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Abstract. In numerical analysis the failure of engineering materials is controlled through
specifying yield envelopes (or surfaces) that bound the allowable stress in the material.
Simple examples include the prismatic von Mises (circle) and Tresca (hexagon) yield
surfaces. However, each surface is distinct and requires a specific equation describing
the shape of the surface to be formulated in each case. These equations impact on the
numerical implementation (specifically relating to stress integration) of the models and
therefore a separate algorithm must be constructed for each model. Recently a framework
was proposed that allows any isotropic yield surface to be represented by a NURBS surface
and the constitutive model formulated using the name numerical algorithm.

This paper presents, for the first time, an extension to this framework to allow both
hardening (expansion/contraction of the surfaces) and a non-associated plastic flow rule.
As with previous work on NURBS plasticity, the constitutive framework is combined with
an implicit backward-Euler-type stress integration algorithm. The numerical performance
of the algorithm is demonstrated using both material point investigations and boundary
value simulations.

1 INTRODUCTION

Robust and efficient constitutive models are at the heart of every boundary value stress
analysis problem, providing the essential link between stress and strain for the material
that they represent. Elasto-plasticity is one class of inelastic material behaviour that
allows these models to predict yield and capture post-yield behaviour. Central to these
models is the concept of a yield surface that provides the boundary between elastic (inside
the surface) and elasto-plastic behaviour (on the surface). However, such models are typ-
ically developed in rate form, providing a rate relationship between stress and stain that
conflicts with an incremental boundary value solver, such as the finite element method.
These boundary value solvers work with finite steps of stress and strain and therefore the
rate-form constitutive relationships must be integrated. Typically the form of the yield

1



William M. Coombs

surface impacts on the stress integration algorithm with specific details change within
the numerics (and code) for each implemented yield surface. This issue was overcome by
the paper of Coombs et al. [1] for yield surfaces that are fixed in stress space, known as
perfect plasticity. It allowed any smooth isotropic yield surface to be modelled without
changing the numerical algorithm or underlying code by using non-uniform rational basis
spline (NURBS) surfaces to represent the yield envelope. This paper extends that work
to allow for isotropic expansion/contraction of the yield surface and for the evolution of
plastic strains to be decoupled from the normal to the yield surface (that is, allowing a
non-associated flow rule).

Here we follow the approach of Coombs et al. [1] and adopt an implicit stress integra-
tion algorithm coupled with a plasticity formulation that expresses the yield envelope as
a NURBS surface. The key extensions that we allow here are for: (i) the yield surface to
expand (hardening) or contract (softening) under plastic straining and (ii) decoupling the
flow direction from the spatial gradient of the surface. This is achieved by allowing the
position of the control points to be a function of inelastic straining and for the flow direc-
tion to be approximated by a separate NURBS basis. This extends the NURBS plasticity
framework to include materials where the yield stress is a function of the history of plas-
tic straining that the body has experienced and to those materials where an associated
flow rule is not appropriate (such as geotechnical materials where an associated flow rule
overestimates the volumetric dilation).

The layout of the paper is as follows, Section 2 provides the theoretical framework
for hardening non-associated flow NURBS-based plasticity. Section 3 briefly explains the
numerical implementation of the model and Section 4 provides some numerical examples.
Finally, conclusions are drawn in Section 5.

2 NURBS PLASTICITY

This section provides the essential equations required to define an isotropically harden-
ing NURBS surface and include it within a non-associated flow plasticity framework. For
more detailed information on the construction of NURBS-based surfaces see the work of
Piegl and Wayne [7] and the paper of Coombs et al. [1] for the particular case of perfect
plasticity yield envelopes.

A general NURBS surface can be expressed in Haigh-Westergaard (H-W) coordinates
as

Sk(η, ζ) =
ξ√
3
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1
1

+

√
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ρ


sin(θ + 2π/3)
sin(θ)
sin(θ − 2π/3)

 , (1)

where the hydrostatic position ξ, radial coordinate ρ and Lode angle θ are dependent on
the values at the control points and the local position on the NURBS surface, η and ζ

ξ(η, ζ) =
n∑
i=0

m∑
j=0

Ri,j(η, ζ)Ξi,j, ρ(η, ζ) =
n∑
i=0

m∑
j=0

Ri,j(η, ζ)Pi,j (2)
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and

θ(η, ζ) =
n∑
i=0

m∑
j=0

Ri,j(η, ζ)Θi,j. (3)

Ξi,j, Pi,j and Θi,j are the control point values of the Haigh-Westergaard coordinates. The
NURBS basis functions are given by

Ri,j(ξ, η) =
Ni,p(ξ)Nj,q(η)wi,j

n∑
k=0

m∑
l=0

Nk,p(ξ)Nl,q(η)wk,l

. (4)

Ni,p and Nj,q are the pth and qth-degree B-spline basis functions (see [2, 7], amongst
others), η and ζ are the local positions within the two Knot vectors that describe the
surface and wi,j are the weights associated with the control points. In the work of [1] the
control points were defined in Cartesian coordinates, however in this paper we change to
using H-W coordinates to allow for the extension to non-associated flow.

2.1 NURBS-based yield envelopes

Starting from the equation for a NURBS surface (1), a NURBS-based yield envelope
[1] can be expressed as

f =
(
σi − Si(η, ζ, εpi )

)
(S,σ )i = 0, (5)

where (S,σ )i is the surface outward normal (that is, the partial derivative of S with respect
to stress), εpi is the principal plastic strain state and σi the principal stress state. The
yield surface separates stress space into two regions: an elastic region where f < 0 and
an inadmissible region where f > 0. The boundary between these two regions (f = 0)
is used to define material failure and points on this surface will undergo elasto-plastic
deformation. The outward normal to the yield envelope can be obtained through the
cross product of the two local derivatives

(S,σ )i = (S,ζ ×S,η )i = εijk(S,ζ )j(S,η )k, (6)

where εijk is the Levi-Civita tensor1. S,η and S,ζ are the derivatives of the NURBS surface
with respect to the local coordinates η or ζ.

2.2 Non-associated flow

In the case of non-associated flow the evolution of plastic strains is decoupled from the
spatial gradient of the yield envelope. The plastic strains evolve according to

ε̇pi = γ̇(g,σ )i, (7)

1εijk = 0 if i = j, j = k or k = i, εijk = 1 for even permutations of i, j and k and εijk = −1 for odd
permutations of i, j and k.
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where γ̇ is the scalar plastic multiplier (or consistency parameter) and (g,σ )i is the gradient
of the plastic potential surface. This plastic multiplier must satisfy the Kuhn-Tucker-
Karush consistency conditions

f(σi, ε
p
i ) ≤ 0, γ̇ ≥ 0 and f(σi, ε

p
i )γ̇ = 0. (8)

These conditions enforce that the material must either be on the yield surface undergoing
elasto-plastic deformation (f = 0 and γ̇ ≥ 0) or inside the yield surface with purely elastic
behaviour (f ≤ 0 and γ̇ = 0).

In this NURBS plasticity approach the gradient of the plastic potential surface is given
by

(g,σ )i = λg


1
1
1

+
√

2


sin(θg + 2π/3)
sin(θg)
sin(θg − 2π/3)

 , (9)

where λg is the volumetric to devitaoric ratio of the plastic flow direction and θg is the
Lode angle of the plastic flow direction. λg and θg are dependent on the corresponding
control point values, Λg

i,j and Θg
i,j, and the local position on the NURBS surface through

λg(η, ζ) =
n∑
i=0

m∑
j=0

Rg
i,j(η, ζ)Λg

i,j and θg(η, ζ) =
n∑
i=0

m∑
j=0

Rg
i,j(η, ζ)Θg

i,j. (10)

The NURBS basis functions Rg
i,j(η, ζ) are calculated in the same way as (4).

2.3 Isotropic hardening

Introducing hardening into the NURBS yield surfaces results in a yield surface that is
dependent on the level of inelastic straining at a material point. This is included within
the NURBS plasticity framework by allowing the control points to evolve with plastic
straining, that is

Ξ = h(εpi )Ξ
0 and P = h(εpi )P

0 (11)

where the superscript (·)0 denotes the original control point coordinates and h(εpi ) controls
the evolution of the control points. For linear isotropic hardening we can assume

h(εpi ) = 1 + α ||
∫ t

0

ε̇pi dt ||, (12)

where α is a material constant controlling the hardening (α > 0) or softening (α < 0)
rate and perfect plasticity is obtained with α = 0. We can approximate the isotropic
hardening function to provide an incremental function of the form

h(∆εpi ) = hn + α||∆εpi ||, (13)

where hn = h
(
(εpn)i

)
is the value of the hardening function from the previously converged

state and it is assumed that initially, h0 = 1.

4



William M. Coombs

2.4 Stress integration

In this work we use an implicit elastic predictor, plastic corrector scheme [11], where
the elastic trial stress is given by

σti = σni + ∆σi, where ∆σi = De
ij∆εj and σni = De

ij(ε
e
n)j. (14)

(εen)j and σni are the elastic strain and stress state from the previous load (or time) step
in the global solution algorithm, ∆εi is the strain increment associated with the global
boundary value displacement and De

ij contains the principal components of the linear
elastic stiffness matrix.

If the trial elastic stress state exceeds the yield envelope (f > 0) then it must be
corrected back onto the yield surface using a plastic stress increment, that is

σri = σti −∆σp
i , where ∆σp

i = De
ij∆ε

p
j , (15)

σri is the returned stress state on the yield surface and ∆εpj is the plastic strain increment
obtained from the incremental form of (7). Once this correction has been applied the
updated elastic strain can be obtained from

(εen+1)i = (εen)i + ∆εi −∆εpi , (16)

and the updated hardening parameter, h, from (13).

3 NUMERICAL IMPLEMENTATION

Consistent with the perfect plasticity implementation of Coombs et al. [1], here we use
a coarse initial subdivision algorithm to provide the initial starting point for a backward
Euler (bE) implicit stress integration process. This is to provide an initial estimate for the
local positions within the Knot vectors, η and ζ in (5) that act as the primary unknowns
in the closest point projection (CPP) problem (in addition to the updated hardening
parameter). However, despite this process being referred to as a CPP, the return stress
is not generally the closest point geometrically in standard stress space.

In this paper we make use of energy-mapped space [3] to convert this CPP minimisation
into a problem of finding the point on the yield envelope that the normal to the plastic
potential surface passes through when intersecting with a trial point outside of the surface.
Once the closest point solution in energy-mapped stress space has been found, the solution
can be transformed back to conventional stress space. For a NURBS yield surface we
only need to map the control point coordinates, (Ξ, P,Θ), and flow directions, (g,σ )i, into
energy-mapped space, the rest of the NURBS information remains unchanged.

As with the algorithm for associated flow perfect plasticity, the stress return path for
bE procedure described in this paper starts and remains in the yield envelope and thereby
satisfies the consistency conditions not only at the final state but also during the stress
updating algorithm.
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4 NUMERICAL ANALYSIS

This section presents both material point and boundary value simulations for the
isotropically hardening/softening von Mises plasticity model represented and integrated
in the NURBS plasticity framework. The yield surface can be expressed as

f = ρ− hρy = 0, (17)

where the deviatoric stress is ρ =
√

2J2 with J2 = 1
2
sijsji and sij = σij − 1

3
σkkδij, ρy is the

yield stress of the material and defines the radius of the von Mises cylinder.

4.1 Material point investigations

The stress integration errors for a von Mises yield surface with E = 200Pa, ν = 0.2,
ρy = 1Pa and α = 10 (hardening) using the NURBS integration procedure are shown in
Figure 1. The stress state is initially located on the shear meridian in the σzz > σyy > σxx
sextant of stress space. This point is then subjected to a stress increment that will take
the trial stress state outside of the yield envelope into one of the three sextants shown in
Figure 1. The space of trial states was explored for ρt/ρy ∈ [1, 6] and the errors associated
with the trial state shown on the right of Figure 1. The normalised error measure used is

error =
||{σNURBS} − {σe}||

||σe||
, (18)

where {σNURBS} is the stress return location associated with the NURBS model and {σe}
is the exact stress return [5].

Although errors of over 20% are present in the model, exactly the same level of errors are
observed in the von Mises yield surface integrated with a conventional bE stress integration
procedure. As expected with any predictor-correction stress integration algorithm, the
error increases as the tangential proportion of the stress increment increases. The errors
are almost identical to those reported by Coombs et al. [1] for the perfect plasticity yield
surface.

Figure 2 (i) shows the converged hardening parameter value for the same range of trial
stress states as analysed in Figure 1. As expected, the value of the hardening parameter is
only dependent on the magnitude of the plastic strain increment, or equivalently, the radial
distance that the trial state is from the yield surface. Figure 2 (ii) gives the normalised
error in the hardening parameter, the distribution of the error is similar to the stress
errors shown in Figure 1 as the error in the stress increment will be proportional to the
error in the return stress.

4.2 Plane strain double notched plate

Here we present the analysis of the plane strain stretching of a double-notched plate.
The problem was initially presented by Nagtegaal et al. [6] for small strain plasticity
to demonstrate the spurious response of standard finite-elements and was subsequently
re-analysed in a number of papers, including [1, 4, 8, 9]. The plate had a Young’s modulus
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Figure 1: Stress return error analysis for an isotropically hardening von Mises NURBS yield envelope.

of 206.9GPa, Poisson’s ratio of 0.29 and was modelled using an isotropically hardening
von Mises yield surface with associated flow with an initial yield stress of ρy = 0.45GPa.

Nagtegaal et al. [6] provided the small strain analytical limit load for the case of
perfect plasticity (α = 0), controlled by the stress at the notch σlim ≈ 2.97ρy. The
specimen had a total height and width of 30mm and 10mm respectively, with a 2mm
unit linking ligament at mid height. For this geometry the small strain perfect plasticity
limit load is f lim ≈ 2.673kN. Due to symmetry, only one quarter of the specimen was
initially discretised using 75 plane strain eight-noded elements with reduced four-point
integration, as shown in Figure 3. A displacement of 0.2mm was applied in 20 equal
displacement-controlled increments.

Figure 3 shows three different model responses for two finite element discretisations.
The three cases are where α = 1 (hardening or expansion of the yield surface, black
dashed line), α = 0 (perfect plasticity, fine black line) and α = −1 (softening or contrac-
tion of the yield surface, thick grey line). As the mesh is refined the perfect plasticity
response approaches the analytical limit load. As expected the hardening and soften-
ing responses predict force versus displacement responses above and below the perfect
plasticity response, respectively.

The global normalised residual out of balance force

f̄ oobf =
||{f ext} − {f int}||
||{f ext}||

, (19)
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Figure 2: (i) stress return hardening parameter values and (ii) errors for an isotropically hardening von
Mises NURBS yield envelope.

is given in Table 1 for each of the global Newton iterations for four loadsteps of the 75
element simulation with a softening yield surface with α = −1. The tolerance on the
residual was set to 1 × 10−8. All of the loadsteps converged in five iterations, or less,
with the final iterations within each loadstep approaching a quadratic convergence rate,
demonstrating the correct implementation of the algorithmic consistent tangent [10] for
the constitutive model, including the case of material softening. For this case by the end
of the simulation the minimum size of the yield surface had reduced to 78% of the original.

Table 1: Plane strain notched plate convergence for the NURBS implementation of the von Mises yield
surface with linear isotropic softening (α = −1) with 75 elements (1× 1mm element size).

loadstep
NR iteration 2 3 10 20

1 8.953×10−2 2.502×10−1 2.392×10−2 1.553×10−3

2 6.891×10−3 6.605×10−2 9.518×10−4 8.705×10−5

3 4.050×10−5 2.205×10−3 1.278×10−6 8.828×10−9

4 1.435×10−9 6.933×10−6 1.270×10−12 -
5 - 6.474×10−11 - -
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Figure 3: Double notched plate with NURBS-based von Mises plasticity with hardening, perfect plas-
ticity and softening responses.

5 CONCLUSIONS

This paper extends the NURBS plasticity framework of Coombs et al. [1] to allow: (i)
the yield surface to expand (hardening) or contract (softening) under plastic straining and
(ii) decoupling the flow direction from the spatial gradient of the surface. This is achieved
by allowing the position of the control points to be a function of inelastic straining and
for the flow direction to be approximated by a separate NURBS basis. The formulation
has been validated at both a material point level and in bounadry value simulations.
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