Furthermore, we say that xA and yB are ℓ-cut if there
are cut by at least one of the chosen mℓ vectors. For
every variable x, if there exist subsets A,B ⊆ D such
that A∩Dℓ

x 6= B∩Dℓ
x and the vectors xA and xB are

not ℓ-cut, then remove all the constraints in which x
participates.
Step 4. For every 1 ≤ ℓ ≤ |D|, remove every

constraint ((x, y), R) such that there are sets A,B ⊆
D with B = A+ℓ (x,R, y), and xA and yB are ℓ-cut,
or with B = A +ℓ (y,R−1, x), and yA and xB are
ℓ-cut.
Step 5. For every 1 ≤ ℓ ≤ |D| do the follow-

ing. For every variable x, if there exist subsets A,B
such that ‖xA − xB‖ ≤ (2n − 3)1/2α(3ℓ+2)κ and xA

and xB are ℓ-cut, remove all constraints in which x
participates.
Step 6. By Proposition 2 and Theorem 3, the re-

maining instance I ′ is satisfiable. Use the algorithm
given by Theorem 1 to find a satisfying assignment
for I ′. Assign all variables in I that do not appear
in I ′ arbitrarily and return the obtained assignment
for I.
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Note that we chose to define the cut condition
based on xA −xD\A, rather than on xA, because the
former choice has the advantage that ‖xA−xD\A‖ =
1, which helps in some calculations.
In Step 0 we remove constraints such that, accord-

ing to the SDP solution, these constraints have a high
probability to be violated. Intuitively, steps 1 and
2 ensure that a loss in ‖xA‖ after propagation by
a path of n-trees is not too big. This is achieved first
by ensuring that by following a path we do not lose
too much (step 1) which also gives a bound on how
much we can lose by following an n-tree pattern (see
Lemma 14), and then that by following a path of n-
trees we do not lose too much (step 2). This is needed
in order for {a}+ℓ (j(p+ q) + p) to be non-vanishing
as j increases. Steps 3–5 ensure that if A and B
are connected by paths of n-trees in both directions
(i.e. A = B + p1 and B = A + p2), hence xA and
xB do not differ too much, then A ∩ Dℓ

x = B ∩ Dℓ
x.

This is achieved by separating the space into cones
by cutting it using the mℓ chosen vectors, removing
the variables which have two different sets that are
not ℓ-cut (step 3), and then ensuring that if we fol-
low an edge (step 4), or if we drop elements that do
not extend to an n-tree (step 5) we don’t cross a bor-
derline to another cone. This gives us both that the
sequence Aj = {a} +ℓ (j(p + q) + p) stabilizes and
that, after it stabilizes, Aj contains a. Providing the
rest of condition (IPQ)n.
The algorithm runs in polynomial time. Since D is

fixed, it is clear that the steps 0–2 can be performed
in polynomial time. For steps 3–5, we also need that
mℓ is bounded by a polynomial in m which holds
because α ≥ 1/m2.
The correctness of the algorithm is given by the

two following propositions whose proof can be found
in Section 8. These propositions show that our new
consistency notion satisfies the requirements of Step 2
of the general scheme (for designing robust approxi-
mation algorithms).

Proposition 1. The expected total weight of con-
straints removed by the algorithm is O(εκ).

Proposition 2. The instance I ′ obtained after steps
0–5 satisfies the condition (IPQ)n (with the sets Dℓ

x

computed in preprocessing step 2).

6 Overview of the proof of The-
orem 2(2)

Note that a dual discriminator is a majority, hence
every relation in Γ is 2-decomposable. Therefore, it
follows, e.g. from Lemma 1 in [22], that to prove that
CSP(Γ) admits a robust algorithm with loss O(

√
ε),

it suffices to prove this for the case when Γ consists
of all unary and binary relations preserved by the
dual discriminator. Such binary constraints are of
one of the four kinds described in Section 2.2. Using
this description, it follows from Lemma 3.2 of [22]
that it suffices to consider the following three types
of constraints:

1. Disjunction constraints of the form x = a∨y = b,
where a, b ∈ D;

2. Unique game (UG) constraints of the form x =
π(y), where π is any permutation on D;

3. Unary constraints of the form x ∈ P , where P is
an arbitrary non-empty subset of D.

We present an algorithm that given a (1 − ε)-
satisfiable instance I = (V, C) of the problem, finds
a solution satisfying constraints with expected total
weight 1−O(

√

ε log |D|) (the hidden constant in the
O-notation does not depend on ε and |D|).
We now give an informal and somewhat imprecise

sketch of the algorithm and its analysis. We present
details in Section 9. We use the SDP relaxation from
Section 4. Let us call the value ‖xa‖2 the SDP weight
of the value a for variable x.
The algorithm first solves the SDP relaxation.

Then, it partitions all variables into three groups V0,
V1, and V2 using a threshold rounding algorithm with
a random threshold. If most of the SDP weight for
x is concentrated on one value a ∈ D, then the al-
gorithm puts x in the set V0 and assigns x the value
a. If most of the SDP weight for x is concentrated
on two values a, b ∈ D, then the algorithm puts x in
the set V1 and restricts the domain of x to the set
Dx = {a, b} (thus we guarantee that the algorithm
will eventually assign one of the values a or b to x).
Finally, if the SDP weight for x is spread among 3
or more values, then we put x in the set V2; we do
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not restrict the domain for such x. After we assign
values to x ∈ V0 and restrict the domain of x ∈ V1 to
Dx, some constraints are guaranteed to be satisfied
(say, the constraint (x = a)∨ (y = b) is satisfied if we
assign x the value a and the constraint x ∈ P is sat-
isfied if Dx ⊆ P ). Denote the set of such constraints
by Cs and let C′ = C \ Cs.
We then identify a set Cv ⊆ C′ of constraints that

we conservatively label as violated. This set includes
all constraints in C′ except those belonging to one of
the following 4 groups:

1. disjunction constraints (x = a) ∨ (y = b) with
x, y ∈ V1 and a ∈ Dx, b ∈ Dy;

2. UG constraints x = π(y) with x, y ∈ V1 and
Dx = π(Dy);

3. UG constraints x = π(y) with x, y ∈ V2;

4. unary constraints x ∈ P with x ∈ V2.

Our construction of sets V0, V1, and V2, which is
based on randomized threshold rounding, ensures
that the expected total weight of constraints in Cv
is O(ε) (see Lemma 18).
The constraints from the 4 groups above naturally

form two disjoint sub-instances of I: I1 (groups 1
and 2) on the set of variables V1, and I2 (groups 3
and 4) on V2. We treat these instances independently
as described below.

Solving Instance I1
The instance I1 with the domain of each x restricted
to Dx is effectively an instance of Boolean 2-CSP
(i.e. each variable has a 2-element domain and all
constraints are binary). A robust algorithm with
quadratic loss for this problem was given by Charikar
et al. [16]. This algorithm finds a solution violat-
ing an O(

√
ε) fraction of all constraints if the opti-

mal solution violates at most ε fraction of all con-
straints or SDPOpt(I1) ≤ ε. However, we cannot
apply this algorithm to the instance I1 as is. The
problem is that the weight of violated constraints
in the optimal solution for I1 may be greater than
ω(ε). Note that the unknown optimal solution for
the original instance I may assign values to variables

x outside of the restricted domain Dx, and hence it
is not a feasible solution for I1. Furthermore, we do
not have a feasible SDP solution for the instance I1,
since the original SDP solution (restricted to the vari-
ables in V1) is not a feasible solution for the Boolean
2-CSP problem (because

∑

a∈Dx
xa is not necessar-

ily equal to v0 and, consequently,
∑

a∈Dx
‖xa‖2 may

be less than 1). Thus, our algorithm first trans-
forms the SDP solution to obtain a feasible solution
for I1. To this end, it partitions the set of vectors
{xa : x ∈ V1, a ∈ Dx} into two sets H and H̄ us-
ing a modification of the hyperplane rounding algo-
rithm by Goemans and Williamson [26]. In this par-
titioning, for every variable x, one of the two vectors
{xa : a ∈ Dx} belongs to H and the other belongs
to H̄. Label the elements of each Dx as αx and βx

so that so that xαx
is the vector in H and xβx

is the
vector in H̄. For every x, we define two new vectors
x̃αx

= xαx
and x̃βx

= v0 − xαx
. It is not hard to

verify that the set of vectors {x̃a : x ∈ V1, a ∈ Dx}
forms a feasible SDP solution for the instance I1. We
show that for each disjunction constraint C in the in-
stance I1, the cost of C in the new SDP solution is
not greater than the cost of C in the original SDP
solution (see Lemma 20). The same is true for all
but O(

√
ε) fraction of UG constraints. Thus, after

removing UG constraints for which the SDP value
has increased, we get an SDP solution of cost O(ε).
Using the algorithm [16] for Boolean 2-CSP, we ob-
tain a solution for I1 that violates constraints of total
weight at most O(

√
ε).

Solving Instance I2
The instance I2 may contain only unary and UG
constraints as all disjunction constraints are re-
moved from I2 at the preprocessing step. We run
the approximation algorithm for Unique Games by
Charikar et al. [15] on I2 using the original SDP solu-
tion restricted to vectors {xa : x ∈ V2, a ∈ D}. This
is a valid SDP relaxation because in the instance I2,
unlike the instance I1, we do not restrict the domain
of variables x to Dx. The cost of this SDP solu-
tion is at most ε. As shown in [15], the weight of
constraints violated by the algorithm [15] is at most
O(

√

ε log |D|).
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We get the solution for I by combining solutions
for I1 and I2, and assigning values chosen at the
preprocessing step to the variables from the set V0.

7 Full proof of Theorem 3

In this section we prove Theorem 3. The proof will
use constraint languages that can contain non-binary
relations. For that we need to define a path pattern
for such languages. A path pattern from x to y in an
instance I is a directed path whose vertices are la-
beled by variables of I with the beginning labeled by
x and the end by y, and edges are labeled by binary
projections of constraints of I, i.e., triples (i, C, j)
where C is a constraint of arity r and i, j ≤ r, i 6= j
are two chosen indices, in such a way that an edge
labeled by (i, ((x1, . . . , xr), R), j) begins in a vertex
labeled by xi and ends in a vertex labeled by xj .
A realization of such a pattern p is then a mapping
from vertices to D in such a way that for any edge
(vxi

, vxj
) labeled by (i, ((x1, . . . , xr), R), j) we have

(r(vxi
), r(vxj

)) ∈ Ri,j where Ri,j denotes the projec-
tion of R onto i-th and j-th coordinate. Join of path
patterns and propagation is then defined in a similar
way as for patterns with binary constraints.
For a k-ary relation R, let pri(R) = {ai |

(a1, . . . , ai, . . . , ak) ∈ R}. A CSP instance J is called
arc-consistent if there exist non-empty sets Dy (y
ranges over variables of J ) such that, for any variable
x and any constraint ((x1, . . . , xk), R) in J , if xi = x
then pri(R) = Dx. We say that a CSP instance J
satisfies condition (PQ) if the following holds:

(PQ) there exist non-empty sets Dy (y ranges over
variables of J ) such that for any variable x, any
path-patterns p, q from x to x, and any a ∈ Dx

there exists j such that a ∈ {a}+ (j(p+ q) + p)
where the propagation is performed inside Dy’s.

It is not hard to see that if J satisfies condition (PQ)
then J (with domain of each variable y restricted
to Dy and the constraint relations restricted accord-
ingly) is arc-consistent.
We will use the following result, which is Theorem

A.2 in [39].

Theorem 4. If Γ′ is a constraint language of
bounded width, then every instance of CSP(Γ′) sat-
isfying condition (PQ) is satisfiable.

Note that the above theorem holds for all, not nec-
essarily binary, languages. It is well-known that any
constraint language with an NU polymorphism has
bounded width [25, 31].
We say that A ⊆ D is a subuniverse of D if, for

any polymorphism g of Γ, we have g(a1, a2, . . .) ∈
A whenever a1, a2, . . . ∈ A. For any S ⊆ D, the
subuniverse generated by S is defined as

{g(a1, . . . , ar) | r ≥ 1, a1, . . . , ar ∈ S,

g is an r-ary polymorphism of Γ}

Recall that we have an instance I of CSP(Γ) such
that I satisfies condition (IPQ)n with some sets Dℓ

x.
Note that we can assume that all Dℓ

x’s are subuni-
verses. If they are not we replace each Dℓ

x with the
subuniverse generated by it. It is easy to check that
the instance I still satisfies (IPQ)n with such en-
larged Dℓ

x’s. Further, throughout this chapter, we
suppose that all instances are connected. It is easy
to see that we can always restrict to connected com-
ponents of an instance and solve each one separately.
Now we can proceed to the proof.

7.1 Levels of variables

For each variable x, fix a number i such that Di
x =

Di+1
x and call it the level of x. Note that each variable

has a level, since the sets Dℓ
x are non-empty and ℓ

ranges from 1 to |D| + 1. For each i, let V i denote
the set of variables of level i. Also, let V ≤i and V >i

denote the sets of all variables with level at most i or
greater than i, respectively.
In the proof of Theorem 3 we will apply Theorem 4

to I restricted to V 1, V 2 and so on, but each time
we will add some new constraints to the (restricted)
instance.

7.2 New instances in levels

We define instances Ii for i = 1, . . . , |D| in the fol-
lowing way:
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• the variables of Ii are V i;

• the constraints from I whose scope is contained
in V i are present in Ii (and are called old con-
straints);

• for every variable x ∈ V i introduce a new unary
constraint x ∈ Di+1

x = Di
x.

• for every n-tree pattern t such that:

– all the leaves of t are labeled by variables
in V ≤i, and

– all other vertices are labeled by variables in
V >i,

introduce a constraint ((x1, . . . , xk), S) where v1,
. . . , vk are all the leaves of t labeled by variables
from V i, the labels being x1, . . . , xk, respectively,
and S = {(r(v1), . . . , r(vk)) | r is an i-realization
of t} (these are new constraints).

Note that there are infinitely many n-tree patterns
t that can define new constraints, but only finitely
many constraints can appear in this way because n is
fixed. It is easy to see that both the unary relations
Dℓ

x and all relations S defined for the new constraints
are preserved by all polymorphisms of Γ.
The following claim states that each such con-

structed instance has property (PQ). This, by Theo-
rem 4, implies that it has a solution – what remains
is to find solutions of the Ii’s which can be merged
to form a global solution for I.
Claim 1. For every i, the instance Ii has property
(PQ).

Proof. We show that Ii has property (PQ) with the
sets Dx = Di

x(= Di+1
x ) for all x ∈ V i . Let p and q

be two path patterns from x to x in Ii. Let p′ and
q′ be the paths of trees in I obtained by replacing
(in the natural way) each new constraint in Ii with
a tree that defines it. We apply property (IPQ)n
for I with ℓ = i and patterns p′ and q′ to get that,
for any x ∈ V i and any a ∈ Di

x, there is a number
j such that a ∈ {a} +i (j(p′ + q′) + p′). Property
(PQ) follows immediately (note that we use the fact
that Di

x = Di+1
x for variables in V i), and thus, by

Theorem 4, the instance Ii has a solution.

7.3 Invariant of iterative construction
of a global solution

A global solution to I, denoted sol: V → D, is con-
structed in steps. In the first step, we define sol for
the variables in V 1 by choosing an arbitrary solu-
tion of I1. In each step i, sol is defined on V i, i.e.
extended from V <i to V ≤i. Our construction will
maintain the following condition:

(Ei) after defining sol on V i, every n-tree pattern t
in I such that:

• all the leaves of t are labeled by variables
from V ≤i

• all other vertices are labeled by variables
from V >i

has an i-realization (i.e., inside sets Di+1
x ) r such

that r(vx) = sol(x) for any leaf vx of t labeled
by a variable x whose level is at most i.

Note that, after step 1, condition (E1) holds because
of the new constraints in I1.
Assume that we are in step i, i.e., we have already

defined sol on V <i and condition (Ei−1) holds. Our
goal is to extend sol to V ≤i by a solution of Ii in such
a way that (Ei) holds. We show how to do this in
the remainder of this section. Note that sol extended
in this way would be a partial solution to I. Indeed,
for every constraint ((x, y), R) between x ∈ V ≤i and
y ∈ V i the pattern from x to y containing a single
edge labeled by ((x, y), R) is an n-tree. By condition
(Ei) for this pattern, sol would satisfy this constraint.
Thus, when we eventually extend sol to all of V , it
will be a satisfying assignment for I.

7.4 Finding a special solution of Ii

In this subsection, we will construct a certain special
infinite instance UCT i, prove that it has a solution
with certain properties, and then use this solution to
define a new (more restrictive) instance Ki on vari-
ables V i whose solution can be used to extend the
global solution sol of I.
The instance UCT i is constructed as a ‘universal

covering tree’ of the instance Ii. To define it properly,
we need to introduce a few more notions.

12



The incidence multigraph of an instance J has ver-
tex set consisting of the variables of J and the con-
straints of J , and if variable x appears j times in a
constraint C then the two vertices corresponding to
x and C have j edges between them. We say an in-
stance J is a tree instance if the incidence multigraph
of J is a tree. A leaf variable of J is a variable which
corresponds to a leaf in the incidence multigraph,
and we say that two variables are neighbours if they
appear together in a scope of some constraint (i.e.,
the corresponding vertices are connected by a path
of length 2).
Let J1 and J2 be two instances over the same

constraint language. An (instance) homomorphism
e : J1 → J2 is a mapping that maps variables of J1

to variables of J2 and constraints of J1 to constraints
of J2 in such a way that ((y1, . . . , yk), R) maps to
((e(y1), . . . , e(yk)), R). If in addition for any variable
y of J1, every constraint ((x1, . . . , xk), R) of J2 with
e(y) = xi has exactly one preimage ((y1, . . . , yk), R)
with y = yi, we say that e is a covering. We also
say that J1 is a cover of J2 if there exists a covering
e : J1 → J2.
A universal covering tree instance UCT (J ) of

an instance J is (possibly a countably infinite) in-
stance T such that

1. T is a tree instance;

2. there exists a covering e : T → J ;

3. every instance that satisfies 1 and 2 is a cover of
T .

If J is a tree instance, then one can take UCT (J ) =
J , otherwise UCT (J ) is always infinite, and such an
instance can be constructed using a similar method as
for constructing a universal covering tree of a graph.
We will use the following property of UCT (J ). For
any two constraintsC and C′ of UCT (J ) with e(C) =
e(C′) there an endomorphism h of UCT (J ) (an en-
domorphism of J is a homomorphism from J to J )
mapping C to C′ and such that e ◦ h = e. The same
holds for variables: if e(v) = e(v′) there is an en-
domorphism h of UCT (I) mapping v to v′ and such
that e ◦ h = e.
For the rest of the section, let UCT i = UCT (Ii)

and e : UCT i → Ii be a fixed covering.

Definition 1. We call a solution s to UCT i nice if:

• for every variable v in UCT i, every y ∈ V <i,
and every constraint ((e(v), y), R) in I we have
(s(v), sol(y)) ∈ R, and similarly for the con-
straints of the form ((y, e(v)), R);

• for every constraint ((x1, . . . , xk), R) of UCT i

which is mapped by e to a new constraint com-
ing from a pattern t with leaves v1, . . . , vk, there
exists an i-realization r of t such that:

– for every 1 ≤ j ≤ k we have r(vj) = s(xj),
and

– every leaf vertex of t labeled by a variable
y ∈ V <i is mapped to sol(y).

In order to provide nice solutions for UCT i we need
an auxiliary instance denoted by T i. We obtain T i

from UCT i in the following way:

1. Include in T i all the variables and all the old
constraints from UCT i;

2. for

• every variable v of UCT i

• every variable y ∈ V <i, and

• every constraint ((e(v), y), R) of I

introduce a new variable y′ into T i together with
a constraint ((v, y′), R), and extend e by putting
e(y′) = y;

3. repeat step 2 for constraints of the form
((y, e(v)), R); and

4. for every constraint ((x1, . . . , xk), S) of UCT i

which is mapped by e to a new constraint de-
fined by a tree pattern t with the distinguished
leaves v1, . . . , vk, substitute it with a fresh copy
of the instance corresponding to t by introduc-
ing a new variable yv into T i for every vertex v
of t, and a new constraint ((yv, yw), R) for ev-
ery edge (v, w) labeled by ((y1, y2), R), identify
yvi with xi, and extend e to new variables by
putting e(yv) to be the label of v.
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Note that T i is defined in such a way that nice
solutions to UCT i directly correspond to solutions
of T i which send each y to Di+1

e(y) and each y with

e(y) ∈ V <i to sol(e(y)).

Claim 2. There exists a nice solution of UCT i.

Proof. In order to prove the claim we will find a so-
lution to T i satisfying the conditions discussed in the
paragraph above. By a standard compactness argu-
ments it suffices to prove such solution for ever finite,
connected subtree of T i. Let T be such a restriction
of T i.
Now, since all our constraints have an (n + 1)-

ary near-unanimity polymorphism, it suffices to show
(see [25, 31]) that for every set of n variables of T that
are leaves mapped by e into V <i there is a solution to
T mapping these variables according to sol◦e. Let W
be such a set of variables, and let TW be a restriction
of T to a smallest set of variables containing W such
that TW is still connected. We claim that it follows
from the condition (Ei−1) that TW has a solution
sending each y to Di

e(y) and each y with e(y) ∈ V <i

to sol(e(y)). Indeed, TW can be translated to a tree
pattern tW in the following way:

• vertices of tW are variables of TW , and each of
them is labeled according to e,

• for each constraint ((v, w), R) in TW , tW has an
edge from v to w labeled by ((e(v), e(w)), R).

Such a pattern is an n-tree, since TW is a tree in-
stance and every leaf comes from a variable from W
and furthermore (i − 1)-realizations of this pattern
correspond to solutions of TW mapping each y to Di

y.
So, (Ei−1) implies that TW has a solution r which
maps every w ∈ W to sol(e(w)). It remains to show
that r can be extended from a solution to TW to a so-
lution of T in such a way that r(y) ∈ Di+1

e(y) for all y.

We will construct this extension in steps, in each
step picking a variable y of T on which r is de-
fined but which appears in a scope of a constraint
with a variable y′ where r is not defined, and ex-
tend r to a connected subinstance of T containing y′.
Throughout the construction, we will keep the fol-
lowing property invariant: Every variable z with an

assigned value that has a neighbour without an as-
signed value satisfy r(z) ∈ Di

e(z). This property is
satisfied in the beginning since we start with a so-
lution of TW inside the sets Di

y’s. All variables in-
troduced in steps 2 and 3 are leaf variables of the
instance T , hence they never get picked.

First, we start with variables that have been intro-
duced in step 4. Such variable (having a neighbour
with undefined value) exists if the instance TW inter-
sects non-trivially with a subinstance introduced to
T in step 4 corresponding to a tree t. Let y be such
a variable, and y′ be its neighbour without an as-
signed value. We extend r to the maximal connected
part of the subinstance corresponding to t containing
y′ where it is still not defined (the maximal subtree
starting at y and containing y′). This can be done
thanks to the fact that every a ∈ Di

e(y) can be ex-

tended to any n-tree pattern inside sets Di+1
x (this

is a consequence of the condition (IPQ)n). If we as-
sign a value to a variable introduced in step 4 in this
step, we also assign values to all of its neighbours
(the leaves of the subtree with the exception of y
were identified with variables introduced in step 1).
Furthermore, if we assign a value to a variable v in-
troduced in step 1 (a leaf of the tree t), it is assigned
a value inside Di+1

e(v) = Di
e(v), hence the invariant

property is preserved.

Second, we address variables introduced in step 1.
If the variable has a neighbour without a value that
has been introduced in step 4, we do the same as in
the first case—the only difference here that we start
in a leaf of the tree subinstance introduced to T in
one use of step 4, hence all variables that appear in
this subinstance are assigned a value (not only some
subset as before). Again, if this assigns a value to
a variable introduced in step 4, it also assigns a value
to all its neighbours, and it assigns a value inside Di

x

(for the corresponding x) for all variables introduced
in step 1. If the neighbour y without a value was in-
troduced in steps 1, 2, or 3, we can also choose a value
for the neighbour inside Di+1

e(y) for similar reasons as

above, and if the neighbour was introduced in step 1,
then the value in fact lies in Di

e(y) since e(y) ∈ V i,
which again concludes that the invariant property is
preserved. This completes the proof that r can be

14



extended to a solution of T , and hence the proof of
the whole claim.

Now we are ready to construct the instance Ki.
A solution to this new instance will allow us to sat-
isfy condition (Ei) and to proceed to the next level.
The instance Ki and is constructed from Ii in the
following way:

• the variables of Ki are the same as variables of
Ii; moreover for every variable x of Ii let Ei

x

denote the set {r(v) | r is a nice solution to UCT i

and v a vertex in UCT i with e(v) = x};

• for every constraint ((x1, . . . , xk), R) in Ii we
introduce a constraint ((x1, . . . , xk), R

′) where
a = (a1, . . . , ak) ∈ R′ if and only if there
is a nice solution r to UCT i such that, for a
constraint ((y1, . . . , yk), R) in UCT i such that
e(((y1, . . . , yk), R)) = ((x1, . . . , xk), R), we have
r(y1) = a1, . . . , r(yk) = ak.

By definition Ki is arc-consistent with sets Ei
x ⊆ Di

x.
The endomorphisms of the UCT i (discussed after the
definition of the universal covering tree) imply that
we can as well fix a particular v (in item 1) and a
particular constraint ((y1, . . . , yk), R) (in item 2) and
obtain the same Ei

x’s and the relations R′. This im-
plies that each Ei

x introduced in step 1 and every
R′ introduced in step 2 are closed under the near-
unanimity operation.
In order to find a solution to Ki, we will use Corol-

lary B.2 from [39]. We state it here in a simplified
form using the following notation: for subuniverses
A′ ⊆ A, we say that A′ nu-absorbs A if, for some
NU polymorphism f , f(a1, . . . , an) ∈ A′ whenever
a1, . . . , an ∈ A and at most ai is in A \A′. Similarly,
if R′ ⊆ R are relations compatible with all polymor-
phisms of Γ we say R′ nu-absorbs R, if for some near-
unanimity operation f taking all arguments from R′

except for one which comes from R produces a result
in R′.

Corollary 1 (Corollary B.2 from [39]). Let I be
an instance which is arc-consistent with subuniverses
Ax and which satisfies condition (PQ). Let I ′ be an
arc-consistent instance with subuniverses A′

x on the
same set of variables as I such that:

1. for every variable x the subuniverse A′
x nu-

absorbs Ax, and

2. for every constraint ((x1, . . . , xn), R
′) in I ′ there

is a corresponding constraint ((x1, . . . , xn), R) in
I such that R′ nu-absorbs R (and both respect the
NU operation).

Then there are subuniverses A′′
x of A′

x (for every x)
such that the instance I ′′ obtained from I ′ by restrict-
ing the domain of each variable to A′′

x and by restrict-
ing the constraint relations accordingly satisfies the
condition (PQ).

We will apply the corollary above using Ii for I and
Ki for I ′. By our construction, Ii satisfies condition
(PQ), and the sets Di

x (which play the role of Ax’s)
are subuniverses of D.
By the discussion after the definition of Ki it is arc-
consistent, and it is quite easy to see that the solu-
tions of T i are closed under polymorphisms and thus
Ei

x and the relations appearing in the constraints of
Ki compatible with polymorphisms.
To satisfy the assumptions of the claim it remains

to prove that Ei
x’s nu-absorbDi

x’s and R′’s nu-absorb
corresponding R’s. Actually, as Ki is arc-consistent,
Ei

x are projections of R′’s and thus it suffices to prove
nu-absorption for R′ and R. This is achieved by the
following claim.

Claim 3. Let 1 ≤ j ≤ n+1 and a1, . . . , an ∈ R′ with
a ∈ R, then f(a1, . . . , a, . . . an), where a is in position
j, belongs to R′.

Proof. For each tuple aj we have a nice realization of
UCT i which provides it. Since UCT i has a lot of en-
domorphisms (see the discussion after the definition
of UCT ) we can assume that the tuples are given by
the same constraint ((y1, . . . , yk), R) in UCT i. For
every j this nice solution gives rise to a solution of
T i which:

• sends each y to Di+1
e(y);

• sends each y satisfying e(y) ∈ V <i according to
sol ◦ e;

• sends (y1, . . . , yk) to ai.
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On the other hand since Ii is arc-consistent we
can find a solution of UCT i sending (y1, . . . , yk) to
a. This solution gives rise to a solution of T i which
sends each y to Di+1

y and sends (y1, . . . , yk) to a.
Applying f coordinatewise to all these solutions of

T i we obtain a solution of T i which gives rise to a
nice solution of UCT i. But this new solution sends
(y1, . . . , yk) to f(a1, . . . , a, . . . an), where a is in posi-
tion j. This implies that the tuple belongs to R′ and
the claim is proved.

The instance Ki has an instance satisfying (PQ)
inside it and every such instance has a solution be-
cause CSP(Γ) has bounded width. Hence Ki has a
solution, which concludes the section.

7.5 Finalizing the proof

We choose any solution to Ki and extend the global
solution sol to V i according to the solution to Ki. It
remains to prove that, with such extension, condition
(Ei) holds.
Let t be an n-tree pattern in I with leaves mapped

into V ≤i and all other vertices mapped into V >i. If
all the leaves are in V i we get the required realization
of t directly from the appropriate new constraint of
Ii. If all the leaves are in V <i we get the solution
from condition (Ei−1). Finally assume that t has
some leaves on level i and some on lower levels.
The set of i-realizations of t, restricted to leaves of

level i introduced a new constraint in Ii. In instance
Ki, this constraint was further restricted to those tu-
ples which originate from realizations of t which agree
with sol on (variable) labels in t that use variables
from V <i. Since the solution to Ki needs to satisfy
this particular constraint, it follows that our exten-
sion of sol to V i satisfies condition (Ei). We showed
the correctness of the iterative process of construct-
ing global solutions and thus Theorem 3 is proved.

8 Full proof of Theorem 2(1)

In this subsection we prove Propositions 1 and 2. The
following equalities, which can be directly verified,
are used repeatedly in this section: for any subsets

A,B of D and any feasible solution xa of the SDP
relaxation of I it holds that ‖xA‖2 = xAyD and
‖yB − xA‖2 = xD\AyB + xAyD\B.

8.1 Analysis of preprocessing steps

In some of the proofs it will be required that α ≤ c0
for some constant c0 depending only on |D|. This
can be assumed without loss of generality, since we
can adjust constants in O-notation in Theorem 2(1)
to ensure that ε ≤ c0 (and we know that α ≤ ε). We
will specify the requirements on the choice of c0 as
we go along.

Lemma 2. There exists a constant c > 0 that de-
pends only on |D| such that the sets Dℓ

x ⊆ D, x ∈ V ,
1 ≤ ℓ ≤ |D|, obtained in Preprocessing step 2, are
non-empty and satisfy the following conditions:

1. for every a ∈ Dℓ
x, ‖xa‖ ≥ α3ℓκ,

2. for every a 6∈ Dℓ
x, ‖xa‖ ≤ cα3ℓκ.

3. for every a ∈ Dℓ
x, ‖xa‖2 ≥ 2‖xD\Dℓ

x
‖2

4. Dℓ
x ⊆ Dℓ+1

x (with D
|D|+1
x = D)

Proof. Let c = (2|D|)(|D|/2). It is straightforward to
verify that conditions (1)–(3) are satisfied. Let us
show condition (4). Since c only depends on |D| we
can choose c0 (an upper bound on α) so that cα3κ <
1. It follows that cα3(ℓ+1)κ < α3ℓκ. It follows from
conditions (1) and (2) that Dℓ

x ⊆ Dℓ+1
x .

Finally, let us show that Dℓ
x is non-empty. By con-

dition (4) we only need to take care of case ℓ = 1.
We have by condition (2) that

∑

a∈D\D1
x

‖xa‖2 ≤ |D|c2α6κ

Note that we can adjust c0 to also satisfy |D|c2α6κ <
1 because, again, c only depends on |D|.

8.2 Proof of Proposition 1

Lemma 3. The total weight of the constraints re-
moved at step 0 is at most ακ.

Proof. Follows from Lemma 3.3 of [51].
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Lemma 4. Let ((x, y), R) be a constraint not re-
moved at step 0, and let A,B be such that B =
A +ℓ (x,R, y). Then ‖yB‖2 ≥ ‖xA‖2 − cα(6ℓ+6)κ

for some constant c > 0 depending only on |D|.
The same is also true for a constraint ((y, x), R) and
A = B +ℓ (y,R−1, x).

Proof. Consider the first case, i.e., a constraint
((x, y), R) and B = A+ℓ (x,R, y). We have

xAyD\B =
∑

a∈A,b∈D\B
(a,b) 6∈R

xayb +
∑

a∈A,b∈D\B
(a,b)∈R

xayb.

The first term is bounded from above by the loss
of constraint ((x, y), R), and hence is at most α1−κ,
since the constraint has not been removed at step
0. Since B = A +ℓ (x,R, y) it follows that for every
(a, b) ∈ R such that a ∈ A and b ∈ D \ B we have
that a 6∈ Dℓ+1

x or b 6∈ Dℓ+1
y . Hence, the second term

is at most

xD\Dℓ+1
x

yD+xDyD\Dℓ+1
y

= ‖xD\Dℓ+1
x

‖2+‖yD\Dℓ+1
y

‖2

which, by Lemma 2(2), is bounded from above by
dα(6ℓ+6)κ for some constant d > 0. From the defini-
tion of κ it follows that (6ℓ+ 6)κ ≤ 1− κ, and hence
we conclude that xAyD\B ≤ (d + 1)α(6ℓ+6)κ. Then,
we have that

‖yB‖2 = xAyB + xD\AyB ≥ xAyB =

xAyD − xAyD\B ≥ ‖xA‖2 − (d+ 1)α(6ℓ+6)κ.

The proof of the second case is identical.

Lemma 5. The expected weight of the constraints
removed at step 1 is O(ακ).

Proof. Let ((x, y), R) be a constraint not removed at
step 0. We shall see that the probability that it is
removed at step 1 is at most cακ where c > 0 is a
constant.
Let A,B be such that B = A+ℓ (x,R, y). It follows

from Lemma 4 that ‖yB‖2 ≥ ‖xA‖2 − dα(6ℓ+6)κ for
some constant d > 0. Hence, the probability that a
value rℓ in step 1 makes that yB 6�ℓ xA is at most

dα(6ℓ+6)κ

α(6ℓ+4)κ
= dα2κ ≤ dακ.

We obtain the same bound if we switch x and y, and
consider sets A,B such that A = B +ℓ R−1. Taking
the union bound for all sets A,B and all values of ℓ
we obtain the desired bound.

Lemma 6. There exist constants c, d > 0 depending
only on |D| such that for every pair of variables x
and y and every A,B ⊆ D, the probability, p, that
a unit vector u chosen uniformly at random cuts xA

and yB satisfies

c · ‖yB − xA‖ ≤ p ≤ d · ‖yB − xA‖.

Proof. Let 0 ≤ x ≤ 1 and let 0 ≤ θ ≤ π be an angle
such that x = cos(θ). There exist constants a, b > 0
such that

a ·
√
1− x ≤ θ ≤ b ·

√
1− x.

Now, if θ is the angle between xA − xD\A and yB −
yD\B then

1− cos(θ) = 1− (xA − xD\A)(yB − yD\B)

= 2(xD\AyB + xAyD\B) = 2‖yB − xA‖2

Since p = θ/π, the result follows.

Lemma 7. If there exists a constant c > 0 depend-
ing only on |D| such that for every variable x, the
probability that all constraints involving are removed
in Step 2, Step 3, or Step 5 is at most cακ, then the
total expected weight of constraints removed this way
in one of these steps is at most 2cακ.

Proof. Let wx denote the total weight of the con-
straints in which x participates. The expected weight
of constraints removed is at most

∑

x∈V

wxcα
κ = (

∑

x∈V

wx)cα
κ = 2cακ

and the lemma is proved.

Lemma 8. The expected weight of the constraints
removed at step 2 is O(ακ).

Proof. Let x be a variable. We shall prove that the
probability that we remove all constraints involving x
at step 2 is at most cακ for some constant c > 0, the
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rest is Lemma 7. Suppose that A ⊆ B are such that
‖xB‖2 − ‖xA‖2 = ‖xB − xA‖2 ≤ (2n − 3)α(6ℓ+4)κ.
Then the probability that one of the bounds of the
form rℓ + (sℓ + jm0)α

(6ℓ+4)κ separates ‖xB‖2 and
‖xA‖2 is at most

(2n− 3)/m0 ≤ (2n− 3)/(α−2κ − 1) ≤ c1α
κ

for ακ < 1/2. Therefore, the probability that this
happens for at least one pair of sets A, B is at most
22|D|c1α

κ = cακ.

Lemma 9. The expected weight of the constraints
removed at step 3 is O(ακ).

Proof. According to Lemma 7, it is enough to prove
that the probability that we remove all constraints
involving x at step 3 is at most cακ for some con-
stant c. Let A and B such that A ∩ Dℓ

x 6= B ∩
Dℓ

x. Let a be an element in symmetric difference
(A ∩ Dℓ

x)△(B ∩ Dℓ
x). Then we have ‖xB − xA‖ =

√

xD\AxB + xAxD\B ≥ ‖xa‖ ≥ α3ℓκ, where the last
inequality is by Lemma 2(1). Then by Lemma 6 the
probability that xA and xB are not ℓ-cut is at most

(1− α3κℓ)mℓ ≤ 1

exp(α3κℓmℓ)
≤ 1

exp(α−κ)
≤ ακ.

Taking the union bound for all sets A,B and all val-
ues of ℓ we obtain the desired bound.

Lemma 10. The expected weight of the constraints
removed at step 4 is O(ακ).

Proof. Let ((x, y), R) be a constraint not removed at
step 0. We shall prove that the probability that it is
removed at step 4 is at most cακ for some constant
c > 0.
Fix ℓ and A,B such that B = A +ℓ (x,R, y) and

yB �ℓ xA. Since B = A+ℓp we have that xAyD\B ≤
c1α

(6ℓ+6)κ, as shown in the proof of Lemma 4. Since
‖xA‖2 = xA(yB + yD\B), it follows that xAyB ≥
‖xA‖2 − c1α

(6ℓ+6)κ.
Also, we have ‖yB‖2 = (xAyB + xD\AyB) is at

most ‖xA‖2 + α(6ℓ+4)κ because yB �ℓ xA. Using
the bound on xAyB obtained above, it follows that
xD\AyB is at most α(6ℓ+4)κ + c1α

(6ℓ+6)κ ≤ (c1 +

1)α(6ℓ+4)κ.

Putting the bounds together, we have that

‖yB − xA‖ =
√

xD\AyB + xAyD\B ≤
√

c1α(6ℓ+6)κ + (c1 + 1)α(6ℓ+4)κ ≤ c2α
(3ℓ+2)κ

for some constant c2 > 0.
Applying the union bound and Lemma 6 we have

that the probability that xA and yB are ℓ-cut is at
most mℓdc2α

(3ℓ+2)κ = O(ακ). We obtain the same
bound if we switch x and y, and take R−1 instead
of R. Taking the union bound for all sets A,B and
all values of ℓ we obtain the desired bound.

Lemma 11. The expected weight of the constraints
removed at step 5 is O(ακ).

Proof. Again, according to Lemma 7, it is enough to
prove that the probability that we remove all con-
straints involving x at step 5 is at most cακ for
some constant c. Suppose that A, B are such that
‖xA − xB‖ ≤ (2n− 3)1/2α(3ℓ+2)κ. Hence, by Lemma
6, the probability that xA and xB are ℓ-cut is at most

1− (1 − c(2n− 3)α(3ℓ+2)κ)mℓ ≤
1−(1−mℓc(2n−3)α(3ℓ+2)κ) = mℓc(2n−3)α(3ℓ+2)κ ≤
c(2n− 3)ακ + c(2n− 3)α(3ℓ+2)κ ≤ c′(2n− 3)ακ.

Taking the union bound for all sets A, B and all
values of ℓ, we obtain the desired bound.

8.3 Proof of Proposition 2

All patterns appearing in this subsection are in I ′.

Lemma 12. Let 1 ≤ ℓ ≤ |D|, let p be a path pattern
from x to y, and let A,B be such that B = A +ℓ p.
Then xA �ℓ yB , and in particular, ‖xA‖ ≤ ‖yB‖ +
α(6ℓ+4)κ.

Proof. Since the relation �ℓ is transitive, it is enough
to prove the lemma for path patterns containing only
one constraint. But this is true, since all the con-
straints ((x, y), R) or ((y, x), R) which would invali-
date the lemma have been removed in step 1.

Lemma 13. If p is a tree pattern with at most j +1
leaves starting at x, and A ⊆ Dℓ+1

x is such that A+ℓ

p = ∅ then ‖xA‖2 ≤ (2j − 1)α(6ℓ+4)κ.
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Proof. We will prove the statement by induction on
the number of leaves. For j = 1 this follows from
Lemma 12. Suppose then that p is a tree pattern
with j + 1 > 2 leaves and the statement is true for
any i < j. Choose y to be the first branching vertex
when following p from x, and let p0 be the subpath
of p starting at x and ending at y, further let t1, . . . ,
th be all the (maximal) subtrees of p starting at y
excluding p0 (for each of them choose any other leaf
as the end vertex). Since y is a branching vertex,
we have that h ≥ 2, every ti has ji + 1 < j + 1
leaves, and

∑h
i=1 ji = j. Now, let Bi denote the

set {a ∈ Dℓ+1
y : a +ℓ ti = ∅}. Since ji < j, we

know that ‖yBi
‖2 ≤ (2ji − 1)α(6ℓ+4)κ. Further, for

B =
⋃n

i=1 Bi, we have

‖yB‖2 ≤
h
∑

i=1

‖yBi
‖2 ≤

h
∑

i=1

(2ji − 1)α(6ℓ+4)κ

= (2j − h)α(6ℓ+4)κ ≤ (2j − 2)α(6ℓ+4)κ.

Finally, since A +ℓ p = ∅ then A+ℓ p0 ⊆ B, and the
claim follows from Lemma 12.

Lemma 14. Let 1 ≤ ℓ ≤ |D|, let p be a pattern from
x to y which is a path of n-trees. If A,B ⊆ D such
that B +ℓ p = A, then ‖yA‖2 ≥ ‖xB‖2 − α(6ℓ+2)κ.

Proof. We will prove that for any n-tree pattern t
and A,B with B +ℓ t = A, we have xB �ℓ

w yA, the
lemma is then a direct consequence. For a contra-
diction, suppose that t is a smallest (by inclusion)
n-tree that does not satisfy the claim, and observe
that t is not a path (see Lemma 12). Let vx and
vy denote the beginning and the end vertex of t, re-
spectively; and let vz be the last branching vertex
that appears on the path connecting vx and vy, and
let it be labeled by z. Now, the vertex vz separates
t into several subtrees, namely t1, a tree connect-
ing vx and vz , t2, a path connecting vz and vy, and
several trees p1, . . . , pj which have vz as one vertex
and are disjoint with the path connecting vx and vy.
For pi we choose vz to be the beginning, and any
other leaf to be the end. Further, we know that
for C = B +ℓ t1 we have xB �ℓ

w zC . Now, let
Ci = {a ∈ Dℓ+1

z : a+ℓ pi = ∅}. Then by Lemma 13,

we get that ‖zCi
‖2 ≤ (2ji − 1)α(6ℓ+4)κ where ji + 1

is the number of leaves of pi, therefore for C
′ =

⋃

Ci

we have ‖zC′‖2 ≤ ∑ ‖zCi
‖2 ≤ (2n−3)α(6ℓ+4)κ. This

implies that ‖zC\C′‖2 ≥ ‖zC‖2 − (2n − 3)α(6ℓ+4)κ,

and consequently zC �ℓ
w zC\C′ as otherwise all con-

straints containing z would have been removed at
step 2. Finally, observe that A = (C \ C′) +ℓ t2, and
therefore zC\C′ �ℓ yA. Putting this together with

all other derived �ℓ
w-relations, we get the required

claim.

Lemma 15. Let 1 ≤ ℓ ≤ |D|, let p be a pattern
from x to x which is a path of n-trees, and let A,B
be such that B +ℓ p = A. If A ∩ Dℓ

x ⊆ B ∩Dℓ
x then

A ∩Dℓ
x = B ∩Dℓ

x.

Proof. For a contradiction, suppose that there is
an element a ∈ (Dℓ

x ∩ B) \ A. From Lemma 2, con-
ditions (3) and (1) we get that ‖xB\A‖2 ≥ ‖xa‖2 ≥
2‖xD\Dℓ

x
‖2 ≥ 2‖xA\B‖2. Therefore, we have

‖xA‖2 = ‖xB‖2 − ‖xB\A‖2 + ‖xA\B‖2 ≤
‖xB‖2 − (1/2)‖xa‖2 ≤ ‖xB‖2 − (1/2)α6ℓκ.

On the other hand, since p is a path of n-trees, we
get from the previous lemma that ‖xA‖2 ≥ ‖xB‖2 −
α(6ℓ+2)κ. If we adjust constant c0 from Section 8.1 so
that 1/2 > α2κ, the above inequalities give a contra-
diction.

Lemma 16. Let x be a variable, let p and q be two
patterns from x to x which are paths of n-trees, let
1 ≤ ℓ ≤ |D|, and let A ⊆ Dℓ

x. Then there exists some
j such that A ⊆ A+ℓ (j(p+ q) + p).

Proof. For every A, define A0, A1, . . . in the following
way. If i = 2j is even then Ai = A +ℓ (j(p + q)).
Otherwise, if i = 2j+1 is odd then Ai = A+ℓ (j(p+
q) + p).
We claim that for every sufficiently large u, we have

Au ∩Dℓ
x = Au+1 ∩Dℓ

x. From the finiteness of D, we
get that for every sufficiently large u there is u′ > u
such that Au = Au′ . It follows that there exists some
path of n-trees pattern p′ starting and ending in x
such that Au = Au+1 +

ℓ p′. To prove the claim we
will show that xAu

and xAu+1
are not ℓ-cut. Then the
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claim follows as otherwise we would have removed all
constraints involving x at step 3.

Consider the path in p′ which connects the begin-
ning and end vertices of p′, and let v1, . . . , vu be
the vertices which appear on the path in this or-
der with v1 being the beginning and vu being the
end vertex of p′. Further, let Ri = R if the i-
th edge of the path is concurrent and labeled by
((xi, xi+1), R), and let Ri = R−1 if the i-th edge is
not concurrent and labeled by ((xi+1, xi), R). Now
define a sequence B1, B

′
2, B2, . . . , Bm inductively by

setting B1 = Au+1, B
′
i+1 = Bi +

ℓ (xi, Ri, xi+1). Fur-
ther, if xi+1 is not a branching vertex, put Bi+1 =
B′

i+1. If xi+1 is a branching vertex, then let Φi

be the set of all subtrees of p′ starting at xi ex-
cept those two that contain (parts of) p′′, and de-
fine Bi+1 = {b ∈ B′

i+1 : b +ℓ t 6= ∅ for all t ∈ Φi}.
Since p′ is a path of n-trees, we know that the sum
of the numbers of leaves of the trees from Φi that are
also leaves of p′ is strictly less then n − 1. Finally,
if xAu

are xAu+1
are ℓ-cut then, for some i, vectors

xiBi
and xi+1B′

i+1
are ℓ-cut, or vectors xiBi

and xiB′

i

are ℓ-cut. The first case is impossible since B′
i+1 =

Bi +
ℓ (xi, Ri, xi+1), and hence if xB′

i+1
and xBi

are

ℓ-cut, then either of the constraints ((xi, xi+1), Ri) or
((xi+1, xi), R

−1) would have been removed at step 4.
The second case is impossible, since from Lemma 13
we get ‖xiCt

‖2 ≤ (2jt − 1)α(6ℓ+4)κ for any t ∈ Φi,
Ct = {b ∈ B′

i : b +
ℓ t = ∅}, and jt being the number

of leaves of t, and consequently,

‖xiB′

i
− xiBi

‖2 ≤
∑

t∈Φi

‖xiCt
‖2 ≤

∑

t∈Φi

(2jt − 1)α(6ℓ+4)κ ≤ (2n− 3)α(6ℓ+4)κ.

Therefore, if xiBi
and xiB′

i
were ℓ-cut, then all con-

straints that include xi would have been removed at
step 5. We conclude that indeed we have Au ∩Dℓ

x =
Au+1 ∩Dℓ

x for all sufficiently large u.

Now, take u = 2j + 1 large enough. We have that
(A∪Au+1) +

ℓ (j(p+ q) + p) = Au ∪A2u+1. And also
(Au ∪A2u+1)∩Dℓ

x = Au+1 ∩Dℓ
x ⊆ (A∪Au+1)∩Dℓ

x,
hence by Lemma 15 we get that (A ∪ Au+1) ∩Dℓ

x =
Au+1 ∩ Dℓ

x. Since A ⊆ Dℓ
x by assumption of the

lemma, we have A ⊆ Au+1 ∩Dℓ
x ⊆ Au = A+ℓ (j(p+

q) + p).

9 Full proof of Theorem 2(2)

In this section, we prove Theorem 2(2). A brief out-
line of the proof is given in Section 6. Throughout
this section, I = (V, C) is a (1 − ε)-satisfiable in-
stance of CSP(Γ) where Γ consists of implicational
constraints.

9.1 SDP Relaxation

We use (essentially) the same SDP relaxation of the
problem as in Section 4. Minimize

(9.1)
∑

C∈C equals (x=a)∨(y=b)

wC(v0 − xa)(v0 − yb)

+
1

2

∑

C∈C equals x=π(y)

∑

a∈D

wC‖xπ(a) − ya‖2

+
∑

C∈C equals x∈P

wC





∑

a∈D\P

‖xa‖2




subject to

xayb ≥ 0 x, y ∈ V, a, b ∈ D(9.2)

xaxb = 0 x ∈ V, a, b ∈ D, a 6= b(9.3)
∑

a∈D

xa = v0 x ∈ V(9.4)

‖xa − zc‖2 ≤ ‖xa − yb‖2 + ‖yb − zc‖2(9.5)

x, y, z ∈ V, a, b, c ∈ D

‖v0‖2 = 1.(9.6)

We solve the relaxation and find an optimal SDP so-
lution {xa}. Denote SDPOpt(I) by SDP. We have,
SDP ≤ ε. Note that every feasible SDP solution sat-
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isfies the following conditions.

‖xa‖2 = xa ·
(

v0 −
∑

b6=a

xb

)

= xav0,(9.7)

xayb = xa · (v0 −
∑

b′∈D\{b}

yb′)(9.8)

= ‖xa‖2 −
∑

b′∈D\{b}

xayb′

≤ ‖xa‖2,

‖xa‖2 − ‖yb‖2 = ‖xa − yb‖2 + 2(xayb − ‖yb‖2)
(9.9)

≤ ‖xa − yb‖2,

(v0 − xa)(v0 − yb) =
∑

a′ 6=a

xa′

∑

b′ 6=b

yb′ ≥ 0.

(9.10)

9.2 Preprocessing Step

In this section, we describe the first step of our algo-
rithm. In this step, we assign values to some vari-
ables, partition all variables into three groups V0,
V1 and V2 and then split the instance into two sub-
instances I1 and I2.

Preprocessing Step

Choose a number r ∈ (0, 1/6) uniformly at random.
Do the following for every variable x.

1. Let Dx = {a : 1/2− r < xav0}.

2. Depending on the size of Dx do the following:

(a) If |Dx| = 1, add x to V0 and assign x = a,
where a is the single element of Dx.

(b) If |Dx| > 1, add x to V1 and restrict x to
Dx (see below for details).

(c) If Dx = ∅, add x to V2.

Note that each variable in V0 is assigned a value;
each variable x in V1 is restricted to a set Dx; each
variable in V2 is not restricted.

Lemma 17. (i) If xav0 > 1
2 + r then x ∈ V0. (ii)

For every x ∈ V1, |Dx| = 2.

Proof. (i) Note that for every b 6= a, we have xav0 +
xbv0 ≤ 1 and, therefore, xbv0 < 1/2 − r. Hence,
b /∈ Dx. We conclude that DX = {a} and x ∈ V0.

(ii) Now consider x ∈ V1. We have,

|Dx| < 3(1/2− r)|Dx| =
3
∑

a∈Dx

(1/2− r) ≤ 3
∑

a∈Dx

xav0 ≤ 3.

Therefore, |Dx| ≤ 2. Since x ∈ V1, |Dx| > 1. We get,
|Dx| = 2.

We say that an assignment is admissible if it assigns
a value in Dx to every x ∈ V1 and it is consistent with
the partial assignment to variables in V0. From now
on we restrict our attention only to admissible assign-
ments. We remove those constraints that are satis-
fied by every admissible assignment (our algorithm
will satisfy all of them). Specifically, we remove the
following constraints:

1. UG constraints x = π(y) with x, y ∈ V0 that are
satisfied by the partial assignment;

2. disjunction constraints (x = a) ∨ (y = b) such
that either x ∈ V0 and x is assigned value a, or
y ∈ V0 and y is assigned value b;

3. unary constraints x ∈ P such that either x ∈ V0

and the value assigned to x is in P , or x ∈ V1

and Dx ⊆ P .

We denote the set of satisfied constraints by Cs. Let
C′ = C \ Cs be the set of remaining constraints. We
now define a set of violated constraints — those con-
straints that we conservatively assume will not be
satisfied by our algorithm (even though some of them
might be satisfied by the algorithm). We say that a
constraint C ∈ C′ is violated if at least one of the
following conditions holds:

1. C is a unary constraint on a variable x ∈ V0∪V1.

2. C is a disjunction constraint (x = a) ∨ (y = b)
and either x /∈ V1, or y /∈ V1 (or both).

3. C is a disjunction constraint (x = a) ∨ (y = b),
and x, y ∈ V1, and either a /∈ Dx, or b /∈ Dy (or
both).
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4. C is a UG constraint x = π(y), and at least one
of the variables x, y is in V0.

5. C is a UG constraint x = π(y), and one of the
variables x, y is in V1 and the other is in V2.

6. C is a UG constraint x = π(y), x, y ∈ V1 but
Dx 6= π(Dy).

We denote the set of violated constraints by Cv and
let C′′ = C′ \ Cv.

Lemma 18. E[w(Cv)] = O(ε).

Proof. We analyze separately constraints of each type
in Cv.

Unary constraints

A unary constraint x ∈ P in C is violated if and only if
x ∈ V0∪V1 and Dx 6⊆ P (if Dx ⊆ P then C ∈ Cs and
thus C is not violated). Thus the SDP contribution
of each violated constraint C of the form x ∈ P is at
least

wC

∑

a∈D\P

‖xa‖2 ≥ wC

∑

a∈Dx\P

‖xa‖2

= wC

∑

a∈Dx\P

xa · v0 ≥ wC

(1

2
− r

)

≥ wC

3
.

The last two inequalities hold because the set Dx \P
is nonempty; xav0 ≥ 1/2 − r for all a ∈ Dx by the
construction; and r ≤ 1/6. Therefore, the expected
total weight of violated unary constraints is at most
3 SDP ≤ 3ε.

Disjunction constraints

Consider a disjunction constraint (x = a) ∨ (y = b).
Denote it by C. Assume without loss of generality
that xav0 ≥ ybv0. Consider several cases. If xav0 >
1/2+r then x ∈ V0 and x is assigned value a. Thus, C
is satisfied. If xav0 ≤ 1/2+r and ybv0 > 1/2−r then
we also have xav0 > 1/2− r and hence x, y ∈ V0∪V1

and a ∈ Dx, b ∈ Dy. Thus, C is not violated (if
at least one of the variables x and y is in V0, then

C ∈ Cs; otherwise, C ∈ C′). Therefore, C is violated
only if

xav0 ≤ 1/2 + r and ybv0 ≤ 1/2− r,

or equivalently,

(9.11) xav0 − 1/2 ≤ r ≤ 1/2− ybv0.

Since we choose r uniformly at random in (0, 1/6),
the probability density of the random variable r is 6
on (0, 1/6). Thus the probability of event (9.11) is at
most

6max
(

(

(1/2− ybv0

)

−
(

xav0 − 1/2)
)

, 0
)

= 6max
(

(v0 − xa)(v0 − yb)− xayb, 0
)

by (9.1) and (9.10)

≤ 6(v0 − xa)(v0 − yb).

The expected weight of violated constraints is at
most,

∑

C∈C equals
(x=a)∨(y=b)

6wC(v0 − xa)(v0 − yb) ≤ 6 SDP ≤ 6ε.

UG constraints

Consider a UG constraint x = π(y). Assume that it is
violated. Then Dx 6= π(Dy) (note that if x and y do
not lie in one set Vt then |Dx| 6= |Dy| and necessarily
Dx 6= π(Dy)). Thus, at least one of the sets π(Dy) \
Dx or Dx \ π(Dy) is not empty. If π(Dy) \Dx 6= ∅,
there exists b ∈ π(Dy) \Dx. We have,

Pb ≡ Pr (b ∈ π(Dy) \Dx)

≤ Pr
(

‖yb‖2 > 1/2− r and ‖xπ(b)‖2 ≤ 1/2− r
)

= Pr
(

1/2− ‖yb‖2 < r ≤ 1/2− ‖xπ(b)‖2
)

≤ 6max(‖yb‖2 − ‖xπ(b)‖2, 0)
≤ 6‖yb − xπ(b)‖2.

By the union bound, the probability that there is b ∈
π(Dy)\Dx is at most 6

∑

b∈D ‖yb−xπ(b)‖2. Similarly,
the probability that there is b ∈ Dx\π(Dy) is at most
6
∑

b∈D ‖yb − xπ(b)‖2. Therefore, the weight of the
violated UG constraints is at most 24 SDP = O(ε),
in expectation.
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We restrict our attention to the set C′′. There are
four types of constraints in C′′.

1. disjunction constraints (x = a) ∨ (y = b) with
x, y ∈ V1 and a ∈ Dx, b ∈ Dy;

2. UG constraints x = π(y) with x, y ∈ V1 and
Dx = π(Dy);

3. UG constraints x = π(y) with x, y ∈ V2;

4. unary constraints x ∈ P with x ∈ V2.

Denote the set of type 1 and 2 constraints by C1, and
type 3 and 4 constraints by C2. Let I1 be the sub-
instance of I on variables V1 with constraints C1 in
which every variable x is restricted to Dx, and I2 be
the sub-instance of I on variables V2 with constraints
C2.
In Sections 9.3 and 9.4, we show how to solve I1

and I2, respectively. The total weight of constraints
violated by our solution for I1 will be at most O(

√
ε);

The total weight of constraints violated by our solu-
tion for I2 will be at most O(

√

ε log |D|). Thus the
combined solution will satisfy a subset of the con-
straints of weight at least 1−O(

√

ε log |D|).

9.3 Solving Instance I1

In this section, we present an algorithm that solves
instance I1. The algorithm assigns values to variables
in V1 so that the total weight of violated constraints
is at most O(

√
ε).

Lemma 19. There is a randomized algorithm that
given instance I1 and the SDP solution finds a set of
UG constraints Cbad ⊆ C1 and values αx, βx ∈ Dx for
every x ∈ V1 such that the following conditions hold.

• Dx = {αx, βx}.

• for each UG constraints x = π(y) in C1 \ Cbad,
we have αx = π(αy) and βx = π(βy).

• E[w(Cbad)] ≤ O(
√
ε).

Proof. We use the algorithm of Goemans and
Williamson for Min Uncut [26] to find values αx,
βx. Recall that in the Min Uncut problem (also

known as Min 2CNF≡ deletion) we are given a set
of Boolean variables and a set of constraints of the
form (x = a) ↔ (y = b). Our goal is to find an
assignment that minimizes the weight of unsatisfied
constraints.

Consider the set of UG constraints in C1. Since
|Dx| = 2 for every variable x ∈ V1, each constraint
x = π(y) is equivalent to the Min Uncut constraint
(x = π(a)) ↔ (y = a) where a is an element of
Dy (it does not matter which of the two elements
of Dy we choose). We define an SDP solution for
the Goemans—Williamson relaxation of Min Uncut
as follows. Consider x ∈ V1. Denote the elements of
Dx by a and b (in any order). Let

x∗
a =

xa − xb

‖xa − xb‖
and x∗

b = −x∗
a =

xb − xa

‖xa − xb‖
.

Note that the vectors xa and xb are nonzero orthog-
onal vectors, and, thus, ‖xa − xb‖ is nonzero. The
vectors x∗

a and x∗
b are unit vectors. Now we apply the

random hyperplane rounding scheme of Goemans and
Williamson: We choose a random hyperplane and let
H be one of the half-spaces the hyperplane divides
the space into. Note that for every x exactly one of
the two antipodal vectors in {x∗

a : a ∈ Dx} lies in H
(almost surely). Define αx and βx so that x∗

αx
∈ H

and x∗
βx

/∈ H . Let Cbad be the set of UG constraints
such that αx 6= π(αy), or equivalently x∗

π(αy)
/∈ H .

Values αx and βx satisfy the first condition. If a
UG constraint x = π(y) is in C1 \ Cbad, then αx =
π(αy); also since Dx = π(Dy), βx = π(βy). So the
second condition holds. Finally, we verify the last
condition. Consider a constraint x = π(y). Let A =
xπ(αy) − xπ(βy) and B = yαy

− yβy
. Since x ∈ V1,

we have ‖xπ(αy)‖2 > 1/2− r > 1/3 and ‖xπ(βy)‖2 >
1/3. Hence ‖A‖2 = ‖xπ(αy)‖2 + ‖xπ(βy)‖2 > 2/3.
Similarly, ‖B‖2 > 2/3. Assume first that ‖A‖ ≥ ‖B|.
Then,

‖x∗
π(αy)

−y∗
αy
‖2 =

∥

∥

∥

∥

A

‖A‖ − B

‖B‖

∥

∥

∥

∥

2

= 2− 2AB

‖A‖‖B‖

=
2

‖B‖2 ×
(

‖B‖2 − ‖B‖
‖A‖ AB

)

.
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We have 2
(

‖B‖2 − ‖B‖
‖A‖ AB

)

≤ ‖A−B‖2, since

‖A−B‖2 − 2
(

‖B‖2 − ‖B‖
‖A‖ AB

)

=
(

‖A‖ − ‖B‖
)(

‖A‖+ ‖B‖ − 2AB

‖A‖
)

≥ 0,

because ‖A‖ ≥ AB/‖A‖ and ‖B‖ ≥ AB/‖A‖. We
conclude that

‖x∗
π(αy)

− y∗
αy

‖2 ≤ ‖A−B‖2
‖B‖2 ≤ 3

2
‖A−B‖2

=
3

2
‖(xπ(αy) − yαy

)− (xπ(βy) − yβy
)‖2

≤ 3 ‖xπ(αy) − yαy
‖2 + 3 ‖xπ(βy) − yβy

‖.

If ‖A‖ ≤ ‖B‖, we get the same bound on ‖x∗
π(αy)

−
y∗
αy

‖2 by swapping A and B in the formulas above.
Therefore,

∑

C∈Cbad

is of the form
x=π(y)

wC‖x∗
π(αy)

− y∗
αy

‖2 ≤ 3 SDP = O(ε).

The analysis by Goemans and Williamson shows that
the total weight of the constraints of the form x =
π(y) such that

x∗
π(αy)

/∈ H and y∗
αy

∈ H

is at most O(
√
ε), see [26] (or Lemma 6 in this pa-

per for a similar argument). Therefore, E[w(Cbad)] ≤
O(

√
ε).

We remove all constraints Cbad from I1 and obtain
an instance I ′

1. Now we construct an SDP solution
{x̃a} for I ′

1. We let

x̃αx
= xαx

and x̃βx
= v0 − xαx

.

We define Sxαx
= {αx} and Sxβx

= D \ Sxαx
. Since

x̃βx
= v0 − xαx

=
∑

a∈Sxβx
xa, we have,

(9.12) x̃a =
∑

a′∈Sxa

xa′ for every a ∈ Dx.

Note that a ∈ Sxa for every a ∈ Dx.

Lemma 20. The solution {x̃a} is a feasible solu-
tion for SDP relaxation (9.1)–(9.6) without triangle
inequalities (9.5) for I ′

1. Its cost is O(ε).

Proof. We verify that the SDP solution is feasible.
First, we have

∑

a∈Dx
x̃a = v0 and

x̃αx
x̃βx

= xαx
· (v0 − xαx

) = xαx
v0 − ‖xαx

‖2 = 0.

Then for a ∈ Dx and b ∈ Dy, we have x̃aỹb =
∑

a′∈Sxa,b′∈Syb
xa′yb′ ≥ 0. We now show that the

SDP cost is O(ε).
First, we consider disjunction constraints. We

prove that the contribution of each constraint (x =
a) ∨ (y = b) to the SDP for I ′

1 is at most its contri-
bution to the SDP for I. That is,
(9.13) (v0 − x̃a)(v0 − ỹb) ≤ (v0 − xa)(v0 − yb).

Observe that

(v0 − xa)(v0 − yb)− (v0 − x̃a)(v0 − ỹb) =

(v0 − x̃a)(ỹb − yb) + (x̃a − xa)(v0 − ỹb)

+ (x̃a − xa)(ỹb − yb).

We prove that all terms on the right hand side are
nonnegative, and thus inequality (9.13) holds. Using
the identities (9.12) and

∑

a′∈D xa′ = v0 as well as
the inequality xa′yb′ ≥ 0 (for all a′, b′ ∈ D), we get

(v0 − x̃a)(ỹb − yb) =
∑

a′∈D\Sxa

b′∈Syb\{b}

xa′yb′ ≥ 0.

Similarly, (x̃a − xa)(v0 − ỹb) ≥ 0, and

(x̃a − xa)(ỹb − yb) =
∑

a′∈Sxa\{a}
b′∈Syb\{b}

xa′yb′ ≥ 0.

Now we consider UG constraints. The contribution
of a UG constraint x = π(y) in C1 \ Cbad to the SDP
for I ′

1 equals the weight of the constraint times the
following expression.

‖x̃π(αy) − ỹαy
‖2 + ‖x̃π(βy) − ỹβy

‖2

= ‖x̃αx
− ỹαy

‖2 + ‖x̃βx
− ỹβy

‖2

= ‖xαx
− yαy

‖2 + ‖(v0 − xαx
)− (v0 − yαy

)‖2

= 2‖xαx
− yαy

‖2 = 2‖xπ(αy) − yαy
‖2.
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Thus, the contribution is at most twice the contribu-
tion of the constraint to the SDP for I. We conclude
that the SDP contribution of all the constraints in
C1 \ Cbad is at most 2 SDP = O(ε).

Finally, we note that I ′
1 is a Boolean 2-CSP in-

stance. We round solution {x̃a} using the rounding
procedure by Charikar et al. for Boolean 2-CSP [16]
(when |D| = 2, the SDP relaxation used in [16] is
equivalent to SDP (9.1)–(9.6) without triangle in-
equalities (9.5)). We get an assignment of variables
in V1. The weight of constraints in C1 \ Cbad vio-
lated by this assignment is at most O(

√
ε). Since

w(Cbad) = O(
√
ε), the weight of constraints in C1 vi-

olated by the assignment is at most O(
√
ε).

9.4 Solving Instance I2

Instance I2 is a unique games instance with addi-
tional unary constraints. We restrict the SDP solu-
tion for I to variables x ∈ V2 and get a solution for
the unique game instance I2. Note that since we do
not restrict the domain of variables x ∈ V2 to Dx, the
SDP solution we obtain is feasible. The SDP cost of
this solution is at most SDP. We round this SDP
solution using the algorithm by Charikar et al. [15];
given a (1 − ε)-satisfiable instance of Unique Games
it finds a solution with the weight of violated con-
straints at most O(

√

ε log |D|). We remark that pa-
per [15] considers only unique game instances. How-
ever, in [15], we can restrict the domain of any vari-
able x to a set Sx by setting xa = 0 for a ∈ D \ Sx.
Hence, we can model unary constraints as follows.
For every unary constraint x ∈ P , we introduce a
dummy variable zx,P and restrict its domain to the
set P . Then we replace each constraint x ∈ P with
the equivalent constraint x = zx,P . The weight of
the constraints violated by the obtained solution is
at most O(

√

ε log |D|).

Finally, we combine results proved in Sections 9.2,
9.3, and 9.3 and obtain Theorem 2(2).

A Solving instances with ex-
ponentially small constraint

weights

In this section, we explain how we solve instances
with exponentially small constraint weights. As
noted in the introduction, we can solve an SDP with
an additive error ε′ in time poly(n, ε′), where n is
the size of the SDP. Therefore, given a (1 − ε)-
satisfiable instance, we can find an SDP solution of
value (1 + 2−n)ε in time poly(n, log 1/ε), which is
polynomial in n unless ε is exponentially small. We
now outline how we can handle instances with small
values of ε.
Consider a (1−ε) satisfiable instance I and an op-

timal combinatorial solution. Let w̃ be the weight
of the heaviest constraint that is violated by the so-
lution. Note that w̃ ≤ ε ≤ mw̃ since there are at
most m unsatisfied constraints and each of them has
weight at most w̃. Since w̃ is the weight of one of the
constraints in C, our algorithm may guess the value
of w̃ (more precisely, we can run the algorithm for
each w̃ ∈ {wC : C ∈ C} and then output the best of
the assignments we found).
Given w̃, we perform the following steps to solve

the SDP.

• Partition the constraints into two sets

Clight = {C ∈ C : wC ≤ w̃}

and
Cheavy = {C ∈ C : wC > w̃}.

Note that the optimal solution satisfies all the
constraints in Cheavy.

• Rescale the weights of constraints in Clight so
that they add up to 1; specifically, let w′

C =
wC/w(Clight).

• Write the following SDP relaxation for the prob-
lem with a new objective function and extra con-
straints (A.2): Minimize

(A.1)
∑

C=((x,y),R)∈Clight

w′
C

∑

(a,b) 6∈R

xayb
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subject to

∑

(a,b) 6∈R

xayb = 0 ((x, y), R) ∈ Cheavy(A.2)

xayb ≥ 0 x, y ∈ V, a, b ∈ D

xaxb = 0 x ∈ V, a, b ∈ D, a 6= b
∑

a∈D

xa = v0 x ∈ V

‖v0‖ = 1.

We will refer to this SDP as the auxiliary SDP
and to the original SDP (described in Section 4)
as the standard SDP. The intuition behind the
auxiliary SDP is as follows: its objective function
(A.1) measures only the weight of violated con-
straints in Clight (w.r.t. weights w′

C); it has ad-
ditional SDP constraints (A.2) that ensure that
all the constraints in Cheavy are satisfied.

• Observe that the integral SDP solution corre-
sponding to the optimal combinatorial solution
is a feasible SDP solution for the auxiliary SDP;
namely, it satisfies SDP constraints (A.2) since
the combinatorial solution satisfies all the con-
straints in Cheavy. The value of this SDP solution
(w.r.t. to the objective (A.1)) equals the weight
of the constraints violated by the optimal solu-
tion w.r.t. weights w′

C . Therefore, the optimal
SDP value is at most ε̃ = ε/w(Clight). Note that
ε̃ ≥ w̃/(mw̃) = 1/m.

• We solve the SDP relaxation with an additive
error 2−n/m in polynomial-time and obtain
an SDP solution {xa}x∈V,a∈D of value at most
(1 + 2−n)ε̃. Note that {xa}x∈V,a∈D is a feasible
SDP solution to the standard SDP, since the
auxiliary SDP has all the SDP constraints from
the standard SDP. As a solution to the standard
SDP, it has value (4.1) at most

∑

C=((x,y),R)∈C

wC

∑

(a,b) 6∈R

xayb

=
∑

C=((x,y),R)∈Clight

wC

∑

(a,b) 6∈R

xayb

+
∑

C=((x,y),R)∈Cheavy

wC

∑

(a,b) 6∈R

xayb

by (A.2)
= w(Clight)

∑

C=((x,y),R)∈Clight

w′
C

∑

(a,b) 6∈R

xayb

+
∑

C=((x,y),R)∈Cheavy

0

≤ w(Clight)× (1 + 2−n)ε̃ = (1 + 2−n)ε.

• Thus, we obtain an SDP solution to the standard
SDP relaxation of value (1 + 2−n)ε.
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