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Abstract: For variance component models, it is often the posterior estimate of
the random effect (‘posterior intercept’) rather than the estimate of the fixed
effect parameters, which is of main interest. This is the case, for instance, when
ranking region–wise mortality rates (where the crude, regional rates are unreliable
due to small observed counts) or for the construction of educational league tables
from complex sample surveys. However, in order to be able to decide whether
two cluster–level units can actually be distinguished, it is clear that one needs a
measure of variability of these posterior intercepts. We present an exploration
of methods to address this issue which appears to be still undeveloped in the
context of the model class considered.

Keywords: Nonparametric maximum likelihood; Empirical Bayes shrinkage;
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1 Posterior intercepts

Consider variance component models of type

µij = E(yij |zi) = h(xT

ijβ + zi), (1)

where µij is the expected response for unit j in cluster i, xij are the fixed
effect covariates which may depend on i, j, or both, and zi is the random
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effect operating at the cluster level. If no assumption on the random effect
distribution is made, then estimation can be carried out via ‘nonparamet-
ric maximum likelihood’ (Aitkin, 1999). Briefly, the marginal likelihood is
approximated by a discrete mixture, the parameters of which are estimated
alongside with the fixed effect parameters via the EM algorithm, yielding
estimates β̂, ẑ1, . . . , ẑk with masses π̂1, . . . , π̂K . Denote by θ̂ the collection
of these estimates, and by yi = (yi·) the set of response values for cluster i.
Aitkin (1999) suggested to estimate the mean of the posterior distribution
zi|yi via ‘Empirical Bayes Predictions’

z̃i =

K∑
k=1

wikẑk, (2)

where wik = P̂ (k|θ̂, yi) are the posterior probabilities (‘responsibilities’)
that observation i stems from component k, which can be computed via
Bayes’ theorem from the parameter estimates θ̂ of the last M step. The
quantity of interest are these posterior intercepts, z̃i.

2 PIAAC data

The PIAAC survey of adult skills was carried out from 01/08/2011 to
31/03/2012 by the OECD in 24 countries (or sub–country entities), and was
designed to assess the proficiency of adults in the key competencies of liter-
acy, numeracy, and problem–solving in technology–rich environments. We
focus here on the ‘literacy’ output variable, with six possible outcomes for
an assessed individual. We dichotomized this variable as ‘people reaching
level 3 or above’, with ‘level 2 and below’ being considered as low–skilled,
which corresponds to the key European Commission policy marker used
to demarcate poor basic skills in the complementary PISA survey carried
out at 15–years of age (Eurostat, 2016). As covariates we will use gender,
as well as a factor for age (covering the intervals 16–24, 25–34, 35–44, 45–
54, and 55+), though we have also explored more complex models using
employment status and reading habits which are not reported here. This
leads to a (rescaled) logistic regression model yij ∼ Bin(nij , µij)/nij where
nij is the (effective) sample size of the jth subpopulation (defined by the
covariate combination of interest) for country i, and function h(·) in (1)
is the logistic function. Data were extracted using the PIAAC explorer. A
model with age*gender interaction and K = 5 turned out to capture the
upper-level heterogeneity well (Table 1 right).

3 Uncertainty of posterior intercepts

3.1 Analytic approximation

We initially approach the problem analytically, considering the weights wik

in (2) as constants (which, strictly, they are not, since they depend on the
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parameters estimated in the last M-step). It follows then from (2) that

Var(z̃i) =

K∑
k=1

w2
ikVar(ẑk) +

∑
j 6=k

wijwikCov(ẑj , ẑk) (3)

where the variances and covariances are available from the fitted model
according to standard GLM theory. Clearly, the covariance terms cannot
be naively omitted since the positions of the ẑ′ks are strongly correlated.

However, as
∑K

k=1 wik = 1 for all i, it is clear that 0 ≤ wijwik ≤ 1/4 for
all pairs j 6= k. In addition, it is often (but not always) the case that after
EM convergence observations are classified to one of the components with
probability equal or close to 1, in which case wijwik ≈ 0. [To exemplify this
point, Table 1 gives an excerpt of the matrix W = (wik) for the gender*age
model with K = 5 components.] In either case, it is clear that the product
wijwik will be very small for all (or almost all) i, j, k with j 6= k, so that
the ‘naive’ approximation

Var(z̃i) ≈
K∑

k=1

w2
ikVar(ẑk) (4)

will usually be a good one. Confidence intervals for the posterior intercepts
are then obtained from either (3) or (4) via z̃i ± q

√
Var(z̃i) where q is an

appropriate quantile for which we use the 97.5% Gaussian quantile, 1.96.

3.2 NPML–Bootstrap

In order to assess the variability in a potentially more realistic way, we also
developed a bootstrap routine which proceeds in two layers. Specifically,
for i = 1, . . . , n,

(i) from the set of mass points ẑ1, . . . , ẑk draw a masspoint ži with prob-
ability wik;

(ii) generate new y̌ij ∼ Bin(nij , µ̌ij)/nij , where µ̌ij is defined in the nat-

ural way via (1), using β̂ and ži.

Having y̌ij , we refit the model, yielding a new set of n posterior intercepts.
Repeating these steps M times we have a bootstrap sample of estimates for
posterior intercepts. Therefore, by taking the standard deviation of these
we have an estimate for their variability.

3.3 Results

Figure 1 (left) gives the z̃i along with ‘full’ confidence intervals (3) and
bootstrapped confidence intervals (using M = 9999). The analytic and
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simulation–based intervals are very similar, with minor differences only
recognizable for a small subset of countries. The naive intervals (4) cannot
be visually distinguished from the full intervals. Therefore, we provide in
Figure 1 (right) the ratio of the widths of the naive and full intervals, as
well as the bootstrapped and full intervals. All ratios are very close to
1, with slightly larger deviations for the bootstrapped intervals. We also
see that five groups of countries can be robustly distinguished (since the
corresponding intervals do not overlap), with Japan being the sole best–
performing country.

TABLE 1. Left: Excerpt of matrix W = (wik) (4.d.p.) for age*gender model with
K = 5; right: −2 logL as a function of K.

k 1 2 3 4 5

Australia 0 0 0 1 0
Austria 0 0.0023 0.9977 0 0
Canada 0 0 1 0 0
. . .
Japan 0 0 0 0 1
Netherlands 0 0 0 1 0
. . .

ẑk -0.490 0.011 0.273 0.622 1.307
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4 Uncertainty of posterior probabilities

4.1 Sampling from posterior likelihood

A potential issue with the methodology discussed so far is that by plugging
the ML parameter estimates θ̂ into the expression for wik, the uncertainty in
those estimates is ignored. Hence, the ‘certainty’ of mass point allocation
when taking the wik at face value can be considered as overstated. To
address this problem, Aitkin et al. (2014) suggested the following procedure
based on the concept of posterior likelihood (Aitkin, 2010):

a) Assuming flat priors for θ, the posterior distribution p(θ|y1, . . . , yn) is
proportional to the likelihood, L(θ). Hence, one can take M random

draws θ̂[m], m = 1, . . . ,M , from L(θ).

b) Compute w
[m]
ik = P (k|θ̂[m], yi), m = 1, . . . ,M .

For our purposes, one would then proceed further,

c) Apply step (i) in the algorithm in subsection 3.2 using w
[m]
ik instead

of wik in the m–th bootstrap repetition.
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FIGURE 1. Left: Posterior intercepts [black dots] with analytic (‘full’) [inner
interval; red in the online version] and bootstrapped intervals [outer; turquoise];
right: relative width of intervals.

However, the implementation is non–straightforward and will require a
computationally expensive MCMC analysis, involving Gibbs samplers for
each k, alternate draws between different types of model parameters, and
ad–hoc solutions to the starting value and the label switching problems.
Also, having already carried out a full EM procedure, a full–blown MCMC
analysis only for the sake of analyzing the posterior intercepts feels rather
out of scale. Hence, a simpler alternative idea is considered below.

4.2 Sensitivity assessment via EM process trail

As stated above, an EM algorithm has already been executed. As such,
in this process, a series of ‘draws’ from the full likelihood L(θ) has been
obtained. Assume that, in EM iteration s = 1, . . . , S, we have obtained
parameter estimates θ̂[s] with associated weight matrices W [s] and likeli-
hoods L[s] ≡ L(θ̂[s]). Hence, we possess S draws from L(θ), including the

final iteration, which corresponds to the MLE θ̂[s] ≡ θ̂. While it is clear that
these S draws in no way represent the correct shape of L(θ), the matrices
W [s] can still be used to assess the sensitivity of the NPML–Bootstrap to
imprecision in the wik

′s, especially as some of the estimates along the EM
process trail correspond to really ‘bad’ likelihoods (that is, estimates which
have a likelihood of effectively 0 to be sampled in part a) of the Aitkin
routine).
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4.3 Results

For the data and model at hand, the number of required EM iterations
turned out to be S = 6, and Figure 2 (left) shows L(θ̂[s]) as a function of
s. Figure 2 (right) shows the interval length of the NPML–bootstrapped

confidence intervals when using w
[s]
ik , s = 1, . . . , 5 relative to that using

wik ≡ w[6]
ik . It is clear that for all s corresponding to appreciable likelihoods

the difference is less than 10%, and even for posterior weights corresponding
to really poor likelihoods the increase is generally not more than 50%,
indicating robust upper bounds for the uncertainty in this process.
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FIGURE 2. Left: Maximum Likelihood L(θ̂[s]) versus EM iteration s; right: in-

terval length using w
[s]
ik , s = 1, . . . , 5 relative to using wik ≡ w

[6]
ik . The value s is

given in the legend. [In the printed conference proceedings, there was a problem
with the labelling of this graph. This has been corrected in this version.]

The present paper has demonstrated the utility of bootstrap methods to
characterize the sometimes substantial uncertainty in cluster–level esti-
mates which commonly arises in league-table comparisons. While no claim
is made that the relative magnitudes of the different intervals will in gen-
eral behave in the manner of this particular case study, the tools proposed
to arrive at this judgement are applicable for arbitrary two–level problems.
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