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Abstract. Existing object detection frameworks in the deep learning
field generally over-detect objects, and use non-maximum suppression
(NMS) to filter out excess detections, leaving one bounding box per ob-
ject. This works well so long as the ground-truth bounding boxes do not
overlap heavily, as would be the case with objects that partially occlude
each other, or are packed densely together. In these cases it would be
beneficial, and more elegant, to have a fully end-to-end system that out-
puts the correct number of objects without requiring a separate NMS
stage. In this paper we discuss the challenges involved in solving this
problem, and demonstrate preliminary results from a prototype system.
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1 Introduction

Object detection is the task of localising and classifying all objects present in an
image [18]. While the field of deep learning has produced many object detection
networks with excellent true positive rate, they tend to suffer from low precision,
i.e. high false negative rate. Usually the network outputs many bounding boxes
per object, and these over-detections are filtered by non-max suppression (NMS)
[17], leaving one box per object. NMS is a fixed post-processing step that is not
learnt from the data, and typically relies on a user-chosen overlap threshold (0.7
used in [16]). Furthermore, NMS is are unaware of the contents of the boxes it
prunes, and so has no way to know if the ground-truth boxes really do overlap.

The question arises of how it may be possible to train a deep neural network
to output exactly one box per object, without the need for a separate non-learned
filtering step. Aside from being more elegant, this approach may have potential
for greater accuracy, particularly in the case of detecting many small, densely
clustered objects. In these cases, traditional NMS may struggle to tell if two
boxes overlap because they are localising the same object or if they are localising
different objects which are very close. This is especially true when objects of the
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same class are not only close but genuinely do overlap. With very high numbers
of densely packed objects, another problem may also emerge: because detection
networks emit a fixed number of boxes, it may become necessary to coordinate
these boxes such that they are properly distributed among the many objects
present. Over-detection in these cases may not only raise the false positive rate,
but also lower the true positive rate; if there are only enough boxes to detect
everything once then over-detecting one object may leave no boxes for another.

Close and overlapping objects occur in crowd footage, autonomous vehicle
visual feeds, and histological images from biomedical microscopy, such as those
in Figure 1. In this paper we choose cell microscopy as a test case, and use the
Simulating Microscopy Images with Cell Populations (SIMCEP) [10] system to
generate large quantities of synthetic images with perfect ground-truth annota-
tion for training and testing. SIMCEP allows the user to generate artificial cell
populations with varying degrees of clustering and overlap, and so makes an ex-
cellent testing ground for a dense object detection framework. Using simulated
images allows us to generate essentially unlimited quantities of training data,
bypassing the scarcity of labelled data that is normally the biggest constraint
when training deep networks to solve bio-imaging problems. It is hoped that
systems trained on SIMCEP images may still be applicable to real-world images
via transfer learning. Fluorescence microscopy image analysis often requires ob-
jects to be counted as well as localised, so a one-box-per-cell system, which can
be seen as combined localisation and counting, would be quite relevant in this
field.

Fig.1: a) mouse embryo, an extreme case of overlapping objects consisting of a
ball of around 20 cells. b) Human HT29 colon cancer cells, packed very closely.
Both images from the Broad Bioimage Benchmark Collection [12].
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2 Related Work

2.1 Deep learning methods for object detection

Object detection in deep learning is largely dominated by the Region Convolu-
tional Neural Network (R-CNN) family of models [5]. R-CNN uses a selective
search based method [21] to propose interesting-looking regions, only using the
CNN to generate feature vectors for each region and a support vector machine
(SVM) approach to then score them for each class. Fast R-CNN [4] is an itera-
tion on this work, speeding the process up largely by generating all convolutional
features for the image in a single pass and pooling sub-sets of them for different
region proposals, rather than running each proposed region through the CNN
separately. Faster R-CNN [16] improves further by using the same convolutional
network for both proposing regions and classifying their contents. This saves
computational time and results in slightly more accurate bounding boxes, as
well as being a more elegant system. Almost the whole pipeline is performed by
the network, only the NMS is done separately.

Faster R-CNN is a fully convolutional network (FCN), so images of arbitrary
size can be passed and the feature maps will grow or shrink accordingly. The
final convolutional layer outputs feature vectors describing overlapping square
regions in the image; these are used by the region proposal network (RPN) to
predict a fixed number of bounding boxes per region. The RPN’s output tensor
consists of multiple “detectors”: groups of neurons representing bounding box
parameters and confidence levels. These box parameters are described relative to
fixed “anchor” boxes. The anchors are Faster R-CNN’s answer to the problem of
expressing an unordered set of boxes with a fixed-size tensor. The loss function
must decide at training time which boxes from the RPN are to match with which
ground-truth boxes, and which boxes are to have high class probability (i.e. the
RPN’s confidence that that box contains an object). In practice, boxes whose
anchors overlap sufficiently with a ground-truth box are trained to have high
class probability and incur regression loss on their deviation from the ground-
truth box. Output boxes whose anchors do not overlap sufficiently with any
ground-truth box only incur loss for having high class probability. This can be
seen as giving each detector a different “jurisdiction”, in which it is responsible
for matching any ground-truth box with a certain position, aspect ratio and size.

Another relevant detection framework is YOLO [15], which differs from Faster
R-CNN principally in that is not an FCN. Although this requires that images
are resized to a fixed dimension before processing, it also means that the feature
maps are of constant size. This allows the final layer to be converted to a fixed-
size vector that describes the entire image, in a similar manner to Alexnet [9].
This allows the classifier to make use of global image context, resulting in higher
accuracy compared to Faster R-CNN, whose classifier only pools convolutional
features from within the proposed bounding boxes. YOLO assigns responsibility
to its output boxes in a different way to Faster R-CNN. Unlike Faster R-CNN,
the jurisdictions of the detectors are not pre-defined, rather, responsibility for
detecting a given ground-truth box is assigned at training time to whichever
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detector outputs a box with the greatest intersection over union (IoU) with that
box. The authors claim this leads to detectors learning to specialise in different
sizes, aspect ratios and classes of object.

Although the above methods excell at detecting small numbers of large ob-
jects in datasets such as Pascal VOC [3], they are less tested on large numbers
of small objects. In particular, they all tend to over-detect objects, outputting
many bounding boxes which must then be pruned by NMS to leave only one
box per instance. The problem of learning to count has been explicitly investi-
gated in [19], whose authors show that a network trained only on the multiplicity
of a target object type will learn features that are also useful for classification
and localisation of said objects. Although the results are encouraging, they do
not tackle the problem of coordinating object detectors to output exactly one
bounding box per ground-truth object.

2.2 Deep learning methods for cell detection

The greatest obstacle in applying deep learning approaches to biomedical image
processing is the scarcity of labeled training data. Deep neural networks generally
require many thousands of labeled images to train effectively, but individual
problems in biomedicine tend to avail neither thousands of images nor enough
trained experts to label them all. Many proposed methods [1,11,14] circumvent
this problem by using CNNs to perform pixel-wise binary classification. These
networks take small image patches as input and output the probability of the
central pixel in the patch being part of a target object. Although this is a harder
task than whole-image classification, it can yield thousands of training examples
per image, since each pixel and its neighbourhood becomes an example in the
training set. For example, [2] trains a CNN to identify the central voxels of
zebrafish dopaminergic neurons in 3D images. This is part of a larger pipeline,
which first uses an SVM to narrow down the set of potential voxels, so that the
CNN need not be applied to every possible location in the image. The output
probability map is then smoothed and individual cells are detected as local
probability maxima. [14] uses a CNN to detect lipid deposits in retinal images,
by classify the central pixel of 65 x 65 image patches. Since these deposits are
diffuse, amorphous objects, pixel-wise classification is appropriate here and there
is no attempt to define the number of deposits present.

In [8], an FCN is used trained to classify histological images at a whole-image
level. Although it is only trained with whole-image labels, it is still able to localise
individual cells by deriving class probability maps from the final convolutional
layers, in a manner inspired by [20] and [22]. FCNs are particularly useful when
processing histological images due to their ability to naturally scale to images of
arbitrary size, without needing to downsample large images to a fixed size. [11]
train a standard CNN to classify the central pixel of image patches, then convert
it to an FCN to perform pixel-wise classification over a whole image in one
pass. This has performance benefits over processing patches one-by-one, since
computations can be shared among overlapping image patches.
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A standard CNN based on the design of Krizhevsky [9] is used to count human
embryonic cells in [6]. Since the cells in these images show very high overlap, the
act of counting is treated as a classification task and the cells themselves are not
localised.

3 Method

When attempting to design a network that produces output of variable length,
one immediately hits two technical limitations:

— Existing deep learning frameworks process data in “tensors”, N-dimensional
arrays whose shape is always a hyperrectangle. This includes the output
tensor. Outputting a different number of boxes for each image in a batch
would be like outputting a matrix with variable length rows, which is not
supported.

— In order for the network to learn the correct number of boxes, this number
needs to be somehow differentiable. That means the number of boxes pro-
duced must vary smoothly with respect to the network parameters; a small
parameter change should result in a small improvement in the number of
boxes.

These constraints can be satisfied by outputting a fixed number of boxes
with confidence scores attached - as is the case in existing detection frameworks.
The problem now is how to assign confidence scores such that each object gets
exactly one high confidence box that matches its corresponding ground truth
box.

3.1 Loss Function

To train a network to behave in such a way, a loss function is required that is
minimised if and only if the network outputs exactly one matching box with
high confidence for each ground-truth box. This is difficult, because the order
in which the boxes are emitted should not matter. Loss functions in supervised
learning generally work by penalising deviation from some target output, but if
there are IV output boxes per image and an image has M objects, then there are
% possible correct outputs. Faster R-CNN and YOLO solve this problem
by establishing “jurisdictions” for their output boxes, whereby the loss function
demands that a box should have high confidence if a ground-truth box falls into
its jurisdiction.

Ideally, we would like the cost function to be minimised no matter which
detectors are used to label the objects, so long as there is only one each. To
this end, we define a loss function that assigns responsibility for ground-truth
boxes based on both the output box parameters (centre coordinates, width and
height) and confidence scores. We define a responsibility matrix R, where R;; is
the responsibility of detector ¢ for object 7, and

o
D..

]

Rij = (1)
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Dyj = (s — a5)” + (yi — y})* + (wi —w})? + (hy — )? (2)
where x, y, w, h are centre coordinates and width and height, normalised to
[0, 1] relative to the image dimensions and mean box size, respectively, * denotes
ground-truth, and C; is the confidence of detector i.

At training time, each ground-truth box j selects the detector that is most
responsible for it:
R} = argmax R;; (3)
7

This chosen detector incurs a regression loss Dg+ ;, causing it to better localise
the object for which it was most responsible for.  All detectors also incur regres-
sion loss on their confidence, where target confidence C} is 1 if detector ¢ is
responsible for an object, and 0 otherwise. The total loss is then:

1 o 1
L= NZ(Ci—Ci) +M;DR;J (4)

(2

where M and N are the number of ground-truth objects and detectors, respec-
tively.

Using detector confidence to establish responsibility allows the network to
choose for itself which detector will be responsible. If detectors 1 — 5 localise
object j, then their regression losses D;; for ¢ = 1..5 will be similar, and so
the highest responsibility will go to detector k£ with highest confidence Cy. This
chosen detector will get a target confidence C} of 1 while the others get 0. This
reinforces detector k as the detector responsible for that object; next time the
same object is seen, C will be higher, while others will be lower. This can be
seen as a kind of learnt NMS.

We found that if confidence is not used to determine responsibility (R;; = D%j),
the network outputs many boxes per object which all have roughly equal con-
fidence well below 0.5. This is because the network cannot predict which box
will be closest to the ground-truth since they are all close, and so cannot pre-
dict which should have confidence 1 and which should have 0. Moving all but
one box away from the object would be a solution, but this would only produce
discontinuous, non-differentiable changes in loss, so the network cannot learn to
do this.

3.2 Model Architecture

A recurrent neural network (RNN) would be the obvious choice to minimise the
loss function described above. If bounding boxes are emitted sequentially rather
than simultaneously, then each one can be dependent on the ones that came
before it. In this way, a detector can avoid outputting a high confidence box on
an object that has already been detected. Despite this attractiveness though,
our best results out of the many architectures trialled came not from an RNN
but from an FCN. This architecture is specified in Table 1.

Everything from convl to conv7 is a relatively standard convolution / max-
pooling stack, with some slightly unusual features (stride of 2 in conv6) which



Avoiding Over-Detection 7

allow the stack to output feature maps whose effective receptive fields in the
image overlap by half (effective receptive field size is 64 x 64 pixels, effective
stride is 32 x 32). This overlap ensures that every object lies fully within at
least one neuron’s receptive field. boxes emits bounding box parameters and
boxes_global is a custom layer that performs a simple transformation from
local coordinate space global image space. concat joins the feature maps of
boxes_global and conv7, allowing the remaining three layers to predict con-
fidence scores based on both the boxes themselves and the image features they
were predicted from. We observed a modest improvement in performance due to
this addition. filterl, filter2 and confidence compute confidence scores
for the output boxes.

Network Layers
Name [Type Parameters
convl Convolution num_filters=32, filter_size=(5,5)
pooll Maxpool pool_size=(2,2)
conv?2 Convolution num-filters=48, filter_size=(3,3)
pool2 Maxpool pool_size=(2,2)
conv3 Convolution num_filters=64, filter_size=(3, 3)
pool3 Maxpool pool_size=(2,2)
convé Convolution num_filters=86, filter_size=(3,3)
pool4 Maxpool pool_size=(2,2)
convb Convolution num_filters=128, filter_size=(1,1)
convé Convolution num_filters=128, filter_size=(2,2),
stride=(2,2)
conv’7 Convolution num_filters=128, filter_size=(1,1)
boxes Convolution num_filters=4+B, filter_size=(1,1),
nonlinearity=identity
boxes_global|Coord Transform
concat Concatenation inputs=boxes_global, conv7
filterl Convolution num_filters=16+B, filter_size=(3, 3)
filter2 Convolution num_filters=16+B, filter_size=(1,1)
confidence |Convolution num_filters=B, filter_size=(1,1),
nonlinearity=sigmoid

Table 1: A specification of our network architecture. Unless otherwise stated,
each layer takes the previous layer’s output as input. Nonlinearities are leaky
rectified linear [13] with o = 0.1 unless otherwise stated. B is a hyperparameter
denoting the number of detectors per “window” (i.e. position in the final feature
map, conv7). B =9 in our experiments.
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Fig.2: A sample of detection results on SIMCEP images. Confidence is repre-
sented in the transparency of the boxes; all output boxes with confidence above
0.1 are shown. Instead of post-processing with NMS, we simply take boxes with
confidence above 0.5 (shown in red) as positive detections. Boxes with confidence
below 0.5 are shown in blue.

4 Results

We trained our model on a set of 17000 SIMCEP images using the Adam opti-
mizer [7], and validated against a set of 3000. The images were of size 224 x 224
pixels and contained anywhere from 1 to 15 cells. The parameters of SIMCEP
were adjusted to randomise obfuscating features such as blur, Gaussian noise
and uneven lighting, and the cells show varying levels of clustering and overlap.

A selection of results is shown in Figure 2. We interpret any detection with
a confidence above 0.5 as a positive, and so the number of such detections is the
network’s estimate of the number of cells present. Across our validation set, the
root mean square of the deviation of this estimate from the true count was 2.28.
Further quantitative results are shown in Table 2.

5 Conclusion

For images containing objects whose bounding boxes overlap heavily due to oc-
clusion or dense clustering, NMS cannot reliably remove excess bounding boxes
emitted by the network, since ground-truth bounding boxes with identical classes
may truly overlap significantly. An end-to-end system that outputs the correct
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True Positive Rate|False Positive Rate|F}-score
Training Set 75.4% 19.2% 0.774
Validation Set 75.3% 19.4% 0.773
Table 2: True and false positive rates on training and validation sets. A true
positive is counted as any output box with an intersection over union (IoU)
above 60% with a ground-truth box, but each ground-truth box can only be
paired with a single output box. So if two output boxes cover the same object,
then this counts as one true positive and one false positive. OQutput boxes with
less than 60% IoU with any ground-truth box are always false positives.

number of boxes without the need for post-processing NMS is therefore prefer-
able. In this paper, we discuss the problem and take some early steps towards
solving it, demonstrating a system that can localise densely clustered objects
and simultaneously approximate the correct number of boxes. Rather than per-
forming regression directly on the number of objects, we encode this number
implicitly in the number of high confidence boxes emitted by the network. We
have found that defining a suitable loss function is the core challenge here; we
wish to teach the network the concept of outputting one box with high confidence
per object, without arbitrarily telling it which box should have high confidence.
In conclusion, we speculate that the optimal solution may require an alternative
output encoding to the traditional box parameters plus confidence form used in
this paper and others [15,16]. The traditional form has a many-to-one mapping
from outputs to unordered sets of boxes, since any of the network’s detectors
could be used to represent a given box. An output representation with a bijection
between output vectors and unordered sets of objects would solve this problem,
although other solutions may exist.
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