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ABSTRACT 
 
We report on recent developments in the use of adaptive optics (AO) in wide-field microscopy to remove both system 
and sample induced aberrations. We describe progress on using both a full AO system and image optimization 
techniques (wavefront sensorless AO). In the latter system the determination of the best mirror shape is found via two 
routes. In the first an optimization algorithm using a Simplex search pattern is used with an initial random set of mirror 
shapes. We then explore the use of specific Zernike terms as our starting basis set. In both cases the final optimization 
performance is not affected by the choice of optimization metric. We then describe an open loop AO system in which the 
equivalent of a laser guide star is used as the light source for the wavefront sensor. 
 
Keywords: Optical Microscopy, Aberration correction, Adaptive Optics 

1. Introduction 
 
Optical microscopy is still the main research tool for many biological studies. Indeed with the advent of genetic 
manipulation and specifically the use of fluorescent protein expressing in animals and plants it has actually seen a 
renaissance in the past ten years, in particular with the development of novel techniques such as CARS, PALM, 
STORM, STED and SPIM. Previously much optical microscopy was undertaken on fixed and ultra-thinly sliced 
samples, however what the life scientist really requires is the ability to see intact and living tissue. In all of these methods 
described above, as well as now more conventional confocal, multiphoton and structured illumination methods, one has 
to look through the sample at some point. The sample thus adds an additional and uncontrolled optical path to the 
sample, which leads to aberrations in the final image. 
 
Significant work has been undertaken in attempting to explore these aberrations and it is beyond the scope of this paper 
to describe in detail the literature [1] but they come about in general due to refractive index mismatches within the 
sample. The aberrations thus caused are high order (not simply defocus, astigmatism etc) and do not lend themselves to 
compensation through a single optical element, though to some extent spherical aberration can be removed either using a 
multi-immersion lens and adjusting the correction collar, or through the addition of a lens in the optical path. In addition 
to the sample aberrations there are typically some system aberrations present even in the best designed system of mirrors 
and lenses, particularly in complex beam scanning systems. Thus to obtain the best possible images the user would like 
to remove these unwanted aberrations which can cause image degradation and even potentially artifacts within the 
image. 
 
AO was originally developed for use in ground based astronomical telescopes to remove atmospheric turbulence [2]. 
Here the optical aberration is generally determined through the use of a guide star (either real or generated using a laser) 
and a wavefront sensor and the inverse aberration placed on the deformable mirror to compensate for the original 
aberration. High performance AO on ground based telescopes can now frequently produce better quality images than 
space-based telescopes (since ground based telescopes typically have larger apertures). Astronomical AO continues to be 
extremely expensive, but through the development of MEMS and liquid crystal based technology it is now possible to 
construct lower cost AO systems. The move into optical microscopy has taken place on the back of these commercial 
developments. 
 
The original work on AO in microscopy was undertaken on beam scanning systems [3,4,5] demonstrating what can be 
gained through the use of such technology and this was then implemented in a wide field microscope to overcome the 
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The figure 4 clearly illustrates the decrease in the number of iterations used when specific Zernike terms were used in the 
Simplex optimization algorithm. The example shown uses a Sobel metric but all of the metrics discussed above showed a 
similar trend. Crucial to this improvement is the fact that “tip” and “tilt” were specifically excluded from the Zernike set. 
This meant that there was a significantly reduced risk of the selected region of interest being used for the optimization 
metric did not move outside the selected region of interest. It was seen in all cases that in the initial stages of the 
optimization that the variation (or noise) in the metric value was reduced and this is also visible in figure 4 at around 100 
iterations in the random search (lower) curve. 
 
The open loop system was also run on a range of samples, frequently to date non-biological systems in order to make 
quantified measurements in the system in real time. These are best displayed as videos and thus not suitable for print 
publication but a pollen grain image is shown below to illustrate the improvement in the image quality. The images are 
raw images as captured by the camera. 
 

 
 
Figure 5. Raw images of mouse back skin tissue before and after open loop adaptive optics, field of view 23 microns 

 

4. Conclusions and Discussions 
 
We have demonstrated that adaptive optics can be implemented in a wide field microscope using both optimization 
algorithms and open loop control using a wavefront sensor to determine the correct deformation to be applied to an 
adaptive optics mirror to remove both system and sample induced aberrations. There is strong evidence to indicate that 
the selection of the metric in optimization based methods is not crucial, but that the use of specific aberrations (Zernike 
terms) improves the speed of optimization. We have also demonstrated that wide field open loop AO control is possible 
using light from a laser as the equivalent of a laser guidestar. We now aim to extend the techniques to closed loop 
operation and will consider other wide field techniques [9]. 
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