
Manipulating the conductance of single-walled carbon nanotubes based thin films
for evolving threshold logic circuits using particle swarm optimisation

F. Qaiser, A. Kotsialos, Member, IEEE, M. K. Massey, D. A. Zeze, C. Pearson and M. C. Petty
School of Engineering and Computing Sciences, Durham University, Durham, United Kingdom

E-mail:{fawada.qaiser, apostolos.kotsialos, m.k.massey, d.a.zeze, christopher.pearson, m.c.petty}@durham.ac.uk

Abstract—Evolution In Materio (EIM) is concerned with solv-
ing computational problems by exploiting the physical prop-
erties of materials. This paper presents the results of using
a particle swarm optimisation (PSO) algorithm for evolving
logic circuits in single-walled carbon nanotubes (SWCNT)
based composites on a special custom made platform. The
material used is a composite of SWCNT dispersed randomly
in a polymer forming a complex conductive network. Follow-
ing the EIM methodology the conductance of the material
is manipulated for evolving threshold based logic circuits.
The problem is formulated as a constrained, mixed integer
optimisation problem. It is solved using PSO in conjunction
with the shortest position value rule. The results showed that
the conductive properties of SWCNT can be used to configure
these materials to evolve multiple input/ output logic circuits.

1. Introduction

Unconventional computing aims at investigating meth-
ods for designing and developing systems that are able to
perform a computation in different ways than the current
paradigm. One such direction of research is evolution in ma-
terio (EIM), which is concerned with computing performed
based on different materials. EIM focuses on the underlying
properties of the materials aiming at exploring and exploit-
ing them in such a way so that they are brought to a com-
putation inducing state. Contrary to traditional computing
with MOSFET technology, where everything is top-down
designed, produced and programmed very carefully, EIM
uses a bottom up approach where computation is performed
by the material without having explicit knowledge of its
internal properties.

Figure 1 illustrates EIM’s concept. An optimisation
algorithm selects a set of incident signals applied on to
the material, changing in effect its physical properties. At
each iteration, the material is tested against a number of
known input/output pairs of a successful computation. The
material’s response is recorded for each of those test inputs
and a global error function is evaluated. An optimisation
algorithm manipulates the material’s properties within an
iterative search by applying different configuration signals.
This evolutionary process brings the material to a state
where it can perform the desired computation in the sense

Figure 1: Concept of evolution in materio [1].

that its outputs can be interpreted according to a pre-
specified scheme.

The idea of EIM is based on the observations made in
[2], where evolutionary algorithms were used for designing
electrical circuits on FPGAs. The resulting circuit topologies
were influenced by the material of the board used. The
reason for this is that optimisation methods when applied on
material systems are in effect feedback systems. Their pat-
tern of search is affected by the collected information, which
includes the material properties of the particular equipment
used. Hence, solutions based on a specific FPGA would
depend on properties that were unaccounted for during the
board’s design. EIM replaced the FPGAs with material
systems, which are viewed as black boxes. This approach
favours using all inherent physical properties of the material
medium [3] for a search algorithm to achieve its goals.

This evolutionary approach requires a platform that pro-
vides access to physical properties of the material in use
and can bridge the gap between their analogue nature and
the digital nature of a computer supervising an evolutionary
search. In [4], an mbed platform was used for evolving
threshold logic circuits using population based optimisation.
Based on this work a more detailed study on the material
properties and its capability of performing a computation
was conducted and results are reported in [5], [6] and [7].
The hardware used for these studies was relatively inflexible
and did not allow the use of algorithms with extended
vectors of decision variables regarding the selection of an
incident signal’s location of application on the material
body. Here, a more powerful and versatile platform is used



which allows for a more flexible problem formulation to
be realised. This is the mecobo board [8], which is a
purpose built platform that can interface with large variety
of materials and also has the flexibility to control and map
variety of input, output and configuration signals and their
properties. In addition to the different hardware used, this
paper extends the work reported in [4], [5] and [6] by using
a particle swarm optimisation (PSO) instead of the Nelder-
Mead and Differential Evolution algorithms used there.

2. Materials

EIM is based on materials that are configurable by
the applied signals [9]. Different materials that have been
followed include biological material like slime moulds [10],
[11], bacterial consortia [12] and biological cells (neurons)
[13] as well as non-biological materials such as, liquid
crystals [14], single-walled carbon nanotubes (SWCNT) [4],
nano-particles [15]. SWCNT based materials have shown
the potential to solve variety of computational problems [4]
[16] [17] [18] [19].

The materials used in this study are composites of
SWCNTs and poly(methylmethacrylate) (PMMA). The con-
centration of SWCNTs (as a weight percentage of the
PMMA) and the viscosity of the PMMA / SWCNT mixture
affect the material behaviour. The samples are prepared by
dispersing SWCNTs in Anisole (VWR, analytical reagent
grade) with an aid of an ultrasonic probe at a power of 20%
(Cole-Parmer 750W ultrasonic homogeniser). The PMMA
(Aldrich, Mw = 93, 000) is then added and additional
sonication was performed for a more uniform dispersion.
The material was then deposited on gold micro-electrode
arrays by drop casting. In order to promote quick drying
and a more uniform coverage, the substrate was heated to
100◦C and left for 30 minutes in order to dry any remaining
solvent.

Micro-electrode arrays are fabricated from gold on stan-
dard borosilicate glass substrates, using etch-back photo-
lithographic techniques. The arrays are designed with very
small electrode separations (22µm) so that high strength
electric fields (5 × 105V/m) can be applied even with the
modest voltages (10.8V ). Figure 2b shows an optical micro-
graph of the SWCNT material deposited on the electrodes.

3. The mecobo hardware platform

The mecobo platform can be connected to a host com-
puter over a USB as a standalone interface. The host com-
puter runs the system interface as well as the optimisation
algorithm. The software interface configures the hardware
by providing the necessary information for each connection
with the material. Its response to sequences of test inputs is
recorded and transformed into appropriate data format for
the calculation of the error function.

Mecobo is designed as a PCB board with an FPGA and
a microcontroller as main components, Figure 3. Digital-
to-Analogue and Analogue-to-Digital Converters, DAC and

(a) Electrode photolithography mask (left) and PCB edge con-
nector with the glass slide (right).

(b) Optical micrograph of carbon nanotubes deposited on gold
electrode arrays.

Figure 2: Microelectrode arrays and SWCNTs deposited on
gold micro-electrode arrays.

ADC, respectively, are used for generating signals and col-
lecting measurements from the electrodes resting on the
material. The microcontroller accepts the commands from
the host computer and implements them in FPGA via shared
memory. The FPGA establishes the physical and logical
communication with the material. Digital I/O produce sig-
nals and sample responses. Analogue output signals are
produced by the DAC modules, which can produce static
or time dependent voltage waveforms. The ADC modules
perform the sampling of analogue waveforms received from
the material.

Furthermore, a scheduler, Figure 4, is implemented in
the hardware that can schedule the time slots for different
I/O or configuration signals or to compensate delays when
materials need time to settle before any meaningful com-
putation can be observed. Figure 4 illustrates the interface
hardware implementation.

The SWCNT are randomly distributed forming an in-
homogeneous random network of nanotube bundles. This
material is spread over the microelectrode arrays and the
input/output locations can be aribitrary. The choice of in-
put/output and configuration electrode terminals are left to
be decided by the optimisation algorithm. In order to achieve
this, a pin routing module is placed between signal generat-
ing modules and the sampling buffer. Hence, in contrast to
previous experiments, where pin configuration was predeter-
mined, the experiments presented in this paper implement
variable pin configuration that is under the control of the



Figure 3: Mecobo block diagram for EIM.

Figure 4: Mecobo scheduler [8].

optimisation algorithm.
Different computational problems have been suggested

for such a system. The calculation of Boolean functions
based on threshold logic is considered here. A more detailed
discussion on candidate problems can be found in [20].

4. Threshold logic gates

Threshold logic gates operate on the principle of com-
paring the output of a device to a prespecified threshold for
deciding if it is at a logical 0 or 1 state. Such a threshold
logic device has n inputs Ai ∈ {0, 1}, i = 1, . . . , n and
m outputs Yj ∈ {0, 1}, j = 1, . . . ,m. For output yj , a
number Lj + 1 of thresholds θj,p, p = 0, . . . , Lj are used
for differentiating between possible inputs. yj is decided by
a rule of the following form:

yj = Yj,p if θj,p−1 ≤
n∑

i=1

wiAi < θj,p, (1)

j = 1, · · · ,m, p = 1, . . . , Lj .

The detailed design of a device like this requires the com-
plete determination of the weights wj,p and the correspond-
ing threshold levels θj,p. This is achieved by using circuit
design tools. Instead of following this detailed approach,
a different operational principle may be adopted, whereby
the device is a piece of inhomegeneous conducting material
where a number of inputs are applied directly to its body
and a number of output measurements are collected from it.

There are two types of input applied in this device, q
configuration inputs Vz , z = 1, . . . , q and n computation
arguments xi, i = 1, . . . , n. Within the EIM framework,
configuration inputs are used for changing the material’s
properties of interest and bring it to a computation inducing
state. A material state is characterised as such when the
material’s response can be uniquely translated to the correct
computation when an arbitrary set of input arguments are
applied to its body.

Let q denote the number of configuration inputs Vz , z =
1, . . . , q, organised into vector V and x ∈ X ⊂ Rn the
space of possible inputs used for representing a binary vector
A ∈ {0, 1}n, i.e. there is a one-to-one mapping R : X →
{0, 1}n. R(x) = A means that x ∈ X uniquely represents
binary input A ∈ {0, 1}n. The material’s measured response
when q configuration and n computation argument inputs
are applied, at output location j is Mj(x,V). A threshold
logic gate based on Mj can be obtained by modifying eqn.
(1) as follows.

yj=Yj,p if θj,p−1 ≤Mj(x,V) < θj,p, (2)
j = 1, . . . ,m, p = 1, . . . , Lj .

The detailed design effort required for obtaining the
weights wj,p is replaced by a search process that aims at
identifying a suitable R and finding the values of xi, Vz
and θj,p. Making the material respond in a unique way to
a given combination of configuration and (arbitrary in the
domain of definition) computation argument inputs, is the
task of EIM.

For the particular type of material used here, the output
Mj is an increasing function of the total input, x and V. The
principle of operation is based on the implementation of rule
(2) by dividing the output from location j into bands defined
by thresholds θj,p. The computation is then performed by
mapping a particular input to the corresponding output band,
which indicates a logical 0 or 1 consistent with the Boolean
function truth table. The truth table Y(A) ∈ {0, 1}m,
A ∈ {0, 1}n, dictates the value of Yj when a vector x
representing A is applied to the material while it is in the
computation inducing state. This is shown in Figure 5 where
rule (2) is graphically represented.

5. Material training

The material at hand is a randomly dispersed network
of SWCNTs acting as resistors. The configuration and argu-
ment inputs are constant voltage pulses applied at different
locations on the material’s body and the outputs Mj are
voltage measurements collected from other locations. The



Figure 5: Threshold based logic for a material output.

Figure 6: An example of arrangement of input, output and
configuration electrodes.

argument inputs are short voltage pulses applied while a
particular set of configuration inputs are applied. The sam-
pling frequency of the output measurements is the same as
the argument’s inputs. Mecobo allows the parametrisation
of the pins used for applying voltage inputs and those used
for output measurements. Hence, the problem formulation is
an extension of the one proposed in [4] in the sense that the
optimisation algorithm is allowed to select the pin assign-
ment. Figure 6 depicts an instant of a particular assignment
for a two-input single-output gate. There are eight locations
where electrodes are connected with the material; each one
can be selected to be an input or an output (location 0
is always the ground). In the instant shown in Figure 6,
locations 1 and 2, where voltages V1 and V2 are applied,
correspond to the gate’s input terminals. The configuration
voltages are applied at electrode terminals 3–6; these are
used for manipulating the material’s conductivity so that
the measured output can be interpreted according to rule
(2). The output is measured at location 7 where voltage V7
is collected, i.e. M1(x,V) = V7.

Let P =
[
P1 . . . Pn+q+m

]T
denote the vector describing

the pin assignment. P` ∈
{
1, . . . , q + n+m

}
is the pin

number at position `. The first n positions in P correspond to
the argument inputs, the next q to the configuration voltages
and the last m to the outputs. For the example of Figure 6,

P =
[
1, 2, 3, 4, 5, 6, 7

]T
, with the pins’ numbering starting

where V1 is applied and increasing in the counter-clock wise
direction.

The material training problem at hand aims at identifying
the optimal pin assignment P∗, configuration voltages V∗

and vector of thresholds θ∗ for a given mapping R such that
when the V∗ are concurrently applied, the application of any
input voltage x results to measurements Mj ; when rule (2)
using θ∗ is applied, the equation y

(
P∗,R(x),V∗, θ∗

)
=

Y
(
R(x)

)
is true (y is the vector of yj).

A set of K training data is
(
A(k),Y(A(k))

)
, k =

1, . . . ,K covering all possible combinations of binary in-
puts/outputs is generated. The objective function J of the
optimisation problem is

J =

K∑
k=1

[
y

(
R
(
x(k)

)
,V, θ

)
−Y

(
A(k)

)]2
(3)

where
x(k) = R−1

(
A(k)

)
. (4)

J is calculated by interacting with the material based on a
given pin assignment. In the most general case, the vector
of decision variables B has the form

B =
[
PT xT VT θT

]T
. (5)

A simple mapping R is obtained by setting X = {0, 1} and
Ai = 0 is represented by xi = 0 V and Ai = 1 by xi = 1 V.
In this case x is fixed and therefore not part of B in (5).
The case where x a function of V is discussed in [4].

The training optimisation problem is that of minimising
(3) subject to (4), (2) and the following simple bound
constraints on the configuration voltages V.

Vz,min ≤ Vz ≤ Vz,max, z = 1, . . . , q. (6)

Notice that there are no explicit constraints for the thresholds
θ. The optimisation algorithm discards those solutions where
the ordering necessary for (2) to work is not held.

This optimisation problem is solved using a classical
PSO algorithm, [21]. However, the P part of the vector of
decision variables poses a permutation problem as a pin can
only be used for a single input or output. This is dealt with
by using the shortest position value (SPV) rule as proposed
in [22] and [23]. The SPV rule converts the continuous
position generated by PSO to a discrete value. The SPV
rule is applied in two phases, one when the particles are
generated and the other when the particles are updated. The
rest of decision variables are considered as continuous.

Although V is continuous for the PSO algorithm, the im-
plementation of a particular value goes through the Mecobo
board, which can apply discrete levels of voltage. For all
pins, the minimum voltage is Vmin = −5.0 V and the max-
imum is Vmax = +5.0 V. This voltage range is divided into
255 equidistant discrete level values with 0 corresponding
to −5.0 V and 255 to +5.0 V.



TABLE 1: Truth table for (A1 +A2 +A3)⊕ (A1A2A3).

Inputs Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

6. Results and discussion

A number of Boolean functions have been used for mak-
ing the material yield a threshold logic circuit in the sense
described in section 4. The material used had a concentration
of 0.1% SWCNT, see section 2. Simple AND and OR gates
were easily obtained. Here, the results are discussed for a
3-input 1-output logic circuit, the half-adder and the full-
adder.

An initial trial of applying random configuration volt-
ages resulted to outputs that could not be translated into
computational outcomes when each circuit’s threshold rule
was applied. The same was true when a circuit of resistors
was used instead of the SWCNT composite. It is the PSO
algorithm that identifies suitable values for those configu-
ration inputs and thresholds. In other words, the material
in its initial state cannot perform the required calculation.
It should be noted, that no shape change takes place during
training. The only physical property affected is the material’s
conductance. The material itself is very stable and the results
reproducible.

6.1. Logic circuit (A1 +A2 +A3)⊕ (A1A2A3)

This is a three input, one output logic circuit based on
AND, OR and XOR. Its truth table is shown in Table 1. At
least one and at most two inputs need to be true in order
for the output to be true. If all inputs are the same, either
true or false, the output is false.

Referring to the problem formulation of section 5, n =
3, m = 1 and q = 8. Two thresholds, θ1 and θ2 are required
to separate between the output true and false states, one for
distinguishing an all false inputs state and another for the
all true inputs. The rule implemented is

Output =

{
1 if θ1 < M1(x,V) < θ2
0 otherwise. (7)

The optimal solution the PSO algorithm converged to
is given in Table 2. It provides the optimal configuration
voltages as well as the threshold values and pin assignment.
Figure 7 shows the output measurements and optimal thresh-
olds for all possible binary inputs. These were obtained from
measuring the voltage at pin 10, while the material was
constantly charged with the optimal configuration voltages
at pins 2, 11, 8, 0, 7, 9, 1, 4, and a random sequence of
binary triplets was applied to pins 5, 6 and 3. The output
measurements between the two thresholds are interpreted as
logic 1 and outside of it as 0.

TABLE 2: Optimal solution for logic circuit (A1 + A2 +
A3)⊕ (A1A2A3)

Thresholds θ1 = −3.64, θ2 = −0.86
Configuration voltages V1 = −1.64,V2 = −2.68,V3 = −2.87

V4 = −3.54,V5 = −2.34, V6 = −1.81
V7 = −1.89, V8 = −2.19

Pin assignment x1 → 5, x2 → 6, x3 → 3
(signal) →) (pin#) M1 → 10, V1 → 2, V2 → 11

V3 → 8, V4 → 0 ,V5 → 7
V6 → 9, V7 → 1, V8 → 4

Figure 7: Material response for the (A1 + A2 + A3) ⊕
(A1A2A3) circuit; output measurements and thresholds.

6.2. Half-adder

The half-adder is a two-input two-output circuit using an
XOR and an AND output. Its truth table is shown in Table
3.

For the training optimisation problem, n = 2, m = 2
and q = 8. The two output measurements M1 and M2

are collected for the XOR and AND, respectively, for any
binary pair (A1, A2). In order to make the material behave
as a half-adder based on the use of thresholds, the output
corresponding to AND, M1, requires the use of a single
threshold and the XOR measurement, M2, needs two. For
M1 and the AND carry output,

Output Carry =

{
1 if M1(x,V) ≥ θ1
0 otherwise. (8)

Hence, a measured M1 larger than θ1 is interpreted as a
logical 1, otherwise as a 0.

TABLE 3: Truth table for half adder

Inputs Output sum (XOR) Output carry (AND)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1



TABLE 4: Optimal solution for half-adder circuit.

Threshold for carry θ1 = −1.4
Thresholds for sum θ2 = −2.9, θ3 = −1.9

Configuration voltages V1 = 0.03, V2 = 1.45, V3 = 3.19
V4 = −0.21, V5 = −0.75, V6 = −0.68

V7 = −0.53, V8 = −1.75
Pin assignment x1 → 7, x2 → 6, M1 → 1

(signal) →) (pin#) M2 → 3, V1 → 9, V2 → 4
V3 → 2, V4 → 10, V5 → 5
V6 → 0, V7 → 11, V8 → 8

Figure 8: Material response for the half-adder circuit; output
measurements and thresholds.

For M2 and the XOR sum output,

Output Sum =

{
1 if θ2 ≤M2(x,V) ≤ θ3
0 otherwise. (9)

Hence, a measured M2 between the two thresholds θ2 and
θ3 is interpreted as a logical 1 at the sum output, otherwise
if it is below θ2 or above θ3 as a logical 0.

Training the material based on eqns. (8) and (9) for
interpreting the measured outputs as half-adder circuit com-
putation results to the solution shown in Table 4.

The output measurements at two electrodes are shown in
Figure 8. The three thresholds can be differentiated clearly.
One is used for calculating the carry and two for the sum.
The electrode pins 7, and 6 are chosen as input terminals
and 1 and 3 as output; the rest of the pins are configuration
voltage terminals. It should be noted that the measurements
M1 and M2 are taken concurrently, while the configuration
voltages are constantly been applied.

6.3. Full-adder

The full-adder circuit has three inputs and two outputs,
the sum and carry, hence n = 3 and m = 2 leaving q =
7 configuration voltages available for obtaining a solution.
Again, two measurement pins are used, M1 for the carry
and M2 for the sum. The circuit’s truth table is given in
Table 5.

TABLE 5: Truth table for the full-adder circuit.

Inputs Output sum Output carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

TABLE 6: Optimal solution for the full-adder circuit

Threshold for carry θ1 = −2.9
Threshold for sum θ2 = −3.9, θ3 = −3.4, θ4 = −0.9

Configuration voltages V1 = 0.03, V2 = −0.62, V3 = −1.99
V4 = −2.17, V5 = −2.82, V6 = −1.97

V7 = −1.74
Pin assignment x1 → 4, x2 → 1, x3 → 2

(signal) →) (pin#) M1 → 7, M2 → 5, V1 → 10
V2 → 6, V3 → 3, V4 → 9
V5 → 0, V6 → 11, V7 → 8

A single threshold is used for the carry leading to the
following interpretation of measurement M1.

Output carry =

{
1 if M1(x,V) ≥ θ1
0 otherwise. (10)

The sum operation is more complicated and requires
three thresholds to calculate it at the output terminal where
M2 is measured. This leads to the following threshold rule.

Output sum =


0 if M2(x,V) < θ2
1 if θ2 ≤M2(x,V) < θ3
0 if θ3 ≤M2(x,V) < θ4
1 if M2(x,V) ≥ θ4

(11)

The optimal solution is given in Table 6. Seven con-
figuration voltages were used with three inputs and two
outputs. The three inputs are applied at pins 4, 1 and 2,
whereas the outputs are collected from pins 7 and 5. The
material’s response to each of the specific 16 possible binary
inputs is shown in Figure 9, along with the thresholds used.
Compared to the half-adder response shown in Figure 8, the
full-adder measured output is more complicated because of
the three, rather than two, binary inputs. The optimisation
is able to find a solution, where the material’s response is
organised so that the interpretation scheme followed results
to the full-adder outcome.

7. Conclusion

This paper presents the results of applying PSO for EIM
where the material consists of a SWCNTs/PMMA mixture.
By manipulating the material’s conductance, it is possible
to perform calculations of Boolean functions based on a
threshold logic interpretation scheme. The mecobo platform
allowed the flexibility of selecting the input, output and
configuration terminals and put them under the control of
an optimisation algorithm. The experiments demonstrated
mecobo’s functionality and suitability as an interface for



Figure 9: Material response for the full-adder circuit; output
measurements and thresholds.

evolvable material. For the experiments reported here, ma-
terial with 0.1% SWCNTs concentration was used. In future
work, the material with varied concentrations will be tested
for similar computation problems.
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