
Surjective H-Colouring: New Hardness Results

Petr A. Golovach1, Matthew Johnson2, Barnaby Martin2,
Daniël Paulusma2, and Anthony Stewart2

1Department of Informatics, University of Bergen, Bergen, Norway
petr.golovach@ii.uib.no

2School of Engineering and Computing Sciences, Durham University,
South Road, Durham, DH1 3LE, U.K.

{matthew.johnson2,barnaby.d.martin,daniel.paulusma,a.g.stewart}@durham.ac.uk

Abstract. A homomorphism from a graph G to a graph H is a vertex
mapping f from the vertex set of G to the vertex set of H such that
there is an edge between vertices f(u) and f(v) of H whenever there is
an edge between vertices u and v of G. The H-Colouring problem is
to decide whether or not a graph G allows a homomorphism to a fixed
graph H. We continue a study on a variant of this problem, namely the
Surjective H-Colouring problem, which imposes the homomorphism
to be vertex-surjective. We build upon previous results and show that this
problem is NP-complete for every connected graph H that has exactly
two vertices with a self-loop as long as these two vertices are not adjacent.
As a result, we can classify the computational complexity of Surjective
H-Colouring for every graph H on at most four vertices.

1 Introduction

The well-known Colouring problem is to decide whether or not the vertices of
a given graph can be properly coloured with at most k colours for some given
integer k. If we exclude k from the input and assume it is fixed, we obtain
the k-Colouring problem. A homomorphism from a graph G = (VG, EG) to
a graph H = (VH , EH) is a vertex mapping f : VG → VH , such that there
is an edge between f(u) and f(v) in EH whenever there is an edge between
u and v in EG. We observe that k-Colouring is equivalent to the problem
of asking whether a graph allows a homomorphism to the complete graph Kk

on k vertices. Hence, a natural generalisation of the k-Colouring problem is
the H-Colouring problem, which is to decide whether or not a graph allows
a homomorphism to an arbitrary fixed graph H. We call this fixed graph H
the target graph. Throughout the paper we consider undirected graphs with no
multiple edges. We assume that an input graph G contains no vertices with self-
loops (we call such vertices reflexive), whereas a target graph H may contain
such vertices. We call H reflexive if all its vertices are reflexive, and irreflexive
if all its vertices are irreflexive.

For a survey on graph homomorphisms we refer the reader to the textbook
of Hell and Nešetřil [12]. Here, we will discuss the H-Colouring problem, a



number of its variants and their relations to each other. In particular, we will
focus on the surjective variant: a homomorphism f from a graph G to a graph H
is (vertex-)surjective if f is surjective, that is, if for every vertex x ∈ VH there
exists at least one vertex u ∈ VG with f(u) = x.

The computational complexity of H-Colouring has been determined com-
pletely. The problem is trivial if H contains a reflexive vertex u (we can map
each vertex of the input graph to u). If H has no reflexive vertices, then the
Hell-Nešetřil dichotomy theorem [11] tells us that H-Colouring is solvable in
polynomial time if H is bipartite and that it is NP-complete otherwise.

The List H-Colouring problem takes as input a graph G and a function
L that assigns to each u ∈ VG a list L(u) ⊆ VH . The question is whether G
allows a homomorphism f to the target H with f(u) ∈ L(u) for every u ∈ VG.
Feder, Hell and Huang [4] proved that List H-Colouring is polynomial-time
solvable if H is a bi-arc graph and NP-complete otherwise (we refer to [4] for
the definition of a bi-arc graph). A homomorphism f from G to an induced sub-
graph H of G is a retraction if f(x) = x for every x ∈ VH , and we say that G
retracts to H. A retraction from G to H can be viewed as a list-homomorphism:
choose L(u) = {u} if u ∈ VH , and L(u) = VH if u ∈ VG \VH . The corresponding
decision problem is called H-Retraction. The computational complexity of
H-Retraction has not yet been classified. Feder et al. [5] determined the com-
plexity of the H-Retraction problem whenever H is a pseudo-forest (a graph
in which every connected component has at most one cycle). They also showed
that H-Retraction is NP-complete if H contains a connected component in
which the reflexive vertices induce a disconnected graph.

We impose a surjective condition on the graph homomorphism. An impor-
tant distinction is whether the surjectivity is with respect to vertices or edges.
Furthermore, the condition can be imposed locally or globally. If we require
a graph homomorphism f to be vertex-surjective when restricted to the open
neighbourhood of every vertex u of G, we say that f is an H-role assignment. The
corresponding decision problem is called H-Role Assignment and its compu-
tational complexity has been fully classified [8]. We refer to the survey of Fiala
and Kratochv́ıl [7] for further details on locally constrained homomorphisms and
from here on only consider global surjectivity.

It has been shown that deciding whether a given graph G allows a surjective
homomorphism to a given graph H is NP-complete even if G and H both belong
to one of the following graph classes: disjoint unions of paths; disjoint unions of
complete graphs; trees; connected cographs; connected proper interval graphs;
and connected split graphs [9]. Hence it is natural, just as before, to fix H which
yields the following problem:

Surjective H-Colouring
Instance: a graph G.
Question: does there exist a surjective homomorphism from G to H?

We emphasise that being vertex-surjective is a different condition than being
edge-surjective. A homomorphism from a graph G to a graph H is called edge-

2



surjective or a compaction if for any edge xy ∈ EH with x 6= y there exists an edge
uv ∈ EG with f(u) = x and f(v) = y. Note that the edge-surjectivity condition
does not hold for any self-loops xx ∈ EH . If f is a compaction from G to H,
we say that G compacts to H. The corresponding decision problem is known as
the H-Compaction problem. A full classification of this problem is still wide
open. However partial results are known, for example when H is a reflexive
cycle, an irreflexive cycle, or a graph on at most four vertices [15–17], or when
G is restricted to some special graph class [18]. Vikas also showed that whenever
H-Retraction is polynomial-time solvable, then so is H-Compaction [16].
Whether the reverse implication holds is not known. A complete complexity
classification of Surjective H-Colouring is also still open. Below we survey
the known results.

We first consider irreflexive target graphs H. The Surjective H-Colouring
problem is NP-complete for every such graph H if H is non-bipartite, as observed
by Golovach et al. [10]. The straightforward reduction is from the correspond-
ing H-Colouring problem, which is NP-complete due to the aforementioned
Hell-Nešetřil dichotomy theorem. However, the complexity classifications of H-
Colouring and Surjective H-Colouring do not coincide: there exist bi-
partite graphs H for which Surjective H-Colouring is NP-complete, for
instance when H is the graph obtained from a 6-vertex cycle to each of which
vertices we add a path of length 3 [1].

We now consider target graphs with at least one reflexive vertex. Unlike the
H-Colouring problem, the presence of a reflexive vertex does not make the
Surjective H-Colouring problem trivial to solve. We call a connected graph
loop-connected if all its reflexive vertices induce a connected subgraph. Golovach,
Paulusma and Song [10] showed that if H is a tree (in this context, a connected
graph with no cycles of length at least 3) then Surjective H-Colouring is
polynomial-time solvable if H is loop-connected and NP-complete otherwise. As
such the following question is natural:

Is Surjective H-Colouring NP-complete for every connected graph H that
is not loop-connected?

The reverse statement is not true (if P6= NP): Surjective H-Colouring is NP-
complete when H is the 4-vertex cycle C∗4 with a self-loop in each of its vertices.
This result has been shown by Martin and Paulusma [13] and independently
by Vikas, as announced in [18]. Recall also that Surjective H-Colouring is
NP-complete if H is irreflexive (and thus loop-connected) and non-bipartite.

It is known that Surjective H-Colouring is polynomial-time solvable
whenever H-Compaction is [1]. Recall that H-Compaction is polynomial-
time solvable whenever H-Retraction is [16]. Hence, for instance, the afore-
mentioned result of Feder, Hell and Huang [4] implies that Surjective H-
Colouring is polynomial-time solvable if H is a bi-arc graph. We also recall
that H-Retraction problem is NP-complete whenever H is a connected graph
that is not loop-connected [5]. Hence, an affirmative answer to the above question
would mean that for these target graphs H the complexities of H-Retraction,
H-Compaction and Surjective H-Colouring coincide.

3



In Figure 1 we display the relationships between the different problems dis-
cussed. In particular, it is a major open problem whether the computational com-
plexities of H-Compaction, H-Retraction and Surjective H-Colouring
coincide for each target graph H. Even showing this for specific cases, such as
the case H = C∗4 , has been proven to be non-trivial. If it is true, it would relate
the Surjective H-Colouring problem to a well-known conjecture of Feder
and Vardi [6], which states that the H-Constraint Satisfaction problem has
a dichotomy when H is some fixed finite target structure and which is equiva-
lent to conjecturing that H-Retraction has a dichotomy [6]. We refer to the
survey of Bodirsky, Kara and Martin [1] for more details on the Surjective
H-Colouring problem from a constraint satisfaction point of view.

List H-Colouring H-Retraction H-Compaction Surj H-Colouring H-Colouring

Fig. 1: Relations between Surjective H-Colouring and its variants. An arrow
from one problem to another indicates that the latter problem is polynomial-time
solvable for a target graph H whenever the former is polynomial-time solvable
for H. Reverse arrows do not hold for the leftmost and rightmost arrows, as
witnessed by the reflexive 4-vertex cycle for the rightmost arrow and by any
reflexive tree that is not a reflexive interval graph for the leftmost arrow (Feder,
Hell and Huang [4] showed that the only reflexive bi-arc graphs are reflexive
interval graphs). It is not known whether the reverse direction holds for the two
middle arrows.

Our Results. We present further progress on the research question of whether
Surjective H-Colouring is NP-complete for every connected graph H that
is not loop-connected. We first consider the case where the target graph H is
a connected graph with exactly two reflexive vertices that are non-adjacent. In
Section 2 we prove that Surjective H-Colouring is indeed NP-complete for
every such target graph H. In the same section we slightly generalize this result
by showing that it holds even if the reflexive vertices of H can be partitioned into
two non-adjacent sets of twin vertices. This enables us to classify in Section 3
the computational complexity of Surjective H-Colouring for every graph H
on at most four vertices, just as Vikas [17] did for the H-Compaction problem.

Future Work. To conjecture a dichotomy of Surjective H-Colouring be-
tween P and NP-complete seems still to be difficult. Our first goal is to prove
that Surjective H-Colouring is NP-complete for every connected graph H
that is not loop-connected. However, doing this via using our current techniques
does not seem straightforward and we may need new hardness reductions. An-
other way forward is to prove polynomial equivalence between the three problems
Surjective H-Colouring, H-Compaction and H-Retraction. However,
completely achieving this goal also seems far from trivial. Our classification for
target graphs H up to four vertices does show such an equivalence for these
cases.

4



2 Two Non-Adjacent Reflexive Vertices

We say that a graph is 2-reflexive if it contains exactly 2 reflexive vertices that
are non-adjacent. In this section we will prove that Surjective H-Colouring
is NP-complete whenever H is connected and 2-reflexive. The problem is readily
seen to be in NP. Our NP-hardness reduction uses similar ingredients as the
reduction of Golovach, Paulusma and Song [10] for proving NP-hardness when H
is a tree that is not loop-connected. There are, however, a number of differences.
For instance, we will reduce from a factor cut problem instead of the less general
matching cut problem used in [10]. We will explain these two problems and prove
NP-hardness for the former one in Section 2.1. Then in Section 2.2 we give our
hardness reduction.

2.1 Factor Cuts

Let G = (VG, EG) be a connected graph. For v ∈ VG and E ⊆ EG, let dE(v)
denote the number of edges of E incident with v. For a partition (V1, V2) of VG,
let EG(V1, V2) denote the set of edges between V1 and V2 in G.

Let i and j be positive integers, i ≤ j. Let (V1, V2) be a partition of VG and
let M = EG(V1, V2). Then (V1, V2) is an (i, j)-factor cut of G if, for all v ∈ V1,
dM (v) ≤ i, and, for all v ∈ V2, dM (v) ≤ j. Two distinct vertices s and t in VG are
(i, j)-factor roots of G if, for each (i, j)-factor cut (V1, V2) of G, s and t belong
to different parts of the partition and, if i < j, s ∈ V1 and t ∈ V2 (of course, if
i = j, we do not require the latter condition as (V2, V1) is also an (i, j)-factor
cut). We note that when no (i, j)-factor cut exists, every pair of vertices is a pair
of (i, j)-factor roots. We define the following decision problem.

(i, j)-Factor Cut with Roots

Instance: a connected graph G with roots s and t.
Question: does G have an (i, j)-factor cut?

We emphasise that the roots are given as part of the input. That is, the problem
asks whether or not an (i, j)-factor cut (V1, V2) exists, but we know already
that if it does, then s and t belong to different parts of the partition. That is,
we actually define (i, j)-Factor Cut with Roots to be a promise problem
in which we assume that if an (i, j)-factor cut exists then it has the property
that s and t belong to different parts of the partition. The promise class may
not itself be polynomially recognisable but one may readily find a subclass of
it that is polynomially recognisable and includes all the instances we need for
NP-hardness. In fact this will become clear when reading our proof but we refer
also to [10] where such a subclass is given for the case (i, j) = (1, 1).

A (1, 1)-factor cut (V1, V2) of G is also known as a matching cut as the
edges EG(V1, V2) form a matching. Similarly (1, 1)-Factor Cut with Roots
is known as Matching Cut with Roots and was proved NP-complete by
Golovach, Paulusma and Song [10] (by making an observation about the proof

5



of the result of Patrignani and Pizzonia [14] that deciding whether or not any
given graph has a matching cut is NP-complete).

We will prove the NP-completeness of (i, j)-Factor Cut with Roots after
first presenting a helpful lemma (a clique is a subset of vertices of G that are
pairwise adjacent to each other).

Lemma 1. Let i, j and k be positive integers where i ≤ j and k > i + j. Let G
be a graph that contains a clique K on k vertices. Then, for every (i, j)-factor
cut (V1, V2) of G, either VK ⊆ V1 or VK ⊆ V2.

Proof. If the lemma is false, then for some (i, j)-factor cut (V1, V2), we can choose
v1 ∈ V1∩VK and v2 ∈ V2∩VK . Let M = EG(V1, V2). Since every vertex in V1∩VK

is linked by an edge of M to v2 and every vertex in V2 ∩VK is linked by an edge
of M to v1, we have dM (v1) + dM (v2) ≥ k > i + j, contradicting the definition
of an (i, j)-factor cut. ut

Theorem 1. Let i and j be positive integers, i ≤ j. Then (i, j)-Factor Cut
with Roots is NP-complete.

Proof. If i = j = 1, then the problem is Matching Cut with Roots which,
as we noted, is known to be NP-complete [10]. We split the remaining cases in
two according to whether or not i = 1. In each case, we construct a polynomial
time reduction from Matching Cut with Roots. In particular, we take an
instance (G, s, t) of Matching Cut with Roots, and construct a graph G′

that is a supergraph of G and show that

(1) (G′, s, t) is an instance of (i, j)-Factor Cut with Roots (that is, if G′

has an (i, j)-factor cut (V ′1 , V
′
2), then s ∈ V1 and t ∈ V2 or, possibly, vice

versa if i = j),
(2) if G′ has an (i, j)-factor cut, then G has a matching cut, and
(3) if G has a matching cut, then G′ has an (i, j)-factor cut.

We note that (1) is an atypical feature of an NP-completeness proof as, unusually
for (i, j)-Factor Cut with Roots, it is not immediate to recognize a problem
instance.

Case 1: i = 1.
Let k = max{(n − 1)(j − 1), 1 + j}. Construct G′ from G by first adding a
complete graph K on k vertices and adding edges from s to every vertex of VK .
Then, for each v ∈ VG \ {s}, add edges from v to j − 1 vertices of K in such a
way that no vertex of VK has more than one neighbour in VG \ {s}.

Let (V ′1 , V
′
2) be a (1, j)-factor cut of G′. The vertices of {s} ∪ VK induce a

clique on 1+k > 1+j vertices. So, by Lemma 1, {s}∪VK ⊆ V ′1 or {s}∪VK ⊆ V ′2 .
Suppose that {s} ∪ VK ⊆ V ′2 . Then VG must contain vertices of both V ′1

(else it would be empty) and V ′2 (at least s). Thus, as G is connected, we can
find a vertex v ∈ V ′1 ∩ VG that has a neighbour in V ′2 ∩ VG. But v also has
j− 1 ≥ 1 neighbours in VK and so has at least 2 neighbours in V ′2 , contradicting
the definition of a (1, j)-factor cut.

6



So we must have that {s} ∪ VK ⊆ V ′1 . Let V1 = V ′1 ∩ VG and V2 = V ′2 be a
partition of VG, and let M = EG(V1, V2) and M ′ = EG(V ′1 , V

′
2) and notice that

M ′ is the union of M and, for each v ∈ V2, the j−1 edges from v to VK . For each
v ∈ V1, dM (v) = dM ′(v) ≤ 1. For each v ∈ V2, dM (v) = dM ′(v)− (j − 1) ≤ 1. So
(V1, V2) is a matching cut of G; this proves (2). And as s ∈ V1, we have, by the
definition of roots, t ∈ V2; this proves (1).

To prove (3), we note that if (V1, V2) is a matching cut of G, then we can
assume that s ∈ V1 and t ∈ V2 (else relabel them for the purpose of construct-
ing G′), and then (V1 ∪ VK , V2) is a (1, j)-factor cut of G′.

Case 2: i ≥ 2.
Let k = max{(n−1)(j−1), i+j}. Construct G′ from G by first adding a complete
graph Ks on k vertices and adding edges from s to every vertex of VKs , and
then adding a complete graph Kt on k vertices and adding edges from t to every
vertex of VKt . Then, for each v ∈ VG \ {s}, add edges from v to j − 1 vertices of
Ks in such a way that no vertex of VKs has more than one neighbour in VG\{s}.
Afterwards, for each v ∈ VG \ {t}, add edges from v to i − 1 vertices of Kt in
such a way that no vertex of VKt has more than one neighbour in VG \ {t}.

Let (V ′1 , V
′
2) be an (i, j)-factor cut of G′. The vertices of {s} ∪ VKs induce a

clique on at least 1 + k > i + j vertices. So, by Lemma 1, {s} ∪ VKs ⊆ V ′1 or
{s} ∪ VKs ⊆ V ′2 . Similarly {t} ∪ VKt ⊆ V ′1 or {t} ∪ VKt ⊆ V ′2 .

Suppose that {s}∪VKs and {t}∪VKt are both subsets of V ′1 . Then VG must
contain vertices of both V ′1 (at least s and t) and V ′2 (else it would be empty).
Thus, as G is connected, we can find a vertex v ∈ V ′2 ∩ VG that has a neighbour
in V ′1 ∩ VG. But v also has j − 1 neighbours in VKs and i − 1 neighbours in
VKt and so has at least 1 + (i − 1) + (j − 1) = i + j − 1 > j ≥ i neighbours
in V ′2 , contradicting the definition of an (i, j)-factor. By an analagous argument
{s} ∪ VKs and {t} ∪ VKt cannot both be subsets of V ′2 .

Suppose that i < j and {s} ∪ VKs ⊆ V ′2 . As G is connected and VG contains
vertices of both V ′1 and V ′2 , we can find a vertex v ∈ V ′1∩VG that has a neighbour
in V ′2 ∩VG. But v also has j− 1 > i− 1 neighbours in VKs and so has more than
i neighbours in V ′2 , contradicting the definition of a (i, j)-factor.

Thus we have that {s} ∪ VKs and {t} ∪ VKt are subsets of separate parts
and, moreover, either {s} ∪ VKs ⊆ V ′1 or i = j. Thus (1) is proved, and we have,
in either case, that each vertex in V ′1 ∩ VG is joined by i − 1 edges to vertices
in V ′2 \ VG, and each vertex in V ′2 ∩ VG is joined by j − 1 edges to vertices in
V ′1 \ VG. Therefore each vertex in V ′1 ∩ VG is joined to at most one vertex in
V ′2 ∩ VG, and each vertex in V ′2 ∩ VG is joined to at most one vertex in V ′1 ∩ VG.
Thus (V ′1 ∩ VG, V

′
2 ∩ VG) is a matching cut of G. This proves (2).

To prove (3), we note that if (V1, V2) is a matching cut of G, then we can
assume that s ∈ V1 and t ∈ V2 (else relabel them for the purpose of construct-
ing G′), and then (V1 ∪ VKs , V2 ∪ VKt) is an (i, j)-factor cut of G′. ut

2.2 The Hardness Reduction

Let H be a connected 2-reflexive target graph. Let p and q be the two (non-
adjacent) reflexive vertices of H. The length of a path is its number of edges.

7



The distance between two vertices u and v in a graph G is the length of a
shortest path between them and is denoted distG(u, v). We define two induced
subgraphs H1 and H2 of H whose vertex sets partition VH . First H1 contains
those vertices of H that are closer to p than to q; and H2 contains those ver-
tices that are at least as close to q as to p (so contains any vertex equidistant
to p and q). That is, VH1

= {v ∈ VH : distH(v, p) < distH(v, q)} and VH1
=

{v ∈ VH : distH(v, q) ≤ distH(v, p)}. See Figure 2 for an example. The following
lemma follows immediately from our assumption that H is connected.

Lemma 2. Both H1 and H2 are connected. Moreover, distH1
(x, p) = distH(x, p)

for every x ∈ VH1
and distH2

(x, q) = distH(x, q) for every x ∈ VH2
.

p q

H1

H2

Fig. 2: An example of the construction of graphs H1 and H2 from a connected
2-reflexive target graph H with ω = 3.

Let ω denote the size of a largest clique in H. From graphs H1 and H2 we
construct graphs F1 and F2, respectively, in the following way:

1. for each x /∈ {p, q}, create a vertex t1x;
2. for p, create a clique on vertices t1p, . . . , t

ω
p ;

3. for q, create a clique on vertices t1q, . . . , t
ω
q ;

4. for i = 1, 2, add an edge in Fi between any two vertices thx and tjy if and only
if xy is an edge of EHi

.

Note that F1 is the graph obtained by taking H1 and replacing p by a clique of
size ω. Similarly, F2 is the graph obtained by taking H2 and replacing q by a
clique of size ω. We say that t1p, . . . , t

ω
p are the roots of F1 and that t1q, . . . , t

ω
q are

the roots of F2. Figure 3 shows an example of the graphs F1 and F2 obtained
from the graph H in Figure 2.

Let ` = distH(p, q) ≥ 2 denote the distance between p and q. Let Np be the
set of neighbours of p that are each on some shortest path (thus of length `) from
p to q in H. Let rp be the size of a largest clique in Np. We define rq similarly.
We will reduce from (rp, rq)-Factor Cut with Roots, which is NP-complete
due to Theorem 1. Hence, consider an instance (G, s, t) of (rp, rq)-Factor Cut
with Roots, where G is a connected graph and s and t are (rp, rq)-factor roots
of G. Recall that we assume that G is irreflexive.

8



Fig. 3: The graphs F1 (left) and F2 (right) resulting from the graph H in Figure 2.

We say that we identify two vertices u and v of a graph when we remove them
from the graph and replace them with a single vertex that we make adjacent to
every vertex that was adjacent to u or v. From F1, F2, and G we construct a
new graph G′ as follows:

1. For each edge e = uv ∈ EG, we do as follows. We create four vertices, gru,e,

gbu,e, g
r
v,e and gbv,e. We also create two paths P 1

e and P 2
e , each of length `−2,

between gru,e and gbv,e, and between grv,e and gbu,e, respectively. If ` = 2 we

identify gru,e and gbv,e and grv,e and gbu,e to get paths of length 0.
2. For each vertex u ∈ VG, we do as follows. First we construct a clique Cu

on ω + 1 vertices. We denote these vertices by g1u, . . . , g
ω+1
u . We then make

every vertex in Cu adjacent to both gru,e and gbu,e for every edge e incident

to u; we call gru,e and gbu,e a red and blue neighbour of Cu, respectively; if

` = 2, then the vertex obtained by identifying two vertices gru,e and gbv,e,

or grv,e and gbu,e is simultaneously a red neighbour of one clique and a blue
neighbour of another one. Finally, for every two edges e and e′ incident to
u, we make gru,e and gru,e′ adjacent, that is, the set of red neighbours of Cu

form a clique, whereas the set of blue neighbours form an independent set.
3. We add F1 by identifying tip and gis for i = 1, . . . , ω + 1, and we add F2 by

identifying tiq and git for i = 1, . . . , ω + 1. We denote the vertices in F1 and

F2 in G′ by their label tix in F1 or F2.

See Figure 4 for an example of a graph G′. The next lemma describes a straight-

s

t

(a) An example of a graph G with a
(1, 2)-factor cut with roots s and t.

F2

F1

(b) The corresponding graph G′ where H is a
2-reflexive target graph with ` = 3 and ω = 3.

Fig. 4: An example of a graph G and the corresponding graph G′.

forward property of graph homomorphisms that will prove useful.

9



Lemma 3. If there exists a homomorphism h : G′ → H then distG′(u, v) ≥
distH (h(u), h(v)) for every pair of vertices u, v ∈ VG′ .

We now prove the key property of our construction.

Lemma 4. For every homomorphism h from G′ to H, there exists at least one
clique Ca with p ∈ h(Ca) and at least one clique Cb with q ∈ h(Cb).

Proof. Since for each u ∈ VG, every clique Cu in G′ is of size at least ω + 1, we
find that h must map at least two of its vertices to a reflexive vertex, so either
to p or q.

We prove the lemma by contradiction. We will assume that h does not map
any vertex of any Cu to q, thus p ∈ h(Cu) for all u ∈ VG. We will note later that
if instead q ∈ h(Cu) for all u ∈ VG we can obtain a contradiction in the same
way.

We consider two vertices tip ∈ F1 and tjq ∈ F2 such that h(tip) = h(tjq) = p.
Without loss of generality let i = j = 1. We shall refer to these vertices as
tp and tq respectively. We now consider a vertex v ∈ VF1

∪VF2
. By Lemma 3,

distG′(v, tp) ≥ distH(h(v), p) and distG′(v, tq) ≥ distH(h(v), p). In other words:

min (distG′(v, tp),distG′(v, tq)) ≥ distH(h(v), p).

In fact by applying Lemma 3 we can generalise this further to any vertex mapped
to p by h:

min
w∈h−1(p)

(distG′(v, w)) ≥ distH(h(v), p). (1)

For every v ∈ VG′ we define a value D(v) as follows:

D(v) =

distF1(v, tp) if v ∈ F1

distF2(v, tq) if v ∈ F2

b`/2c otherwise

Claim 1 D(v) ≥ minw∈h−1(p) (distG′(v, w)) ≥ distH(h(v), p) for all v ∈ VG′ .

We prove Claim 1 by showing that D(v) ≥ minw∈h−1(p) (distG′(v, w)), which
suffices due to (1). First suppose v ∈ VF1

∪ VF2
. We may assume, without

loss of generality, that v ∈ VF2
. So D(v) = distF2

(v, tq) = distG′(v, tq) ≥
minw∈h−1(p) (distG′(v, w)), as tq ∈ h−1(p).

Now suppose v 6∈ VF1
∪ VF2

. Then v either belongs to a clique Cu or is
a vertex of a path P 1

e or P 2
e between two cliques. If v belongs to a clique or

is an end-vertex of such a path, then v is either in h−1(p) or adjacent to a
vertex in h−1(p) (since at least one vertex in Cu maps to p). Hence D(v) =
b`/2c ≥ 1 ≥ minw∈h−1(p) (distG′(v, w)). Finally, suppose v is an inner vertex of
a path P 1

e or P 2
e . By definition, such a path has length `− 2. Then v is at most

distance b(`− 2)/2c from a vertex in a clique, which we know is either in h−1(p)
or adjacent to a vertex in h−1(p). Hence D(v) = b`/2c = b(` − 2)/2c + 1 ≥
minw∈h−1(p) (distG′(v, w)). This proves Claim 1.

10



Claim 2 If there exists a surjective homomorphism from G′ to H, then for any
integer d ≥ `:∣∣{t1w ∈ VF1

∪VF2
: D(t1w) ≥ d

}∣∣ ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

We prove Claim 2 as follows. Using the fact that with a surjective homomorphism
every vertex must be mapped to, we see from Lemma 3 that if there are n vertices
in H which are at a distance d from p, there must be at least n vertices in G′

that are at distance at least d from every vertex that maps to p. This means we
can say for any distance d ≥ 0:

|{v ∈ VG′ : min
w∈h−1(p)

(distG′(v, w)) ≥ d}| ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

Combining this inequality with Claim 1 yields, for every distance d ≥ 0:

|{v ∈ VG′ : D(v) ≥ d}| ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

Now let d ≥ `. Then we only have to consider vertices in F1∪F2. Hence, for every
d ≥ `: ∣∣{tiw ∈ VF1

∪VF2
: D(tiw) ≥ d

}∣∣ ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

By construction, for any tiw with i > 1 we have that w ∈ {s, t} and thus D(tiw) ≤
1 < ` ≤ d. Therefore, no vertex tiw with i 6= 1 is involved in the equation above,
so we can write:∣∣{t1w ∈ VF1

∪VF2
: D(t1w) ≥ d

}∣∣ ≥ |{w ∈ VH : distH(w, p) ≥ d}| .

Hence Claim 2 is proven.

We first present the intuition behind the final part of the proof. Consider the
graphs F1, F2 and H in the example shown in Figure 5. We recall that every
vertex v (other than p or q) has a single corresponding vertex tv in F1 or F2.
We may naturally want to map the vertices of F1 onto the vertices of H1, which
is possible by definition of F1. However, when we try to map the vertices of F2

onto the vertices of H2, with h(tiq) = p (for some i), we will prove that there is at
least one vertex q′ in H2 which is further from p in H than it is from q and that
cannot be mapped to and thus violates the surjectivity constraint. In Figure 5
this vertex, which will play a special role in our proof, is shown in red. In the
same figure we also see that there are ten vertices in H with distH(p, v) ≥ 3 but
only nine vertices in F1 ∪ F2 with D(tv) ≥ 3 which could be mapped to these
vertices. This contradicts Claim 2.

We now formally prove that our initial assumption that p ∈ h(Cu) for all u ∈
VG contradicts Claim 2. For every vertex x in H1 there is a corresponding vertex
t1x such that D(t1x) = distF1

(t1x, tp) = distH1
(x, p), where the latter equality

follows from the construction of F1. From Lemma 2 we find that distH1
(x, p) =

distH(x, p) for every x ∈ VH1 . Hence, for all d ≥ 0:

11



p

q

q′

distH(p, v) = 1

distH(p, v) = 2

distH(p, v) = 3

distH(p, v) = 4

distH(p, v) = 5

H

t1p t1qt2p t2q

tq′
D(tv) = 1

D(tv) = 2

D(tv) = 3

D(tv) = 4

D(tv) = 5

F1 F2

Fig. 5: An example graph H with corresponding graphs F1 and F2. Vertices in H
equidistant from p are plotted at the same vertical position and likewise vertices
tv ∈ F1 and tw ∈ F2 with D(tv) = D(tw) are plotted at the same vertical
position. The vertices q′ ∈ H and corresponding tq′ ∈ F2 are highlighted.

∣∣{t1x ∈ VF1
: D(t1x) ≥ d

}∣∣ = |{x ∈ VH1
: distH(x, p) ≥ d}| . (2)

Now let x ∈ VH2
. Using the same argument, we see thatD(t1x) = distH(x, q) ≤

distH(x, p) by definition. Note that, had we instead supposed that it was q to
which everything mapped, we would instead have a strict inequality. As it turns
out, we only need the weaker inequality.

We now look for a vertex q′ in H2, such that q′ is as far from p as possible,
subject to the condition that distH(q′, q) < distH(q′, p). Let j = distH(q′, p). We
see that for any vertex x in H2 such that distH(q′, p) > j, it is the case that
distH(x, q) = distH(x, p). Note that there may be no vertices with distH(x, q) =
distH(x, p) in which case q′ is simply the farthest vertex from p within H2. We
also observe that q′ = q is possible. So j is well defined and, in fact, we have
that j ≥ `.

We now consider the mapping of vertices in H2 at a distance d ≥ ` from p.
We recall that D(t1x) = distH(x, q) and that for a vertex of distance at least j+1
from q, it holds that distH(x, q) = distH(x, p). Combining this with equation (2)
yields that:∣∣{t1x ∈ VF1

∪VF2
: D(t1x) > j

}∣∣ = |{x ∈ VH : distH(x, p) > j}| . (3)

However, for d = j we find that, in addition to vertices in H2 equidistant
from p and q, there is at least one vertex that is closer to q than p, namely q′, for
which it holds that D(t1q′) = distH(q′, q) < distH(q′, p) = j. It therefore follows

that there are fewer vertices t1x with D(t1x) = j than there are vertices x with
distH(x, p) = j and hence we see that:

12



∣∣{t1x ∈ VF1
∪VF2

: D(t1x) = j
}∣∣ < |{x ∈ VH : distH(x, p) = j}| . (4)

By combining equations (3) and (4), we see that:∣∣{t1x ∈ VF1
∪VF2

: D(t1x) ≥ j
}∣∣ < |{x ∈ VH : distH(x, p) ≥ j}| .

As j ≥ `, this contradicts Claim 2 and concludes the proof of Lemma 4. ut

We are now ready to state our main result.

Theorem 2. For every connected 2-reflexive graph H, the Surjective H-
Colouring problem is NP-complete.

Proof. Let H be a connected 2-reflexive graph with reflexive vertices p and q at
distance ` ≥ 2 from each other. Let ω be the size of a largest clique in H. We
define the graphs H1, H2, F1 and F2 and values rp, rq as above. Recall that the
problem is readily seen to be in NP and that we reduce from (rp, rq)-Factor
Cut with Roots. From F1, F2 and an instance (G, s, t) of the latter problem
we construct the graph G′. We claim that G has an (rp, rq)-factor cut (Vi, Vj) if
and only if there exists a surjective homomorphism h from G′ to H.

First suppose that G has an (rp, rq)-factor cut (V1, V2). By definition, s ∈ V1

and t ∈ V2. We define a homomorphism h as follows. For every x ∈ VF1
∪ VF2

,
we let h map t1x to x. This shows that h is surjective. It remains to define h on
the other vertices. For every u ∈ VG, let h map all of Cu to p if u is in V1 and
let h map all of Cu to q if u is in V2 (note that this is consistent with how we
defined h so far). For each uv ∈ EG with u, v ∈ V1, we map the vertices of the
paths P 1

e and P 2
e to p. For each uv ∈ EG with u, v ∈ V2, we map the vertices of

the paths P 1
e and P 2

e to q. We are left to show that the vertices of the remaining
paths P 1

e and P 2
e can be mapped to appropriate vertices of H.

Note that the red neighbours of each Cu form a clique (whereas all blue
vertices of each Cu form an independent set and inner vertices of paths P 1

e and
P 2
e have degree 2). However, as (V1, V2) is an (rp, rq)-factor cut of G, all but at

most rp vertices of these red cliques have been mapped to p already if u ∈ V1

and all but at most rq vertices have been mapped to q already if u ∈ V2. By
definition of rp and rq, this means that we can map the vertices of the paths P 1

e

and P 2
e with e = uv for u ∈ V1 and v ∈ V2 to vertices of appropriate shortest

paths between p and q in H, so that h is a homomorphism from G′ to H (recall
that we already showed surjectivity).

Now suppose that there exists a surjective homomorphism h from G′ to H.
Since H contains no cliques larger than ω, we find that h maps each clique Cu

(which has size ω+1) to a clique in H that contains a reflexive vertex. We define
V1 = {v ∈ VG : p ∈ h(Cv)} and V2 = VG \ V1 = {v ∈ VG : q ∈ h(Cv)}. Lemma 4
tells us that V1 6= ∅ and V2 6= ∅. We define M = {uv ∈ EG : u ∈ V1, v ∈ V2}.

Let e = uv be an arbitrary edge in M . By definition, h maps all of Cu to
a clique containing p and all of Cv to a clique containing q. Hence, the vertices
of the two paths P 1

e and P 2
e must be mapped to the vertices of a shortest path

between p and q. At most rp red neighbours of every Cu with u ∈ V1 can be

13



mapped to a vertex other than p. This is because these red neighbours form a
clique. As such they must be mapped onto vertices that form a clique in H. As
such vertices lie on a shortest path from p to q, the clique in H has size at most
rp. Similarly, at most rq red neighbours of every Cu with u ∈ V2 can be mapped
to a vertex other than q. As such, (V1, V2) is an (rp, rq)-factor cut in G. ut

A Small Extension. Two vertices u and v in a graph G are true twins if they
are adjacent to each other and share the same neighbours in VG \ {u, v}. Let
H(i,j) be a graph obtained from a connected 2-reflexive graph H with reflexive
vertices p and q after introducing i reflexive true twins of p and j reflexive
true twins of q. In the graph G′ we increase the cliques Cu to size ω + 1 +
max(i, j). We call the resulting graph G′′. Then it is readily seen that there
exists a surjective homomorphism from G′ to H if and only if there exists a
surjective homomorphism from G′′ to H(i,j).

Theorem 3. For every connected 2-reflexive graph H and integers i, j ≥ 0,
Surjective H(i,j)-Homomorphism is NP-complete.

3 Target Graphs Of At Most Four Vertices

In this section we classify the computational complexity of Surjective H-
Colouring for every target graph H with at most four vertices. We require a
number of lemmas. The first lemma is proved for compaction and not vertex-
surjection. However, the only property of compaction used is vertex-surjection
and so it is easy to see it holds in this modified form. The second lemma is also
displayed in Figure 1.

Lemma 5 ([17]). Let H be a graph with connected components H1, . . . ,Hs.
If Surjective Hi-Colouring is NP-complete for some i, then Surjective
H-Colouring is also NP-complete.

Lemma 6 ([1]). For every graph H, if H-Compaction is polynomial-time
solvable, then Surjective H-Colouring is polynomial-time solvable.

We also need two results of Golovach, Paulusma and Song. Recall that in our
context a tree is a connected graph with no cycles of length at least 3.

Lemma 7 ([10]). Let H be an irreflexive non-bipartite graph. Then Surjec-
tive H-Colouring is NP-complete.

Lemma 8 ([10]). Let H be a tree. Then Surjective H-Colouring is solvable
in polynomial time if H is loop-connected and NP-complete otherwise.

Recall that C∗4 denotes the reflexive cycle on four vertices (see also Figure 6).

Lemma 9 ([13]). The Surjective C∗4 -Colouring problem is NP-complete.

14



Fig. 6: The graphs C∗4 , D and paw∗.

We let D denote the irreflexive diamond, that is, the irreflexive complete
graph on four vertices minus an edge. The (irreflexive) paw is the graph obtained
from the triangle after attaching a pendant vertex to one of the vertices of the
triangle, that is, the graph with vertices x1, x2, y, z and edges x1x2, x1y, x2y,
yz. We let paw∗ denote the graph obtained from the paw after adding a loop to
its vertex of degree 1 (that is, following the above notation, the loop zz). Both
D and paw∗ are displayed in Figure 6 as well.

(a) P (b) P (c) P (d) NP-complete

(e) P (f) NP-complete

Fig. 7: All cycles H on four vertices.

We are now ready to state our main result.

Theorem 4. Let H be a graph with |VH | ≤ 4. Then Surjective H-Colouring
is NP-complete if some connected component of H is not loop-connected or is
an irreflexive complete graph on at least three vertices, or H ∈ {C∗4 , D, paw∗}.
Otherwise Surjective H-Colouring is polynomial-time solvable.

Proof. Let H be a graph on at most four vertices. If H is a loop-connected
forest (that is, every component of H is loop-connected) or H has a dominating

15



(a) NP-complete (b) P (c) P (d) P

(e) P

Fig. 8: All complete graphs H on four vertices.

reflexive vertex, then Vikas [17] showed that H-Compaction is in P. Hence,
Surjective H-Colouring is in P by Lemma 6. If H contains a component that
is a non-loop-connected tree, then Surjective H-Colouring is NP-complete
by Lemmas 5 and 8. If H is an irreflexive non-bipartite graph, then Surjective
H-Colouring is NP-complete by Lemma 7.

Note that the above cases cover all graphs H on at most three vertices, all
disconnected graphs H on four vertices and all trees H on four vertices. The only
two graphs H on at most three vertices for which Surjective H-Colouring
is NP-complete are the irreflexive cycle on three vertices and the 3-vertex path
in which the two end-vertices are reflexive. The only disconnected graphs H on
four vertices for which Surjective H-Colouring is NP-complete are those
that contain these two graphs as connected components. The only trees H on
four vertices for which Surjective H-Colouring is NP-complete are those
that are not loop-connected. Hence the theorem holds for every graph H on at
most three vertices, for every disconnected graph H on four vertices and for
every tree H on four vertices.

From now on we assume that H is a connected graph on four vertices that
is not a tree. Then H is either the cycle on four vertices, the complete graph on
four vertices, the diamond or the paw. We consider each of these cases separately.

Suppose H is the cycle on four vertices. There are six cases to consider
(see also Figure 7). If H is reflexive, then Surjective H-Colouring is NP-
complete by Lemma 9. If H is not loop-connected, then H is 2-reflexive, and thus
Surjective H-Colouring is NP-complete by Theorem 2. In the remaining
four cases H is loop-connected. For each of these target graphs, Vikas [17] showed
that H-Compaction is in P. Hence, Surjective H-Colouring is in P by
Lemma 6. We find that the theorem holds when H is a cycle on four vertices.

16



Suppose H is the complete graph on four vertices. There are five cases to
consider (see also Figure 8). If H is irreflexive, then Surjective H-Colouring
is NP-complete by Lemma 7 (as H is non-bipartite as well). For each of the
other four target graphs, Vikas [17] showed that H-Compaction is in P. Hence,
Surjective H-Colouring is in P by Lemma 6. We find that the theorem holds
when H is the complete graph on four vertices.

(a) NP-complete (b) P (c) P (d) P

(e) P (f) NP-complete (g) P (h) P

(i) P

Fig. 9: All diamonds H on four vertices.

Suppose H is the diamond. There are nine cases to consider (see also Fig-
ure 9). If H is irreflexive, then Surjective H-Colouring is NP-complete by
Lemma 7 (as H is non-bipartite as well). If H is not loop-connected, then H is
2-reflexive, and thus Surjective H-Colouring is NP-complete by Theorem 2.
For the remaining seven target graphs, Vikas [17] showed that H-Compaction
is in P. Hence, Surjective H-Colouring is in P by Lemma 6. We find that
the theorem holds when H is the diamond.

Suppose H is the paw with vertices x1, x2, y, z and edges x1x2, x1y, x2y and
yz and possibly one or more loops. There are twelve cases to consider (see also
Figure 10). If H is irreflexive, then Surjective H-Colouring is NP-complete
by Lemma 7 (as H is non-bipartite as well). If H is not loop-connected, then
the set of reflexive vertices is formed by one or two vertices from {x1, x2} and

17



(a) NP-complete (b) P (c) NP-complete (d) P

(e) P (f) P (g) P (h) NP-complete

(i) P (j) P (k) NP-complete (l) P

Fig. 10: All paws H on four vertices.

z. Then Surjective H-Colouring is NP-complete by Theorem 3. We are left
with nine cases. Vikas [17] showed that H-Compaction is in P for all of these
cases except for the case where z is the only reflexive vertex. Hence, for eight of
these nine cases, Surjective H-Colouring is in P by Lemma 6.

We are left to consider the case in which z is the (only) reflexive vertex.
Recall that we denote this target by paw∗. Theorem 3.5 of [17] proves that paw∗-
Compaction is NP-complete using a reduction from C3-Retraction (which
is NP-complete), but we will argue the proof works also for Surjective paw∗-
Colouring. It is shown that (i) a graph G retracts to C3 if and only if a
certain graph G′ retracts to paw∗ if and only if (iii) G′ compacts to paw∗. The
salient part of the proof is Lemma 3.5.2 of [17], in which it is argued that (ii)
and (iii) are equivalent. We note that if a graph retracts to another graph,
then there exists a surjective homomorphism from the first graph to the second
graph. Hence, we need to verify only whether G′ retracts to paw∗ should there
exist a surjective homomorphism from G′ to paw∗. In the proof of Lemma 3.5.2
of [17], the properties of compaction are only used three times. The first two are
paragraph 2, line 2 and paragraph 7, line 4 (in the proof of Lemma 3.5.2). The
only property used of compaction on these two occasions is vertex surjection.
Finally, compaction is alluded to in the final paragraph of the proof, but here any

18



homomorphism would have the desired property. Thus, Vikas [17] has actually
proved that G′ retracts to paw∗ if and only if G′ has a surjective homomorphism
to paw∗, and it follows that Surjective paw∗-Colouring is NP-complete.

From the above we conclude that the theorem holds in all cases when H is
the paw. This completes the proof of Theorem 4. ut

From the proof of Theorem 4 it follows that whenever H is a target graph
on at most four vertices for which H-Compaction is polynomial-time solvable,
then so is Surjective H-Colouring. Vikas [17] also showed that for every tar-
get graph H on at most four vertices for which Surjective H-Colouring is
NP-complete, H-Compaction is NP-complete. Hence, Theorem 4 corresponds
to Vikas’ complexity classification of H-Compaction for targets graphs H of
at most four vertices. We also refer to Vikas [17] for the complexity equiva-
lence of H-Compaction and H-Retraction. Thus, we obtained the following
corollary.

Corollary 1. Let H be a graph on at most four vertices. Then the three prob-
lems Surjective H-Colouring, H-Compaction and H-Retraction are
polynomially equivalent.

References

1. M. Bodirsky, J. Kára and B. Martin, The complexity of surjective homomorphism
problems – a survey, Discrete Applied Mathematics 160 (2012) 1680–1690.

2. T. Feder and P. Hell, List homomorphisms to reflexive graphs, Journal of Combi-
natorial Theory, Series B 72 (1998) 236-250.

3. T. Feder, P. Hell and J. Huang, List homomorphisms and circular arc graphs,
Combinatorica 19 (1999) 487-505.

4. T. Feder, P. Hell and J. Huang, Bi-arc graphs and the complexity of list homo-
morphisms, Journal of Graph Theory 42 (2003) 61-80.

5. T. Feder, P. Hell, P. Jonsson, A. Krokhin and G. Nordh, Retractions to pseudo-
forests, SIAM Journal on Discrete Mathematics 24 (2010) 101-112.

6. T. Feder and M. Y. Vardi, The computational structure of monotone monadic
SNP and constraint satisfaction: a study through datalog and group theory, SIAM
Journal on Computing 28 (1998) 57–104.

7. J. Fiala and J. Kratochv́ıl, Locally constrained graph homomorphisms – structure,
complexity, and applications, Computer Science Review 2 (2008) 97-111.

8. J. Fiala, and D. Paulusma, A complete complexity classification of the role assign-
ment problem, Theoretical Computer Science 349 (2005) 67-81.

9. P. A. Golovach, B. Lidický, B. Martin and D. Paulusma, Finding vertex-surjective
graph homomorphisms, Acta Informatica 49 (2012) 381-394.

10. P.A. Golovach, D. Paulusma and J. Song, Computing vertex-surjective homomor-
phisms to partially reflexive trees, Theoretical Computer Science 457 (2012) 86-100.

11. P. Hell and J. Nešetřil, On the complexity of H-colouring, Journal of Combinatorial
Theory, Series B 48 (1990) 92–110.

12. P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press,
2004.

19



13. B. Martin and D. Paulusma, The computational complexity of disconnected cut
and 2K2-partition. Journal of Combinatorial Theory. Series B 111 (2015) 17-37.

14. M. Patrignani and M. Pizzonia, The complexity of the matching-cut problem, Proc.
WG 2001, LNCS 2204 (2001) 284–295.

15. N. Vikas, Computational complexity of compaction to reflexive cycles, SIAM Jour-
nal on Computing 32 (2002) 253-280.

16. N. Vikas, Compaction, Retraction, and Constraint Satisfaction, SIAM Journal on
Computing 33 (2004) 761-782.

17. N. Vikas, A complete and equal computational complexity classification of com-
paction and retraction to all graphs with at most four vertices and some general
results, Journal of Computer and System Sciences 71 (2005) 406-439.

18. N. Vikas, Algorithms for partition of some class of graphs under compaction and
vertex-compaction, Algorithmica 67 (2013) 180-206.

20


