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Abstract

The material point method (MPM) is a version of the particle-in-cell (PIC) which has substantial advantages over pure Lagrangian

or Eulerian methods in numerical simulations of problems involving large deformations. The MPM helps to avoid mesh distortion

and tangling problems related to Lagrangian methods and as well as the advection errors associated with Eulerian methods. Despite

the MPM being promoted for its ability to solve large deformation problems the method suffers from instabilities when material

points cross between elements. These instabilities are due to the lack of smoothness of the grid basis functions used for mapping

information between the material points and the background grid. In this paper a novel high-order MPM is developed to eliminate

the cell-crossing instability and improve the accuracy of the MPM method.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

The material-point method (MPM) is a numerical method for solving continuum problems in fluid and solid me-

chanics. Its origins are the particle-in-cell (PIC) method developed at Los Alamos in the 1950s [1,2] to model highly

distorted fluid flow such as the splash of a falling drop. In the late 1980s, Brackbill and Ruppel [3] revived the PIC

technology with simple modifications that reduced the numerical dissipation and made PIC competitive with current

technologies for simulating hydrodynamics. The MPM [4–6] is a version of this method that is applicable to solids

with strength and stiffness and has been applied to model diverse applications such as impact, penetration, fracture,

metal forming, granular media and membranes.

In order to combine the advantages of Eulerian and Lagrangian methods, MPM uses two representations of the

continuum. First, MPM discretises a continuum body of fluid or solid with a finite set of material points in the original

configuration that are tracked throughout the deformation process. Each material point has a mass, position, velocity

and stress, as well as material parameters and internal variables as needed for constitutive models or thermodynamics.

These material points provide a Lagrangian description of the material that is not subject to mesh tangling because

no connectivity is assumed between the points. The latter description, an Eulerian framework, is an often regular
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background mesh that covers the computational domain. Information is transferred from the material points to the

background mesh, the equilibrium equations are solved on the background mesh, and then information from the mesh

solution used to update the material points, at which time the background mesh can be modified if desired, the cycle

then repeats.

Despite the MPM being promoted for its ability to solver large deformation problems it suffers from instabilities

when material points cross between elements. These instabilities are due to the lack of smoothness of the grid basis

functions used for mapping information between the material points and the background grid. By introducing a

weighting function with higher degree of smoothness, the generalized interpolation material point (GIMP) method

is capable of reducing these errors and improving accuracy [7]. Convected particle domain interpolation (CPDI)

is another algorithm developed to improve the accuracy and efficiency of the material point method for problems

involving extremely large tensile deformation and rotation [8]. However, both methods require the basis functions

(normally taken to be linear) to be integrated over the domain of the material point of interest, they also do not

fully eliminate spurious oscillations due to cell crossing. In this paper an alternative approach is suggested where

smooth B-spline function spaces are used to map between the material points and the background grid. The high-

order smoothness of the splines eliminates the cell-crossing instability. The remainder of the paper is summarized as

follows: in Section 2 we present formulation of the quasi-static material point method. In Section 3 we present our

numerical studies for quasi-static material point method, finally conclusions are drawn in Section 4.

2. The quasi-static implicit material point method

Let us start by recalling the elastostatic equations. Let Ω ⊂ R
d, d = 2, 3, denote the domain occupied by the body,

and let Γ = ∂Ω be its boundary. Then

∇ · σ + f = 0 in Ω, u = g on ΓD and σ · n = h on ΓN , (1)

where σ denotes the symmetric Cauchy stress tensor and f is the body force per unit volume, u is the displacement,

g and h are refered as essential, Dirichlet, and natural, Neumann boundary condition, respectively. Here we consider

a finite deformation analysis, where the deformation map φ, x = φ(X), describes the motion of each materail particle

from its initial reference configuration X to its deformed configuration x. The displacement field u and the deformation

gradient F follow as

u = x − X F =
∂x
∂X

(2)

Also, the deformation gradient can be represented by the rotation tensor R and the spatial stretch tensor V, F = VR.

Thus, V2 can be obtained from the left Cauchy-Green tensor

FFT = (VR)(RT V) = V2 (3)

The logarithmic strain tensor, denoted by ε, is computed as ε = lnV. The constitutive relationship, σ = σ(ε), is

necessary to form a complete set of equations for computing the state variable, u. Here we assume a linear isotropic

relationship between logarithmic strain and the Kichhoff stress (see [9] for details of the finite deformation frame-

work).

2.1. Discrete form

The continuum body Ω is discretised by finite set of Np material points
{
xp
}Np

p=1
∈ Ω in the original configuration

that are tracked throughout the deformation process. Also, space is discretised by a background mesh defined by a set

of Nn control points
{
xi
}Nn
i=1. The discrete MPM equilibrium equations are constructed by pre-multiplying the strong

form of equilibrium (1) by a weighting function and applying integration by parts. A simple one-point quadrature rule

is applied over each volume Ωp associated with the pth material point to give

−
Np∑
p=1

{(
σ(xp) : ∇wh(xp)

)
Ωp

}
+
(
h,wh

)
ΓN
+

Np∑
p=1

{(
f (xp) · wh(xp)

)
Ωp

}
= 0. (4)
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(4) is solved on a finite dimensional space using functions represented in terms of B-spline basis functions, Nq
i . A

B-spline basis is constructed from piece-wise polynomials joined with a prescribed continuity. In order to define a

B-spline basis of polynomial order q in one dimension it is necessary to define a knot vector. A knot vector in one

dimension is a set of non decreasing coordinates in the parametric space, written as

Ξ = {0 = ξ1, ξ2, ..., ξn+q+1 = 1} (5)

where ξ1 ≤ ξ2 ≤ ...ξq+n+1 and n is the total number of basis functions. Given Ξ and q, univariate B-spline basis

functions are constructed recursively starting with piecewise

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(6)

For q = 1, 2, 3, ..., they are defined by

Nq
i (ξ) =

ξ − ξi
ξi+q − ξi Nq−1

i (ξ) +
ξi+q+1 − ξ
ξi+q+1 − ξi+1

Nq−1

i+1
(ξ) (7)

Note that when ξi+q − ξi = 0, (ξ − ξi)/(ξi+q − ξi) should be vanished, and similarly, when ξi+q+1 − ξi+1 = 0,

(ξi+q+1 − ξ)/(ξi+q+1 − ξi+1) is taken to be zero as well. These basis functions have the following properties: (i) they

form a partition of unity, (ii) have local support and (iii) are non-negative (for more details see [10]). Fig. 1 shows

N

Fig. 1. Quadratic B-spline basis functions for four C1-continuous elements with open knot vector, Ξ = {0, 0, 0, 1
4 ,

1
2 ,

3
4 , 1, 1, 1}.
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The explicit representation of wh(x) in terms of the basis functions and control variables is assumed to take the

standard form

wh(x) =

Nn∑
i=1

Nq
i wi(x). (8)

Substituting the weighting function approximation into (4) and after simplification, the discrete MPM equation is

obtained as

−
Np∑
p=1

{(
σ(xp) · ∇Nq

i (xp)
)
Ωp

}
+

∫
ΓN

hNq
i dΓ +

Np∑
p=1

{
f (xp)Nq

i (xp)Ωp

}
= 0. (9)

The numerical solution of this quasi-static problem is typically obtained in steps by incrementally imposing displace-

ment boundary conditions, external forces or both in order to obtain increment in displacement, Δu. Here a fully
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implicit method is employed to solve the problem. Once the displacement increment is obtained, the material point

position, xp, and displacement, up, are updated as follows

xk+1
p = xk

p +

Nn∑
i=1

ΔuiN
q
i (xk

p) and uk+1
p = uk

p +

Nn∑
i=1

ΔuiN
q
i (xk

p), (10)

where k denotes the loadstep number. After each load step, the spatial position of background grid is reset to its

original undeformed state.

3. Numerical results

Here we present the numerical results for a one-dimensional elastic column quasi-statically compressed by its own

weight through the application of a body force, b f , per unit mass. The initial material density, ρ0 = 1, Young’s

modulus E = 106, and initial column height L0 = 50, all in compatible units. The column initially occupies 50

elements and the body force was applied over 20 loadsteps. This one-dimensional problem has a semi-analytical

solution described below. The Cauchy strees is obtained from the initial position within the column, X, that is

σ = ρ0b f (L0 − X) (11)

The utilised finite deformation framework makes use of a linear relationship between logarithmic strain and Kirchhoff

stress, τ. The Cauchy and Kirchhoffstresses are linked through, σ = τJ , where the J = det(F) and F = ∂x/∂X is the

deformation gradient, x is the updated position in one-dimension det(F) = F. In one dimension the logarithmic strain

is defined as

ε(0) =
1

2
ln(F2) = ln(F) (12)

and we assume that the Kirchhoff stress is linked to the logarithmic strain through

τ = Eε(0) (13)

combinig the equations (12) and (13) the Cauchy stress is expressed as

σ =
1

F
E ln(F). (14)

By using equation (11), σ can be obtained for any point in the problem domain and then we can solve for the defor-

mation gradient using a Newton method.

(a) (b)

Fig. 2. Numerical and analytical solutions to the one-dimensional elastic column quasi-statically compressed by its own weight under a body force

for (a) W=10000; (b) W=400000.
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Fig. 2 shows the stress distribution with b f = −200 and b f = −800, that is with a total column weight of W =

ρ0|b f |L0 = 10000 and W = 40000, respectively. Results are shown for the standard MPM with linear basis functions

and for the cubic B-spline MPM (q = 3) and compared against the semi-analytical solution. For the MPM the prob-

lem is initially discretised with one particle per grid cell as, for this very simple problem, increasing the number of

material points reduces the accuracy of the simulation. The B-spline MPM used four particles per grid cell. Although

for b f = −200 both the methods provide a reasonable approximation to the semi-analytical solution, MPM still shows

small osillations. However, for b f = −800 spurious oscillations can be seen in the MPM results caused by cell-cross

instabilities whereas the B-spline MPM removed the oscillations.

(a) (b)

Fig. 3. Convergence of stress calculated by B-spline MPM, GIMP and linear FEM for (a) W=10000; (b) W=400000.

Fig. 3 displays the errors in the simulations based on the following error measure and the semi-analytical solution at

the current particle locations

error =

Np∑
p=1

V0
p |σp − σA(Xp)|

WL0

(15)

Xp is the particle original location, V0
p is the original volume associated with the material point, σp is the material

point stress and σA(Xp) is the semi-analytical stress.

The error comparison of B-spline MPM for quadratic (q=2), cubic (q=3) and quartic (q=4) basis functions with

GIMP and linear FEM has been shown in Fig.3-a. The total column weight, W, is 10000. On the coarse mesh,

quadratic B-spline MPM represents less error compare to cubic and quartic (with ppc=8) B-spline MPM as well as

GIMP whereas the fine grids give us the smaller errors for quartic and cubic than quadratic B-spline MPM and even

GIMP provides a better result than quadratic B-spline MPM. When we are dealing with small deformation (e.g. W =

10000), cell-cross instabilities are not too severe particularly on the coarse meshes, therefore quadratic B-spline gives

a very good result while on the fine meshes cubic and quartic B-spline show more promising results. One reason for

this is the compact support of B-spline basis functions. By increasing the compact support of basis functions, the effect

of cell-crossing problem is reduced. This can be achieved by increasing the order of B-spline basis functions.Fig.3-b

shows the error of simulation for a W=400000 for FEM with linear elements as well as GIMP and B-spline MPM. As

it has been shown in the Fig.3-a and Fig.3-b, the optimum rates of convergence were not achieved due to projection

and integration errors. Note that these errors can be reduced by using data reconstruction approaches, such as Moving

Least Square (MLS) technique [11].

4. Conclusions

This paper has presented a MPM where the standard linear basis functions have been replaced by B-splines. The

higher order smoothness of the splines significantly improves the accuracy of the method by removing the cell-cross
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instabilities seen in other MPMs however the optimum convergence rates have not been achieved due to projection

and integration errors.
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