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Abstract
Sets of desirable gambles provide a general representation of uncertainty which can handle partial
information in a more robust way than precise probabilities. Here we study the effectiveness of
linear programming algorithms for determining whether or not a given set of desirable gambles
avoids sure loss (i.e. is consistent). We also suggest improvements to these algorithms specifically
for checking avoiding sure loss. By exploiting the structure of the problem, (i) we slightly reduce
its dimension, (ii) we propose an extra stopping criterion based on its degenerate structure, and (iii)
we show that one can directly calculate feasible starting points in various cases, therefore reducing
the effort required in the presolve phase of some of these algorithms. To assess our results, we
compare the impact of these improvements on the simplex method and two interior point methods
(affine scaling and primal-dual) on randomly generated sets of desirable gambles that either avoid
or do not avoid sure loss. We find that the simplex method is outperformed by the primal-dual and
affine scaling methods, except for very small problems. We also find that using our starting feasible
point and extra stopping criterion considerably improves the performance of the primal-dual and
affine scaling methods.
Keywords: avoiding sure loss; linear programming; benchmarking; simplex method; affine scal-
ing method; primal-dual method; algorithm.

1. Introduction

Consider a subject modelling uncertainty about an experiment. One way of doing so, is by using
gambles. A gamble is a (for instance, monetary) transaction that depends on the outcome of the
experiment. To express her beliefs about the outcomes of the experiment, the subject can simply
state which gambles she would accept, instead of directly specifying probabilities for the outcomes.
A set of gambles that are considered acceptable to a subject is called a set of desirable gambles.

Williams (1975, 2007) was the first to give a full axiomatic treatment for sets of desirable gam-
bles, and formalized a consistency principle called avoiding sure loss. This principle dictates that
no combination of acceptable gambles should lead to a certain loss. Walley (1991, p.175) proposed
a linear programming problem for checking avoiding sure loss, which was further studied and ex-
tended by various authors (Walley et al., 2004; Quaeghebeur, 2014). These linear programming
problems can be solved by methods such as the primal-dual, simplex and affine scaling methods.

In the literature, to the best of our knowledge, there has been little to no discussion about which
algorithm should be used to solve linear programming problems for avoiding sure loss. Walley
(1991, p. 511) suggested that Karmarkar’s method may be useful for solving large problems.

The main contribution of this paper is a comparative study and analysis of how we can solve
linear programs for avoiding sure loss most effectively, by looking at the three methods mentioned
above. We exploit the structure of this program and also the interactions between the structure
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and the details of the algorithms. Specifically, we slightly reduce its dimension. We also propose an
extra stopping criterion based on its degenerate structure. Finally, we show that one can directly cal-
culate feasible starting points in various cases, therefore reducing the effort required in the presolve
phase of some of these algorithms. Through a simulation study, we compare the impact of these im-
provements in the simplex method and two interior point methods (affine scaling and primal-dual)
on randomly generated sets of desirable gambles that either avoid or do not avoid sure loss.

This paper is organised as follows. After reviewing linear programming problems and avoiding
sure loss in Section 2, we give a linear programming problem and its dual for checking avoiding
sure loss in Section 3. In Sections 4 to 6, we give a brief outline of primal-dual, simplex and affine
scaling methods. We also study the different benefits of these three methods with respect to checking
for avoiding sure loss. Algorithms for generating random sets of desirable gambles are outlined in
Section 7 followed by a comparison of the efficiency of the methods. Section 8 concludes the paper.

2. Preliminaries

2.1 Linear programming problems

A linear programming problem is a problem of optimising a linear function (objective function) sub-
ject to constraints of linear equalities and linear inequalities. Because maximising a linear function
is equivalent to minimising that function with a sign change, and because any linear inequality can
be rewritten as a linear equality by adding non-negative slack variables, we have that every linear
programming problem can be formulated as follows:

min cᵀx subject to Ax = b and x ≥ 0, (P)

where A ∈ Rm×n with rank m and m ≤ n. We call Eq. (P) the primal problem. The dual of Eq. (P)
is:

maxbᵀy subject to Aᵀy + t = c and t ≥ 0 (y free). (D)

We can solve either the primal or the dual problem because they have the same solution.
A solution that satisfies all constraints is called a feasible solution. An optimal solution is a

feasible solution that achieves the optimal value of the objective function. A basic feasible solution
is a feasible solution with at most m non-zero variables. It can be shown that every basic feasible
solution is an extreme point, and vice versa (Fang and Puthenpura, 1993).

A linear programming problem is degenerate when it has basic feasible solutions in which fewer
than m variables are non-zero. As we shall see, one way to check avoiding sure loss is by solving a
degenerate linear programming problem where b = 0. In that case, the following lemma is helpful.
It is a generalised version of an exercise in Vanderbei (2001, p. 42, exercise 3.4).

Lemma 1 The linear programming problem min cᵀx subject to Ax ≥ 0 either has an optimal
value that is zero, or is unbounded.

This lemma is very useful since it tells us that as soon as we find a feasible solution with a
negative objective function value, then the problem is unbounded.

2.2 Avoiding sure loss

Throughout this paper, let Ω be a finite set of uncertain outcomes. A gamble is a bounded real-
valued function on Ω. We think of a gamble as an uncertain reward expressed in units of utility.

2



EFFICIENT ALGORITHMS FOR CHECKING AVOIDING SURE LOSS

Let D be a finite set of gambles that a subject is willing to accept; we refer to D as the subject’s
set of desirable gambles. The desirability axioms state that a non-negative combination of desirable
gambles should not produce a sure loss (Walley, 1991, p.151). In that case, we say that D avoids
sure loss. Formally:

Definition 2 (Walley, 1991, p.151) The set D = {f1, . . . , fn} is said to avoid sure loss if for all
n ∈ N, λ1, ..., λn ≥ 0 and f1, ..., fn ∈ D:

max
ω∈Ω

(
n∑

i=1

λifi(ω)

)
≥ 0. (1)

3. Linear programs for checking avoiding sure loss

In this section, we study linear programming problems to check avoiding sure loss. The following
linear programming problem is given by Walley (1991, p.175):

Theorem 3 (Walley, 1991, p.175) The set D = {f1, . . . , fn} avoids sure loss if and only if the
optimal value of the following linear programming problem is zero:

(A1) min α (2)

subject to ∀ω ∈ Ω :
n∑

i=1

λifi(ω) ≤ α (3)

where λi ≥ 0. (4)

We propose an alternative linear programming problem, which is slightly smaller in size, and which
has only non-negative variables:

Theorem 4 (Nakharutai, 2015, p.32) Choose any ω0 ∈ Ω. The set D = {f1, . . . , fn} avoids sure
loss if and only if the optimal value of the following linear programming problem is zero:

(A2) min
n∑

i=1

λifi(ω
0) + α (5)

subject to ∀ω ∈ Ω \ {ω0} :

n∑
i=1

λi(fi(ω
0)− fi(ω)) + α ≥ 0 (6)

where λi, α ≥ 0. (7)

Note that (A1) and (A2) are fully degenerate because their right hand side is zero. Therefore,
Lemma 1 applies to both of these problems.

When solving linear programs, typical algorithms such as primal-dual, simplex and affine scal-
ing, require all free variables to be rewritten as a difference of two non-negative variables. So (A1)
needs the introduction of an extra variable due to the presence of a free variable. Moreover, (A2)
already has one fewer variable than (A1). Therefore, solving (A2) is easier than (A1).

Let’s consider the dual of the problem (A2).
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Theorem 5 (Nakharutai, 2015, p.49) Choose any ω0 ∈ Ω. The set D = {f1, . . . , fn} avoids sure
loss if and only if the following linear programming problem has a feasible solution.

(B1) max 0 (8)

subject to ∀fj ∈ D :
∑

ω∈Ω\{ω0}

(fj(ω
0)− fj(ω))p(ω) ≤ fj(ω0) (9)

∑
ω∈Ω\{ω0}

p(ω) ≤ 1 (10)

where p(ω) ≥ 0. (11)

How should we choose ω0? Looking at the primal problem (A2), it is not obvious which ω0 we
should choose. However, since optimality in the primal problem corresponds to feasibility in the
dual problem (Goh and X.Q.Yang, 2002, p.104), if we choose an ω0 for which most values fj(ω0)
are non-negative, then we can start (B1) closer to a feasible solution in the dual, and therefore closer
to an optimal solution in the primal. For example, if there is an ω0 for which fj(ω0) ≥ 0 for all j,
then we immediately find a feasible solution by setting p(ω) = 0 for all ω 6= ω0.

4. Checking avoiding sure loss using primal-dual methods

4.1 Primal-dual methods

The primal-dual method solves the primal and dual problems simultaneously, see Fang and Puthen-
pura (1993); Griva et al. (2009) for more detail. It finds an optimal primal-dual solution [x∗ y∗ t∗]
by repeatedly solving the following equalities:

 Ax− b
Aᵀy + t− c

xᵀt

 = 0 subject to x, t ≥ 0 (12)

whilst keeping the variables x and t positive. The algorithm will stop when the primal residual
Ax−b, dual residual Aᵀy+t−c and duality gap xᵀt are small enough or when an unboundedness
criterion is satisfied in either the primal or the dual problems (Fang and Puthenpura, 1993).

Theoretically, the primal-dual method generates iterates x, y, t, where x, t > 0, that stay in
the feasible region. However, in practical implementations, keeping x, y, t in the feasible region is
very difficult because of numerical problems. Therefore, practical implementations of primal-dual
algorithms start with an arbitrary point [x y t] where x, t > 0 and generate iterate points that
converge to an optimal solution. Even though there is no convergence proof, this approach seems to
work well in practice (Fang and Puthenpura, 1993).
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4.2 Corresponding linear programming problems

The primal problem (A2) can be easily written as (P) by adding slack variables:

(A3) min

n∑
i=1

λifi(ω
0) + α (13)

subject to ∀ω ∈ Ω \ {ω0} :

n∑
i=1

λi(fi(ω
0)− fi(ω)) + α− s(ω) = 0 (14)

where λi, α, s(ω) ≥ 0. (15)

Note that these equalities are linearly independent due to the presence of distinct slack variables in
each equality, so the corresponding matrix A has full rank. This will be the case for every system
of equalities that we write down further as well; we will not repeat this point.

The dual problem (B1) can be written as (D) again by adding slack variables:

(B2) max 0 (16)

subject to ∀fj ∈ D :
∑

ω∈Ω\{ω0}

(fj(ω
0)− fj(ω))p(ω) + tj = fj(ω

0) (17)

∑
ω∈Ω\{ω0}

p(ω) + q = 1 (18)

where p(ω), tj , q ≥ 0. (19)

To apply the primal-dual method, (A3) and (B2) are easily written in the form of Eq. (12). Next, we
will investigate the structure of the problems (A3) and (B2) to choose a suitable starting point.

4.3 Starting points and extra stopping criteria

For the dual problem (B2), a starting point can be q0 = p0(ω) = 1/|Ω| for all ω ∈ Ω \ {ω0},
because these p0(ω) and q0 satisfy Eq. (18). For simplicity, we suggest choosing tj = 1 for all j.
Note that this solution may not be feasible (if it were, we would have solved the problem!).

For the primal problem (A3), we can find an initial interior feasible solution as follows:

Theorem 6 An initial interior feasible solution of the specific linear programming problem

min c1x1 + c2x2 + ...+ cnxn + α (20)

subject to ∀j = 1, ...,m :
n∑

k=1

ajkxk + α− sj = 0 (21)

where α ≥ 0, xk ≥ 0 and sj ≥ 0. (22)

is given by xk = 1, α = 1 + max{0,−δ} with δ := minj {
∑n

k=1 ajk} and sj = α+
∑n

k=1 ajk.

Proof We must show that Eq. (21) is satisfied, and that all variables are strictly positive.
Clearly, Eq. (21) is satisfied by our choice of sj , all xk = 1 > 0, and α ≥ 1 > 0. Finally, note

that also all sj > 0 because

sj = α+
n∑

k=1

ajk ≥ α+ δ ≥ 1− δ + δ > 0. (23)
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where we used the definitions of δ and α respectively.

Note that for problem (A3), even though we start with a feasible solution, the solution does not
necessarily remain feasible due to numerical rounding errors. In particular, we can apply our extra
stopping criterion from Lemma 1 only if the primal residual Ax− b is small.

In the next two sections, we look at the simplex and affine scaling methods, and we also suggest
suitable linear programming representations.

5. Checking avoiding sure loss using simplex methods

5.1 Simplex methods and pivoting

The simplex method is an iterative method. At every iteration, we move from a current extreme
point to another extreme point that decreases the objective function value. If a linear programming
problem is in the form

min cᵀx subject to Ax + s = b where x, s,b ≥ 0, (S)

then we immediately obtain a starting extreme point by setting s = b and x = 0.
A brief outline of the simplex method is given as follows (see Fang and Puthenpura (1993) for

more detail). We first write (S) in the following format:

[
cᵀ 0ᵀ 0
A I b

]
(24)

If there is a negative value in the top row, then we leave the current extreme point and move to an
improved extreme point by performing a pivot via row operations. We repeat this until there is no
negative value in the first row, or until we can no longer pivot.

5.2 Corresponding linear programming problems

Note that by multiplying Eq. (14) by −1, problem (A3) can be rewritten as (S). Since all the right
hand side constraints are zero, there is only one extreme point that is 0. Consequently, 0 is the only
extreme point. In this case either the optimal value is zero or the problem is unbounded.

Since the value of the objective function is always zero, we cannot apply Lemma 1. It is also
worth noting that problem (A3) is degenerate and that the simplex method may cycle in such cases
(Hoffman, 1953). Cycling can be detected by checking Bland’s rule or Lexicographic Rule (Fang
and Puthenpura, 1993, p.44) resulting in more calculations. Therefore, the simplex method may
perform poorly when solving problem (A3).

We now look at the dual problem (B1). To convert (B1) into the standard form (S), if there exists
fj(ω

0) < 0 for some j, then we multiply the corresponding constraint by−1 to make the right hand
side non-negative and then add artificial variables. We obtain the following linear programming
problem for which we can immediately give an initial extreme point.
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Corollary 7 The set D = {f1, . . . , fn} avoids sure loss if and only if the optimal value of the
following linear programming problem is zero.

(B3) min
∑
j∈N

tj (25)

subject to ∀j ∈ N :
∑

ω∈Ω\{ω0}

(fj(ω)− fj(ω0))p(ω)− sj + tj = −fj(ω0) (26)

∀j ∈ I \N :
∑

ω∈Ω\{ω0}

(fj(ω
0)− fj(ω))p(ω) + uj = fj(ω

0) (27)

∑
ω∈Ω\{ω0}

p(x) + q = 1 (28)

where p(ω), q, sj , tj , uj ≥ 0 (29)

with I := {1, . . . , n} and N := {j ∈ N : fj(ω
0) < 0}.

We can then choose an initial extreme point to be tj = −fj(ω0), uj = fj(ω
0), q = 1 and

p(ω) = sj = 0.

Now, to check avoiding sure loss using the simplex method, we can solve either (A3) or (B3). If we
want to avoid degeneracy and cycling, then we should solve (B3) rather than (A3).

6. Checking avoiding sure loss using affine scaling methods

6.1 Affine scaling methods

The idea of the affine scaling method is to generate a sequence of interior feasible solutions by
repeatedly solving Eq. (P) such that the corresponding objective function values are decreasing.
The assumption is that this sequence converges to the optimal solution if it exists. The method
needs a starting interior feasible point, and we stop when the difference between objective function
values is small enough or an unboundedness criterion is satisfied (see Fang and Puthenpura (1993);
Griva et al. (2009); Saigal (1995) for more detail).

6.2 Extra stopping criteria

Recall that the right hand side constraints of (A3) are zero and the affine scaling method generates a
sequence of interior feasible solutions. Therefore, we can apply Lemma 1. Specifically, the method
can stop as soon as it finds a feasible solution with a negative objective function value. In this case,
the problem is unbounded.

6.3 Initial feasible interior points

In practical implementations, there are several mechanisms for finding initial interior feasible points
which require solving another linear programming problem. For the problem (A3), we do not need
to use such mechanisms since we can apply Theorem 6 to find an initial interior feasible point. For
the problem (B2), we can apply the following mechanism to obtain a starting interior feasible point
(Fang and Puthenpura, 1993).
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Given constraints Ax = b and x ≥ 0, we choose any x0 > 0 and calculate y = b−Ax0. If
y = 0, then x0 is an interior feasible solution. Otherwise, we solve

min γ subject to Ax + yγ = b where x ≥ 0, γ ≥ 0 (30)

by the affine scaling method with an interior feasible solution [x γ] = [x0 1]. If the affine scaling
method finds an optimal solution [x∗ γ∗] such that γ∗ = 0, then x∗ is an interior feasible solution
of the original problem.

Let’s write (B2) in the explicit form of Eq. (30). Let Ω \ {ω0} = {ω1, ..., ωm}, we choose
x0 =

[
p0(ω1) ... p0(ωm) t01 ... t0n q0

]
> 0 and calculate y := b−Ax0 as follows:

yj := fj(ω
0)−

∑
ω∈Ω\{ω0}

(fj(ω
0)− fj(ω))p0(ω)− t0j (31)

z := 1−

 ∑
ω∈Ω\{ω0}

p0(ω) + q0

 (32)

Note that we can choose t0j = 1 for simplicity. We also choose q0 = p0(ω) = 1/|Ω| for all
ω ∈ Ω \ {ω0} so that z = 0.

We then solve the following problem.

(B4) min γ (33)

subject to ∀fj ∈ D :
∑

ω∈Ω/{ω0}

(fj(ω
0)− fj(ω))p(ω) + tj − yjγ = fj(ω

0) (34)

∑
ω∈Ω/{ω0}

p(ω) + q = 1 (35)

where x0 is an interior feasible point of (B4). After obtaining an optimal solution for (B4), if
γ∗ = 0, then x∗ is an interior feasible solution for (B2) (and therefore also an optimal solution for
(B2)); otherwise, there is no feasible solution.

7. Algorithms and numerical results

7.1 Algorithms for generating random sets of gambles

We give two algorithms for generating random sets of desirable gambles D that either avoid or do
not avoid sure loss. In this section, Ω denotes the set of outcomes, ∆(Ω) denotes the unit simplex
over Ω and D denotes a set of desirable gambles. Algorithm 1 generates a random set of desirable
gambles that avoids sure loss. Starting from aD that avoids sure loss, Algorithm 2 generates another
gamble that can be added to violate consistency, thereby generating a set of desirable gambles that
does not avoid sure loss.

7.2 Numerical results

We solve problem (A3) for checking avoiding sure loss by three methods. The simplex and primal-
dual methods are available in MATLAB, while the affine scaling method is not. Unfortunately, the
MATLAB implementation of the primal-dual method does not allow us to specify the initial starting
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Algorithm 1: Generate a random set of desirable gambles D that avoids sure loss
Input : Number of gambles J := |D|

Number of outcomes |Ω|
Number of probability mass functions k

Output: A set of desirable gambles D that avoids sure loss

Stage 1. For each i = 1 : k, sample a single pi uniformly from the unit simplex ∆(Ω) as follows:

(a) For each ω, sample qi(ω) uniformly from (0, 1).

(b) For each ω, set pi(ω) := (− ln qi(ω)) / (−
∑

ω ln qi(ω)).

Stage 2. Generate a set of desirable gambles D

(a) For each ω and j, sample gj(ω) uniformly from (0, 1).

(b) For each j, set P (gj) := mink
i=1

∑
ω pi(ω)gj(ω).

(c) Set D := {gj − P (gj); j ∈ J}.

Algorithm 2: Generate a random set of desirable gambles D that does not avoid sure loss
Input : A set of desirable gambles E = {f1, . . . , fJ} that avoids sure loss

δ > 0
Output: A set of desirable gambles D that does not avoid sure loss

(a) For each ω, sample g(ω) uniformly from (0, 1).

(b) Solve the following linear program:

(C) min β

subject to ∀ω ∈ Ω :
J∑

j=1

λjfj(ω)− β ≤ −g(ω)

where λi ≥ 0 (β free).

(c) Set P (g) := β + δ.

(d) Set D := E ∪ {g − P (g)}.
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point and to add an extra stopping criterion (Lemma 1). To compare these three methods, we wrote
our own implementation of the improved affine scaling and the improved primal-dual methods.
Specifically, the extra stopping criterion and our method for the initial interior feasible point were
included in our implementation of these two algorithms.

We generate two types of random sets of desirable gambles. For each type, we consider the
scenarios |D| = J = 2i for i ∈ {1, 2, . . . , 8} and |Ω| = 2j for j ∈ {1, 2, . . . , 8}. We also fixed
k = 24; varying k had little impact on the results. We first generate a set that avoids sure loss
using Algorithm 1. Next, we generate a set that does not avoid sure loss using Algorithm 2 with
δ = 0.05 and with E provided by Algorithm 1. We then benchmark the primal-dual, simplex and
affine scaling methods by measuring their computational times applied to each generated set.

For each set of desirable gambles, we assume that we do not know whether it avoids sure loss or
not, and pose the linear programming problem in the format of the primal problem (A3). We then
solve each case using these three methods. For each method, we run the algorithm twice to remove
any warm-up effects that can happen in the first run, and we only measure the corresponding com-
putational time taken in the second run. We repeat the process 1000 times and present a summary
of the results in Fig. 1.

Figure 1 shows the average computational time spent during each method when checking avoid-
ing sure loss. In the left column, the sets of desirable gambles avoid sure loss and in the right col-
umn, they do not avoid sure loss. Each row represents a different number of desirable gambles. The
vertical axis represents the computational time. The horizontal axis shows the number of outcomes.
The computational time is averaged over 1000 random sets of desirable gambles. The error bars on
the figures represent approximate 95% confidence intervals on the mean computation time. These
are barely visible due to the sufficiently large sample size.

Overall, in the first two rows, where we compare the three methods, the simplex method is
always outperformed by the improved primal-dual and the improved affine scaling methods. Re-
gardless of whether we avoid sure loss or not, the improved primal dual method is faster than the
improved affine scaling method except when we do not avoid sure loss and the number of desirable
gambles is small.

In the last two rows, we compare our suggested improvements on the primal-dual method. When
we avoid sure loss, using our feasible starting point shows a very slight improvement, although it is
barely noticeable. The extra stopping criterion does not help at all in this case, quite logically so,
because it will never be invoked in this case. What is important here is that it also does not hinder
performance; the overhead of the extra check is thus negligible. When we do not avoid sure loss,
both the extra stopping criterion and the feasible starting point considerably improve performance.
Using both improvements gives the best results.

8. Conclusion

We studied and improved methods to solve linear programming problems efficiently for checking
avoiding sure loss. By exploiting the structure of the linear programming problem, we first slightly
reduced its dimension. Secondly, we proposed an extra stopping criterion based on its degenerate
structure. We also showed that one can directly calculate feasible starting points in various cases,
therefore reducing the effort required in the presolve phase of some of these algorithms.

We compared the impact of these improvements on linear programming methods (simplex,
affine scaling, and primal-dual) on randomly generated sets of desirable gambles that either avoid

10
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Figure 1: Comparison plots of the average computational time for three methods and for different
improved primal-dual methods (PD).
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or do not avoid sure loss. In our simulation, we found that the improved primal-dual and improved
affine scaling methods outperform the simplex method. We found that both affine scaling and
primal-dual methods benefit from the extra stopping criterion and feasible starting points. Overall,
the improved primal-dual method is faster than the improved affine scaling method except when we
do not avoid sure loss and the number of desirable gambles is small.

In future work, we will explore suitable starting points for the dual problems, algorithms for
choosing ω0 for large problems, and different structures for the credal set.
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