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ABSTRACT
Surface flow visualisation is an experimental technique

where the surface of interest is painted with an oil and dye
mixture before a flow is applied to the object. In regions of
high shear stress the oil/dye mixture is then removed and in
regions of low shear stress the oil/dye mixture stays or builds
up. The resulting pattern can be analysed to determine the
structure near the surface under test, this is normally done in
a  qualitative  manner  with  flow  structures  being  identified
based on the expertise of the experimentalist.

Modern image processing tools can identify shapes and
lines in pictures and this paper describes the development of
an  algorithm  to  apply  these  techniques  to  surface  flow
visualisation and derive quantitative numerical data from the
visualisation images.  The well  know "Durham Cascade"  a
low speed, linear cascade with around 110 degrees of turning
is  used  as  a  test  case  for  this  technique.  The direction  of
streamlines,  location  of  saddle  points  and  positions  of
maximum  shear  stress  were  identified  and  quantitatively
compared to computational fluid dynamics of the same case.

Overall  this  paper  describes  a  process  by  which  new
information can be extracted from an existing and well used
technique. 

INTRODUCTION
Flow visualization is  a  general  tool  in  fluid dynamics

that aims to improve understanding of fluid flow behavior by
translating  physical  characteristics  into  visible  patterns,
which  can  then  either  be  qualitatively  or  quantitatively
analyzed.   Merzkirch [1] provides a modern overview of the
topic.  The key advantage of flow visualization techniques is
their potential to provide information about entire flow fields
compared to pressure probe measurements which are limited
to discrete points.  

Experimental flow visualization techniques have been a
fundamental tool for studying flow patterns since Leonardo
da Vinci’s  sketching of  wake  vortices  downstream a  bluff
body in the fifteenth century.  Merzkirch [2] has classified

the  experimental  techniques  into  three  main  categories:
addition of foreign materials, optical visualization, and field
marking by energy. The first type is generally distinguished
from the latter two by being an indirect way of visualizing
the flow, since the visualized pattern is formed by the added
material  instead  of the original  fluid.  The current  research
used the Surface Flow Visualization (SFV) by oil film, which
belongs to the first category.

Surface Flow Visualization by Oil Film Technique
SFV by oil film has long been a standard technique for

wind  tunnel  tests  Maltby  [3].  For  turbomachinery
applications, an advantage of this approach is its capability of
visualizing corner flows that are rather challenging to access
by non-intrusive optical visualization approaches. 

Squire [4] presented an analytical model of an oil film
and fluid interaction and concluded that the oil follows the
boundary-layer  surface  streamlines  except  near  separation
and this deviation is more pronounced in laminar boundary
layers.  

The  procedure  involves  coating  the  solid  surface  of
interest by a viscous mixture of oil and colored dye. When
exposed to the frictional forces applied by the flowing fluid,
the  mixture  accumulates  streaky  pigment  in  the  flow
direction. The resulting deposition pattern is in the form of
dried  streaklines  that  provide  information  about  the
magnitudes  and  directions  of  velocity  vectors  near  to  the
surface. The pattern can expose boundary layer features such
as regions of flow transition from laminar to turbulent, and
regions  of  flow  separation  and  reattachment,  which  are
displayed  as  diverging  and  converging  streaklines,
Bogdonoff  [5].  Streaklines  near  separation  regions  can  be
particularly distinctive, since the skin friction is low enough
to  keep  oil  depositions  for  longer  periods  of  time  so
accumulating more pigment. Although the pattern is usually
recorded via a photograph taken immediately after the flow
stops,  some research  studies have also reported  the use of
video to study the development stages of the streaklines.
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The main limitation to this technique is the requirement
for a mixture that is sufficiently  viscous to hold on to the
solid surface without running under the effect of gravity but
also  to  form  a  pattern  when  subjected  to  the  various
magnitudes of shear  stress encountered.   It  should also be
volatile enough to entirely evaporate after the expiry of the
steady  flow  conditions  Merzkirch  [6].   Accordingly;  the
composition of the mixture is dependent on the application
and flow mode.

IMAGE PROCESSING IN FLUID MECHANICS
In  terms  of  experimental  fluid  dynamics  image

processing  tools  have  been  predominantly used  to  analyze
images produced from Particle image velocimetry (PIV) and
optical  flow  visualization  techniques,  Hu  et  al   [7].  For
example  in  an  attempt  to  develop  a  3D  particle  tracking
velocimetry  by  Laurent  et  al  [8],  a  Python  coded  image
processing programme was developed to spot the colors of
tracers in polychromatic images of a PIV visualization.  

Besides  their  extensive  usage  in  medical
ultrasonographic  applications,  Hough  transformation
methods are also used to detect  and draw features in other
medical  applications,  e.g.  Carmo  [9].  These  methods  are
capable  of  detecting  defective  instances  in  images  within
certain  shape  classes,  such  as  circles  and  lines,  through a
voting procedure. For example, air bubbles generated behind
a  micro-orifice  cavitation by a flowing oil  were  analyzed
optically by Iben et al [10] with the aid of image processing
tools. The flow was photographed and recorded by a digital
camera, while the bubbles were detected by a MATLAB code
based on the circular Hough transform method to determine
their number and diameters. 

Modern  image  processing  tools  can  also  be  used  for
analyzing video sequences displaying the development of a
flow features.  For instance,  they were used by Japee et  al
[11]  to  analyze  several  video  recordings  of  red  blood cell
dynamics  to  track  and  study  the  oxygen  conveyance  in
capillary  networks.  Although  the  method  used  was  not
capable of analyzing the entire capillary flow field individual
red  blood  cells  were  reported  to  be  sufficiently  clear  to
extract useful and accurate information about their velocities.

Image processing tools were used by Pierce et al [12] to
process images from video recordings of the development of
flow features on a flat plate visualized by the SFV by oil film
technique. Individual frames with clear fragments were then
processed  by  PIV  processing  software.  This  processing
algorithm consisted of two nonlinear filters: ‘concentration’
and ‘subtraction sliding minimum'. The former was used to
solve the smoothening effect of pigment over large areas of
the images and the second filter was used to locate the local
minimum  intensities,  within  a  user-defined  length,  to
increase the contrast and convert the images into binary.

Overall, it is evident that sophisticated image processing
algorithms are deployed routinely with good effect to obtain
information about complex flow fields.  

APPLICATIONS TO TURBOMACHINERY
The  fluid  dynamics  of  turbomachinery  flows  are

complex but have been extensively researched.  To select the
example of axial turbine flows - the formation of secondary

flows  are  described  extensively  by  Sieverding  [13]  and
Langston  [14]  and  flows  with  a  tip  clearance  have  been
described by Bindon [15]

In a recent study by Allan et al [16], the authors asserted
that the existing numerical codes do not provide precise and
reliable  results  about  the  boundary  layer  transition
phenomena occurring in gas turbines. Their study on stream-
wise vortex formation involved extensive manual analysis of
SFV images to obtain quantitative results.  

SFV by oil film and ink dots are the leading non-optical
approaches used to explore the intricate 3D flow behavior in
the  turbine  passage  as  emphasized  by  Ristić  [17].  For
instance, secondary flows occurring near the endwalls of a
linear turbine cascade were visually examined by means of
SFV with an oil-lampblack mixture as described by Sanitjai
[18].  Qualitative  descriptions  of  vortex  behaviors  were
deduced from the patterns such as a strong passage vortex. 

A seminal  study  was  performed  by  Langston  [19]  to
explore the characteristics of the endwall boundary layer by
means  of  SFV by  ink  depositions  on  endwall  and  airfoil
surfaces. SFV helped to qualitatively determine the location
of  flow  separation  relative  to  the  saddle  point  at  inlet
boundary layer.

Both  SFV by  oil  film  and  ink  dots  techniques  were
employed by Volino [20] to study the flow behavior near the
endwall and suction side of a turbine blade. Both techniques
revealed  endwall  flow  features  including  the  crossflow,
saddle  point,  and  migration  route  of  the  horseshoe  vortex
along the passage until its imposition on the suction side of
the  neighboring  blade.  The  alcohol  used  in  the  ink  dot
method evaporated upon contacting the flow, which enabled
the ink tracers  to  provide  permanent  record  of  the  pattern
after  drying.  The  resulting  patterns  from  both  techniques
qualitatively confirmed the location of the saddle point to be
near to the leading edge of the pressure side of the blade,
while roughly lying on a line linking the leading edges of the
suction and pressure sides of two adjacent blades.

Holley [21] quantitatively investigated the contribution
of  endwall  skin  friction  on  the  overall  aerodynamic  loss
through  skin  friction  measurement  using  oil  film
interferometry. The technique was used to estimate the skin
friction  coefficients  and  identify  the  directions  of  endwall
shear forces.  The outcomes from this study exposed a clear
difference  between  the  experiment  and  the  CFD.   The
authors  recommended  future  efforts  should  focus  on
developing experimental techniques to provide more detailed
and comprehensive information about the endwall and airfoil
skin frictions for more precise and reliable validation of CFD
codes.

Flow visualization  techniques  have  also  been  used  to
exhibit the benefits of newly proposed design improvements.
In a study by Friedrichs et al [22], the effectiveness  of an
endwall adiabatic film-cooling was investigated with the aid
of selected flow visualization techniques including SFV by
oil film. Similarly, the SFV by oil film technique was used by
Ingram  [23]  to  highlight  the  benefits  of  using  proposed
endwall profiling designs on mitigating secondary flows. 

As  can  been  seen  from  the  above  survey  despite  the
wide use of  SFV in turbomachinery  experimentation  most
images are analyzed  based on the experimenters’ expertise
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and in a qualitative manner. This advance presented in this
paper is  that  an algorithm using modern image processing
tools  is  developed  and  used  to  extract  quantitative
information  from  SFV  studies.   These  procedures  were
developed  and  applied  on  the  well  known  “Durham
Cascade”.  

IMAGE CAPTURE USING THE CASCADE
SFV images generated in previous campaigns were used to

develop  the  algorithm  but  during  the  work  it  became
apparent that these legacy images lacked crucial information
so  a  short  test  campaign  was  conducted  to  capture  new
images.  The algorithm is described in the following section
but the process for obtaining photographs is described here.  

The  so-called  “Durham  Cascade”,  a  low  speed  linear
cascade  of  a  high  pressure  turbine  blade  was  used.   This
cascade  has  been  extensively  used  for  secondary  flow
research and for this paper was used with and without a tip
clearance.   The detailed design of the cascade is described
by Bagshaw et al  [24], and summarized in Table I.

TABLE I: Key Cascade Parameters 

Inlet Flow Angle 42.750

Exit Blade Angle -68.700

Blade Pitch 191 mm
Blade Axial Chord 181 mm
Tip Clearance of Casing Endwall 3.75 mm

Blade Span 375 mm

Reynolds Number 4 x 105

Turbulence Intensity 5%
Freestream Velocity 19.1 m/s
Dynamic Pressure 215 Pa

The endwall  of  the cascade  was coated  with a  white  matt
melamine resin layer. A line parallel to the trailing edges was
scribed on the endwall and highlighted with a dark blue pen
to  mark  the  axial  reference  axis.  This  line  was  45  mm
downstream  from  the  trailing  edges.   The  tangential
projection of one of the trailing edges on the scribed line was
marked as an origin point  O, while the trailing edge point
itself  was  denoted  as  OTE,  but  was  not  marked  on  the
endwall. After finishing the experiment, a 7 by 7 chessboard
pattern was glued on the endwall before photographing for
calibration  purposes.  For  precise  alignment  of  that  pattern
with  the  reference  line,  a  parallel  line  was  marked  out  at
70 mm  to  enclose  the  printed  pattern  from  both  sides  as
illustrated  in  Fig  1.  The  pattern  also  formed  the  axial
reference axis and the scale on both axes, as each chessboard
square was 10 mm by 10 mm.

A mixture of paraffin and red colored, UV fluorescent, dye
powder  was  prepared  with  a  mixture  ratio  of  5.5  ml  of
paraffin to 1 ml of dye. This ratio was set by trial and error to
ensure  that  the  mixture  revealed  flow  features  at  the  full
range of shear flows.  The mixture was applied uniformly on
the center  of the endwall  covering at least  the middle two
cascade  passages.  The  mixture  was  applied  by  paintbrush
perpendicular  to  the anticipated  flow direction so that  any
remaining brush marks were obvious.

Fig 1: Pre-experiment marking out and location of
the reference point O.  (Not to scale)

Two  runs  were  performed  at  the  specified  operating
conditions: one with a tip clearance of 3.75 mm, representing
a  “casing”  endwall  case,  and  another  with  a  zero  tip
clearance to represent a “hub” endwall case. The operating
conditions were maintained for 10 minutes before removing
the endwall for photography.

Images of 2992 pixels by 2000 pixels were created by a
‘Nikon D3300 DSLR’ camera fitted with a ‘AF-S Nikkor 18-
55mm’ lens with aspherical lens elements, which moderate
optical  distortions  such  as  spherical  aberration  and
astigmatism.  The  aperture  size  was  set  as  f/6.3  for  input
images  to  the  streaklines  detection  algorithm  and  saddle
point procedure, while a narrower aperture of f/13 was used
for input images to the maximum wall shear point detection
procedure.  The camera was attached to a horizontal  tripod
arm, while the endwall was laid flat for image capture.  

Different  light  conditions  were  tested  but  the  indoor
fluorescent ambient light coupled with an incident UV were
found to be the best  for the streakline detection algorithm.
Additional uniformly distributed lights were used for input
images to the maximum wall shear detection algorithm in an
attempt to eliminate the camera and tripod shading by evenly
distributing  the  illumination  all  over  the  endwall  surface.
Twenty photos were then taken per run at different camera
orientations, in addition to a perpendicular, which was used
as the base input to the algorithm.

For comparison, a pre-existing RANS CFD solution of the
cascade  with  and  without  tip  clearance  was  used.   This
solution used 1.7 million cells, was computed using Fluent
14 and used the enhanced  wall  treatment  with a  k-epsilon
turbulence model.  

IMAGE PROCESSING ALGORITHM
The resulting images were then processed through a

multi-stage  “Python”  computer  program  using  functions
from  an  off-shelf,  open  source  computer  vision  library
module named OpenCV 3.0. Some auxiliary functions were
obtained  from  other  modules  such  as  Numpy,  SciPy,
Matplotlib, etc. The main stages of the developed algorithm
for streakline detection are shown in Fig. 2.  Further details
including all the equations used in the algorithm are found in
Abdelsalam  [25]  and  the  software  used  for  this  paper  is
available on-line at the URL given for Abdelsalam [25].  

Calibration and Tilt Correction
An initial calibration stage was used (Green box in Fig. 2)

to alleviate  the  radial  and  tangential  distortions caused  by
intrinsic properties  of the camera lens. Such properties are
characteristically  fixed  for  the  same  lens,  so  they  were
modeled as constant parameters that can be evaluated by 
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Fig. 2. Flow chart of streakline detection algorithm.

solving a sufficient number of equations, at least equal to the
number  of  unknown  parameters.  OpenCV  calibration
functions follow a model developed by Zhang [26],  where
each  equation  is  generated  from  a  snapshot  of  a  defined
planar pattern of ‘object points’ with a different orientation.
The  6x6  square  corners  of  the  selected  7x7  chessboard
pattern  were  used  as  the  object  points  with  their  known
horizontal and vertical spacings of 10 mm. 

This  calibration  procedure  was  tested  by  calibrating  an
image  of  two  successive  blade  profiles  scribed  on  the
endwall  with  marked  out  trailing  edges.  The  chessboard
pattern was used to estimate the 191 mm pitch between the
two marked out points by multiplying the 10 mm chessboard
square spacing by the probed pitch, in pixels, divided by the
square spacing in pixels. The pixel coordinates were probed
by an OpenCV mouse click function. This was repeated for
the  uncalibrated  image.  The  percentage  error  in  the  pitch
estimation was found to drop from 3.29% to 0.11% of the
pitch  after  applying  the  calibration  algorithm with  twenty
images at different orientations. This procedure was applied
to  all  visualization  images,  which  led  to  the  visually
observable  correction  shown  in  Fig.   3.   All  computed
coordinates  were  corrected  in  both  directions  by  applying
basic trigonometric relations.  

Preprocessing Stages
The next stages (Red boxes in  Fig. 2) were characterized

as preprocessing stages.  Firstly the calibrated visualization
images were divided into rows and columns of a user-defined
number/size  of  rectangular  cells  followed  by  a  grayscale
conversion stage. The number and size of cells are critical
factors affecting the detection accuracy of the algorithm, as
curved streaks require smaller cells  to align, while smaller
cells can miss out sections of a streakline. Since  each  cell
had its own local origin as an independent minor image, all
local  cell  coordinates  required  transformation  back  to  the
global system. 

Fig.  3. Input image calibration. Left: Before
calibration. Right: After calibration.

Reduction of image noise was then performed on each cell
using a selected low-pass filter. Several methods of low-pass
filtering were tested on sample images including Averaging,
Median, Gaussian, and Bilateral filtering. The Bilateral filter
was found to be the best in preserving streakline edges from
being blurred.  However, its filtering process was the slowest
and, in some cases, it created a few falsified edges.

The  key  advantage  of  the  Bilateral  filter  over  usual
Gaussian filters used in the literature is its inclusion of an
additional  Gaussian-based  weighted  average  filtering
component  that  depends  on  intensity  differences  between
neighboring  pixels,  whereas  conventional  Gaussian  filters
depend  only  on  their  Euclidean  distances.  Therefore,
neighboring  pixels,  determined  by  an  input  space  sigma
σs , with closer intensity values, determined by an input

color  sigma  σc ,  can  only  influence  the  smoothening
value of the tested center pixel as explained by Paris et  al
[27]. Sizes of the two sigmas were set by trial and error for
each visualization image depending on the level of Gaussian
noise.

A high-pass filter was then applied to expose the intensity
gradients in each cell. The process was a weighted, with a
selected  kernel,  differentiation  of  a  sampled  intensity
function to find the directions of increasing, or decreasing,
pixel values.

The  derivative  functions  can  either  be  of  first  degree,
Sobel derivatives,  or second degree,  Laplacian derivatives.
Therefore,  a  Sobel  operator  can  be  applied  for  a  certain
general direction, vertically (V) or horizontally (H), while a
Laplacian  operator  is,  by  definition,  functioning  in  both
directions. After testing the two operators, it was found that a
Sobel  operator  applied  closely in  line  with the  streaklines
was  more  accurate  in  the  detection  than  the  Laplacian.
However, the single direction Sobel operator failed to detect
most of the curved streaklines near to the leading edge.  This
problem  was  substantially  solved,  by  superimposing  two
image convolution operations using horizontal  and vertical
Sobel kernels.  

Canny Edge Detection and Linear Hough Transform
After  finding the intensity gradients  and their  directions

for each cell the core of the image processing algorithm was
run (Blue  boxes  in  Fig.  2).   Edges were  detected  using a
Canny edge  detection  function.  The function starts  with a
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non-maximum suppression step, which was applied to get rid
of pixels that  may not form an edge; instead, they usually
surround, and so thicken, the edges. This step was done by
checking  every  pixel  if  it  possesses  a  local  intensity
maximum  within  its  neighbor  pixels  along  the  gradient
direction. If a pixel had a local intensity maximum, it was
considered to lie on an edge perpendicular to that gradient
direction; otherwise, it was suppressed.

The subsequent step was to remove edge pixels with weak
gradients,  caused  by  color  variation,  by  hysteresis
thresholding.  At  this  step,  a  maximum  and  minimum
intensity values were assigned to form an intensity range for
suspected  edge  pixels.  Pixels  with  higher  intensity  values
than the maximum limit were taken as definite edge pixels,
while those with lower values than the minimum limit were
suppressed and considered as definite non-edge pixels. Pixels
with intensity values between the limits were tested based on
their connectivity with their neighboring pixels. Accordingly,
if  a  pixel  with  a  value  within  the  range  and  had  a
neighborhood of definite edge pixels, it was taken as an edge
pixel and vice versa. 

When testing the  effect  of  assigned hysteresis  limits  on
detected edges in the visualization images, it was generally
observed that narrower limits helped avoid the detection of
noisy edges, but they tended to overlook streaklines at high
shear (pale regions) such as downstream of the trailing edges
due to reduced edge gradient values.

The  next  algorithmic  stage  was  the  Linear  Hough
Transform, which was used to detect and draw conforming
lines  on  the  detected  edges  in  each  cell  to  resemble  the
velocity vectors. Lines were detected and drawn based on the
Hesse  normal  form of the straight  line equation,  since  the
Cartesian form is problematic for vertical lines due to their
infinite slopes. Therefore, each line was represented by polar
coordinates based on the local cell coordinate system. 

The  lines  were  detected  following  a  voting  procedure,
which depends on the lengths of detected edges in the cells,
using  a  2D  accumulator  array.   Regarding  the  detection
accuracy, the selected increments for the rows and columns
were  1  pixel  and  /180,  respectively.  This  accumulator
counted the instances of possible existence of straight lines at
each pixel, so that it incremented the number of  votes of a
certain straight line by one if the tested pixel was located on
that line. Based on an assigned Voting Threshold value, lines
with a number of votes greater than or equal to that value are
drawn in the cell.

Before transforming their local cell coordinates into image
coordinates,  the  returned  polar  coordinates  were  first
transformed into Cartesian coordinates.  

All previous stages were repeated for each individual cell
covering  the  entire  image,  while  returning  the  vectors
positions and angles relative to the image coordinate system.

Secondary  Procedures  for  Locating  Points  of
Interest

Since the background color of endwall surface was
white,  the  maximum  wall  shear  point  was  located  by  an
OpenCV  function  that  locates  the  pixel  with  the  highest
intensity value in a  grayscale  image.  To evade disruptions
from unbrushed white spots, or any other source of salt and

pepper noise pixels, a pre-processing 15 by 15 median low-
pass filter was included. Application of this procedure on the
zero tip clearance case was difficult, since it always located
the dye-free blade profile region. Therefore, all blade profiles
in the image were brushed with a dark paint after finalizing
the  experimental  run.  Suppression  of  blade  profile  pixels
would be a more elegant solution but the adopted approach
provides a proof of concept of the technique.    

The  positional  coordinates  of  the  saddle  point  and  the
origin  point  O  were  acquired  from  each  calibrated
visualization image using the OpenCV mouse click function.
Probing the saddle point location was done after all velocity
vectors were drawn on the image.  

Comparisons with CFD and Direct Measurement
In  order  to  provide  comparable  results  with  the  CFD

solution, the Euclidean origin was unified as the trailing edge
of the blade. Hence, the coordinates of the point OTE were
obtained  from  point  O,  in  each  image,  by  adding  the
equivalent pixel value of 45 mm in the axial direction.  After
correcting the tilted image coordinates pixel units were then
converted  into  metric  units.   Both  these  conversions  used
data  from the  chessboard  calibration  stage.  The converted
metric  coordinates  were  then  used  to  probe  corresponding
features  in  the  CFD solution by using ANSYS CFD-Post.
Due to the no slip condition in the CFD solution, velocity
data was obtained at 0.1 mm above the endwall surface.  

 Locations  of  the  saddle  points  at  the  casing  and  hub
endwalls were further validated by physical measurements of
their positional coordinates using two perpendicular rulers.  

RESULTS AND DISCUSSION
 The lines detected in the flow visualisation images with a

voting threshold of 18 and a 3.75mm tip clearance is shown
in Fig.  4.  The accurate location of the visualisation image
allows the blade profiles to be plotted directly on the image.
The effect of using higher and lower voting threshold values
of  linear  Hough  transform  on  the  detected  streaklines  is
exhibited in Fig 5 by showing a higher threshold value of 20.
With a higher  threshold  value,  the algorithm tended to be
more  conservative  with  the  streaklines  detection,  and  so
providing less information per unit area. In contrary, lower
thresholding allowed the algorithm to result in more lines per
unit area,  but it  seemed to create more horizontal, vertical,
and diagonal noise vectors scattered around the image, which
can  be  controlled,  though  not  eliminated,  by  slightly
narrowing the hysteresis limits of the Canny operator.   All
quantitative results in this paper use a voting threshold of 18.

   Angles of twenty five, randomly selected and dispersed,
detected  lines  were  compared  with  their  corresponding
values in the CFD solution.  Since the alogrithm currently
detects lines these could correspond to velocity vectors that
could be 1800  apart  (e.g.  up or  down in Fig 4) so for  the
current comparison the user had to make a judgement as to
which direction the flow was travelling. The average absolute
deviation  between  the  two  solutions  was  2.20 with  a
maximum of 4.10.    
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Fig.  4. Image processing solution for tip clearance
(with voting threshold of 18).

Fig.  5. Image processing solution for tip clearance
(with voting threshold of 20).

    This result is encouraging but it is an open question as to
whether the differences are down to modelling errors in the
CFD or image processing  errors  thrown up in  the present
algorithm.  To resolve this issue some form of generated flow
visualisation  image  with  known  angles  would  need  to  be
processed by the algorithm and this is the subject of ongoing
work.  The key point is that quantified comparisons of SFV
and CFD are able to be generated.

The evaluated positional  coordinates  of the saddle point
from  the  two  solutions  were  compared  relative  to  the
measured  coordinates  for  the  two  tip  clearance  cases  as
shown in Table III and also annotated in Figs 4 and 5.  

TABLE III
Saddle Point Results

Clearance 
(mm)

Solution
Method

Position Deviation 

Axial  /
(mm)

Tan  /
(mm)

Axial  
/(mm)

Tan  /
(mm)

3.75
(Casing)

Ruler -180.25 103.00 Reference

Image
Proc.

-180.56 102.81 0.31 0.19

CFD -184.35 122.57 4.10 19.57

Zero
(Hub)

Ruler -186.00 87.00 Reference

Image
Proc.

-185.81 86.55 0.19 0.45

CFD -188.77 113.49 2.77 26.49

As indicated from the tabulated results,  the deviation of
the  saddle  point  estimated  from the  CFD solution  can  be
quantified in both directions,  by using the extracted image
processing results as the reference. Deviations between the
ruler measurements and image processing results are within
the acceptable limit, noting that ruler measurements have a
precision  of   0.5  mm.   Such  deviations  between  the
location of flow features  in CFD and experiments are also
found  in  the  wider  literature  (e.g.  Holley  [21]  or  Ingram
[23]),  the advance here is that they can be easily and more
accurately quantified.  

TABLE IV
Maximum Wall Shear Point Results

Clearance
(mm)

Solution
Method

Position Deviation 

Axial  /
(mm)

Tan  /
(mm)

Axial  
/(mm)

Tan  /
(mm)

3.75
(Casing)

Image
Proc.

-40.41 -33.56 Reference

CFD -67.58 -67.57 27.17 -34.01

Zero
(Hub)

Image
Proc.

-70.06 3.39 Reference

CFD -61.11 -6.86 -8.95 -10.25

Similarly, evaluated coordinates of the maximum wall shear
point from both approaches are tabulated in Table IV along
with the deviation from the CFD value.  

There  is  a  large  deviation  between  the  location  of  the
maximum shear points in the two cases.  For the hub this is
simply  that  the  flow  feature  in  question  is  located  in  a
different  position but  with the same underlying behaviour.
For the casing however Fig.  6 illustrates that the maximum
wall shear stress in the CFD is under the tip clearance on the
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pressure side of the blade, while the image processing instead
refers  to  a  point  near  to  the  suction  side  of  the  blade.
Despite the dramatic differences apparent in Fig. 6 the flows
are fundamentally similar: both feature a tip clearance vortex
interacting with a passage vortex and separation within the
tip gap.  In this particular case the inlet boundary layer to the
CFD was  found  to  be  set  smaller  than  required  due  to  a
configuration error,  accounting for some of the differences
seen.  However even a 1.7M cell CFD solution lacks the grid
resolution  required  to  resolve  the  detailed  streaklines
revealed by the oil and dye mixture seen in Fig. 6.  

  Fig.  6.   Location of maximum wall shear point on
the casing endwall. Top:  Image processing with

HSV color display. Bottom: CFD solution.

CONCLUSIONS
An image processing algorithm was developed to detect

and extract data from endwall streaklines visualized by an oil
film surface flow visualisation.  The algorithm uses off-the-
shelf software components.  Secondary procedures were also
developed  to  locate  the  saddle  point  and  maximum  wall
shear point on the casing and hub endwalls although these
rely heavily on user interaction.   

Flow  visualization  images  were  generated  using  the
“Durham Cascade” as a test case.  The key feature of this
image set is a chessboard calibration target which allows off-
the-self  image  processing  software  to  correct  for  lens
distortion and therefore improve the location of features in
the SFV image.  These images and the software used in this
paper are available for download.  

The  algorithm  allows  quantitative  comparisons  to  be
made between SFV and CFD.  For the case study used in this
paper  the  maximum  difference  in  numerical  and
experimental flow angle was just above four degrees.  The
location of maximum wall shear point showed that the CFD
used did not accurately replicate the nature of the flow in the
tip gap.  The CFD model predicted the maximum shear stress
to occur under the blade  tip but  the experiment  highlights
that this occurs in the tip leakage vortex.  

The  main  flaw  in  the  algorithm  is  the  formation  of
scattered noise vectors,  which seemed to appear  vertically,
horizontally, or inclined at 45º. Nevertheless, these awkward
vectors can easily be detected and excluded or they can be
controlled by optimizing the thresholding levels.

Further  development  of  the  algorithm  should  include
counting numbers of converging and diverging streaklines in
selected regions.  It will also be necessary to generate some
form of “calibration target” for  the streakline  algorithm to
quantify  errors  in  the  image  processing  algorithm.   The
current approach of examining differences between the CFD
and experiment leaves open the question whether the CFD is
wrong  or  the  image  processing  algorithm  is  producing
spurious results.  

However,  the  work  presented  here  has  successfully
described  the  use  of  some  standard  image  processing
procedures for extracting quantitative data from surface flow
visualisation.   The authors  hope that  these  techniques will
become  routine  when  using  SFV  in  turbomachinery
applications.  

NOMENCLATURE
SFV Surface flow visualisation
O image origin point
OTE trailing edge origin point
x,y axial and tangential coordinates
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