
 

Abstract—Battery clustering is to sort out homogeneous 

battery cells to form a battery pack with high uniformity, 

which is of great importance to prolong the cycle life of the 
lithium-ion battery. The traditional method for battery 
clustering is to compare the charge and discharge 

characteristic curves of the battery cells. This paper 
proposes a new algorithm, the squeeze algorithm, for a fast 

testing and sorting system to save the test time and improve 
efficiency. The algorithm is based on a database of complete 

charge and discharge characteristic curves. With a battery 
cell to be clustered, it will go through a short time test and 

get a partial curve. And then the partial curve will be 

compared with the database curves to get clustered. 
Experiments have been conducted with 100 battery cells to 

be clustered with 1111 database batteries. The clustering 
results show high accuracy, which indicates that the 
proposed algorithm is feasible for battery clustering. 

 
Index Terms--Battery Refurbishment, Capacitance-

voltage characteristic Curves, Clustering algorithms, 

Euclidean distance 
 

I.  INTRODUCTION 

Since the first commercialization of the lithium-ion 

battery (LIB) in 1991, the LIB market has grown 

dramatically in the last two decades and now worldwide 

sales for LIBs have surpassed $13,000 million [1]. 

Compared with other type of batteries (e.g. lead-acid, 

nickel-metal hydride and etc.), LIBs have outstanding 

performance with higher operating voltages, higher 

energy densities and lower self-discharge rates, thus 

being widely used in cameras, mobiles, laptop computers 

and other portable IT devices [1]-[3]. Especially in the 

electrical vehicle field, LIBs play an important role to act 

as the power source and energy storage center [4].  

Generally, a LIB is made up of several Li-ion cells 

(with 18650 most commonly used). In an electrical 

vehicle battery pack, the number of cells reaches up to 

dozens or even hundreds. Those cells in a battery pack 

are connected in a series-parallel structure. A series 

structure would increase the voltage of the whole battery 

pack while a parallel structure increases the capacity, 

which enables the battery pack to adapt to various 

applications [5]. However, problems lie in this structure 

along with battery cycling use. There exist diversities on 
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dynamic property among cells in the same battery pack. 

As a consequence, a battery pack would stop discharging 

when the weakest cell in it gets exhausted, while the 

capacities in other cells are not fully utilized. The case is 

similar in charging process, with the weakest cell not 

fully charged. What is worse, over-charging or over-

discharging may take place, resulting in great harm to the 

battery cells and decreasing the cycle life of the whole 

battery. The discrepancies among cells bring huge 

impacts for the usage of battery packs [6]. 

To deal with this problem, there are two main 

solutions. One is to apply a battery management system 

(BMS). The BMS would monitor the charge condition of 

each cell and manage to balance the capacities of those 

cells, optimizing the performance of the whole battery 

pack. Many researchers attempted to promote efficiency 

of the BMS [7]-[9]. The second method is to sort out 

homogenous battery cells to form a battery pack with 

high uniformity. This solution would prevent the 

discrepancies among cells to make the best of the 

assembled battery pack. 

In the research on battery cell uniformity, it is widely 

adopted to compare feature vectors of different cells and 

classify them into groups according to the distances 

among these feature vectors [6], [10]-[14].  Raspa et al. 

chose open circuit voltage (OCV), total capacity and 

parameters from equivalent circuit model (ECM) as the 

feature vector and worked out the distance among these 

vectors by using self-organizing maps neural networks to 

get the clustering results [6]. Shen et al. employed 

different parameters including “aging voltage, capacity, 

resistance, 1C discharging time and thickness” [10] to 

cluster battery cells into groups. According to [11] and 

[12], battery charge and discharge characteristic curve 

was a better choice for feature vector as it reflected the 

dynamic property of the battery cell. Zheng and Wang 

[13] used Euclidean distance and correlation coefficient 

to measure the difference among battery characteristic 

curves. Duo [14] proposed a fuzzy-based algorithm to 

compare among the characteristic curves. However, the 

above researches are based on a full charge and discharge 

test on battery cells, which is very time-consuming. On 

the other hand, all the adopted methods intend to pick out 

two feature vectors with the minimum distance as the 

criterion for battery cell clustering in a certain sample, 

  A New Algorithm for a Fast Testing and 
Sorting System Applied to Battery Clustering 

Qing Wanga)1), Xianzhe Chenga)b) and Jie Wanga)c) 
a)School of Engineering and Computing Sciences, Durham University, DH1 3LE, Durham, United Kingdom 

b)College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, 
Hunan 410073, China 

c)Postgraduate Institution, China Academy of Space Technology, Beijing, 100086, China 



 

which may bring considerable errors if the sample is very 

sparse. 

This paper aims to improve the efficiency of battery 

testing and sorting to cluster battery cells with similar 

properties. A new method, named squeeze algorithm is 

proposed for a fast testing and sorting system. A database 

of complete charge and discharge curves are established 

as classifying criteria. For a battery cell to be tested, it 

will go through a short time charge and discharge test to 

generate a partial charge and discharge curve. Then the 

obtained partial curve would match with the database 

using the squeeze algorithm to be sorted. As a result, the 

corresponding tested battery cell gets classified. This 

method reduces the test time and improves efficiency for 

battery cell testing and sorting, which is fit for the 

industrial application. 

II.  EXPERIMENTAL 

Experiments have been conducted using Matlab and 

Simulink. A battery test circuit model is built with ideal 

elements in Simulink. After a series of complete charge 

and discharge tests with this model, 1111 complete 

charge and discharge characteristic curves are obtained as 

the database, which will be the classification destinations 

of the clustering process. And then 100 LIBs are fast 

tested with an incomplete charge and discharge process to 

get part of the characteristic curves as the clustering 

samples. The sorting procedure is realized by applying 

the squeeze algorithm with Matlab code, to get the final 

clustering results. 

A.  Charge and Discharge Circuit Model 

The charge and discharge circuit model is based on a 

battery module in Simulink Library Browser, as showed 

in Fig. 1. It has been validated that charge and discharge 

characteristic curves from the Simulink battery module 

resemble the real test curves quite well [15]. For better 

simulation results, the battery module needs to be set to 

fit the LIB characteristics and the charge and discharge 

process should be consistent with real battery test. 

 
Fig. 1. Charge and Discharge Circuit Model. 

In the LIB family, 18650 (18mm diameter × 65mm 

length) is the most popular battery type of the day and is 

widely used in laptops and other e-products. The nominal 

voltage of LIBs is 3.6 V or 3.7 V, varying with the 

manufacturer. The rated capacity ranges from 2 Ah to 3 

Ah, with 2.6 Ah being the most commonly used currently. 

To have a better knowledge about the charge volume held 

by a battery, state-of-charge (SOC) is defined to measure 

the ratio of the temporary amount of charge at a particular 

moment to the fully charged volume [1]. For example, 

the SOC of a fully charged battery is 100% and it will 

decrease as the battery is discharged. 

In the test model, the LIB module is set up using three 

parameters (nominal voltage, rated capacity and Initial 

SOC). The charge and discharge characteristic curve of 

the LIB is determined once nominal voltage and rated 

capacity are assigned with certain values. Initial SOC 

reflects the initial statement of the battery. In order to 

establish an abundant database of characteristic curves, 

the parameters nominal voltage and rated capacity of the 

database batteries are evenly-spaced divided. The 

nominal voltage is set with 11 values from 3.6 V to 3.7 

V, with 0.1 V increment for each rank. And the rated 

capacity varies from 2 Ah to 3 Ah with 0.01 Ah as the 

increment, ending up with 101 ranks. Initial SOC is 

assigned with a random value from 1% to 100%. As a 

consequence, the database consists of 1111 battery cells, 

with their parameters different from each other and their 

charge conditions completely unknown. 

It is required to charge and discharge the database 

battery cells to get complete charge and discharge 

characteristic curves from the test. As for the LIBs, no 

standard is provided to define a fully-charged point and 

an empty-capacity point. It is a widely used routine to 

regard 4.2 V as the full state and 3V or lower as the 

empty state [5]. Two methods exist in the charge and 

discharge process: constant current (CC) and constant 

voltage (CV). CC is mostly used in this process while CV 

is suitable for deep charging to fully charge a battery. 

Each database cell in the test model would firstly be 

charged to 4.2 V in the first step (discharged to 4.2 V if 

the initial voltage is over 4.2 V). The second step 

discharges the cell with 4.2 V as the starting point down 

to 2.8 V, which is taken as the end point of the discharge 

process. Another charge process follows to raise the 

voltage back to 4.2 V (all the charge and discharge 

processes are in constant current 1 A for convenience). 

Voltage data of the tested batteries is sampled in the 

discharge and recharge process to form as the feature 

vector, with the sample time of 20s. In consequence, a 

complete discharge and charge curve is obtained from 

step 2 and 3 (see Fig. 2). 



 

 
Fig. 2(a). Complete Discharge Characteristic Curves.                                      (b). Complete Charge Characteristic Curves. 

Another 100 sample battery cells are fast tested to get 

partial characteristic curves as the clustering samples. 

The parameters of these sample cells are defined with 

random values in the limited ranges, which is similar to 

the case of real test. The fast test process first charges the 

cells to 4.2 V, the same with the first step of complete 

charge and discharge test. Then the discharge process 

follows. It continues for a limited time, which will stop 

long before the tested cell reaches the end of discharge 

point. And finally, the tested battery cell will be 

recharged back to 4.2 V. The voltage data acquisition 

process is the same as before. As there is a voltage step 

change at the beginning of the discharge and charge 

process, the beginning part of the partial curve may 

deviate from the standard characteristic curve. Therefore, 

the discharge and charge partial curve is chopped off at 

the head (200 s) and tail (500 s), left with the same 

length. With this incomplete discharge and charge 

process, a part of the characteristic curve could be 

obtained. These 100 partial curves from the short time 

test would be matched with the database complete 

characteristic curves to get clustered.  

B.  Sorting Procedure with the Squeeze Algorithm 

The sorting procedure is to compare the partial 

characteristic curve with the database curves and find out 

an optimal clustering result. As a matter of fact, there lie 

several challenges in the whole procedure. First of all, by 

comparing with all the database curves, how to figure out 

the optimal one to be clustered with the partial curve is a 

big problem. Second, the length of the partial 

characteristic curve is different from the length of the 

complete characteristic curve. In the comparison process, 

the compared database curve needs to be cut down to a 

segment with the same length of the partial curve. Thus, 

to choose the start point of the segment part is another 

challenge. Third, how to define the distance between the 

partial curve and the database curve is also an important 

factor. 

The squeeze algorithm is proposed to complete the 

sorting procedure. Fig. 3 outlines the flow chart for this 

process.  

 
Fig. 3. Flow Chart for the Sorting Procedure. 

For the battery cell in the fast time test, their 

parameters are set with random values in the limited 

ranges. As a result of the comparison process, the 

parameters of the matched database curve should 

approach the parameters of the partial curve. In order to 

increase the accuracy for the match results, the proposed 

algorithm intends to compare the partial curve to four 

adjacent database curves as a group at one time. The 

database curves are bunched into groups as indicated in 

Fig. 4, which amounts to 1000 groups totally.  



 

 
Fig. 4. The Database Curves Divided into Groups 

For example, if the nominal voltage and rated capacity 

of the partial curve are 3.674V and 2.385Ah respectively, 

then the optimal clustered group of the database curves 

should be database curve 426 (A: 3.67V/2.38Ah), 427 (B: 

3.67V/2.39Ah), 437 (C: 3.68V/2.38Ah) and 438 (D: 

3.68V/2.39Ah). The nominal voltage value of the partial 

curve falls between in the parameters of curve A and 

curve C (or curve B and Curve D), and the rated capacity 

value lies between the parameters of curve A and Curve 

B (or Curve C and Curve D). With this way, the 

discharge part of the partial curve is judged to be situated 

between curve A and curve D, while the charge part lies 

between curve B and curve C. 

In the comparison process, the discharge part of the 

partial curve would be compared with curve A and curve 

D, while the charge part would be compared with curve B 

and curve C in a database curve group. As described in 

section I, the traditional method for the comparison 

process is to extract the feature vector from each curve 

and calculate the Euclidean distance between these 

vectors. However, those extracted characteristic vectors 

are the same length, which is totally different from the 

case in this paper. In consequence, it is necessary to cut 

down the database curve to the length of the partial curve. 

Before distance calculation between partial curve and 

database curve group, it is necessary to judge if the partial 

curve matches with the given curve group. Taking the 

discharge partial curve for example, equal to head value 

of the partial discharge curve, there are corresponding 

start point 1 (s1) and start point 2 (s2) on curve A and 

curve D respectively (see Fig. 5).  

 
Fig. 5(a). Distance Calculation for the Partial Discharge Curve.                        (b). Distance Calculation for the Partial Charge Curve

With the head of the partial discharge curve sliding 

between s1 and s2, if the partial discharge curve exceeds 

the boundary of curve A or curve D, the partial curve 

could not be matched with this curve group. Thus, the 

distance between the partial curve and the related curve 

group would be set as infinite. While the partial discharge 

curve lies between segment A and segment D, the 

discharge distance is defined as the sum of the Euclidean 

distance between the partial discharge curve (vector xi) 

and segment A (vector xA) and the Euclidean distance 

between the partial discharge curve and segment D 

(vector xD). As it is a dynamic distance calculation 

process, a series of distance values could be obtained 

with the sliding step. The final distance of the discharge 

part would be the minimum value in these calculated 

results. For the distance of the charge part, the calculation 

process is similar (with vector yi, yB, yC). Calculation 

formulas are presented in (1) – (3) (n is the length of 

vector xi and yi). The distance between partial curve i and 

database curve group j is the sum of the discharge 

distance and the charge distance. 

After the partial curve i is compared with all the 

database curve groups, a distance array would be 

obtained. Finding the minimum one in the distance array, 

the optimal curve group j is selected out. Then, the choice 

of the clustered database curve would be decided by 

comparing the distance values between this partial curve 

and curve A, B, C, and D. At last, the partial curve gets 

clustered with the specific database curve. 

( ) ( )
1/2 1/2

2 2

ij_d ischarge

=1 =1

1 1
= m in - + - <

n n

p p+ s p p+ s

p p

D s1 s s2
n n

     
≤    

     
∑ ∑xi xA xi xD

,                   (1)

 

( ) ( )
1 /2 1 / 2

2 2

ij_ c h a rg e ' '

= 1 = 1

1 1
= m in - + - ' ' < '

n n

p p + s p p + s

p p

D s1 s s2
n n

     
≤    

     
∑ ∑y i y B y i y C

,                 

       
(2)

  

               
ij ij_discharge ij_chargeD D D= +

                                          
(3) 



 

III.  RESULTS AND DISCUSSIONS 

A.  Clustering Results for the Battery Cell Test 

With the 100 battery cells from the fast test clustered 

to the 1111 database batteries, the accuracy of the 

proposed squeeze algorithm would be revealed from the 

experiment. The dynamic characteristic of the battery cell 

is reflected in the parameters nominal voltage and rated 

capacity. In consequence, if the parameters of the 

clustered database battery approximate the parameters of 

the battery cell from the fast test, the clustering result is 

taken as a successful one. Table 1 shows the clustering 

results for 10 battery cells from the fast test, with 9 

success results. And the match result for the 5-th partial 

curve is reflected in Fig. 6. For the 100 battery cells as 

the clustering samples, the final success clustering rate is 

86%, which shows that the proposed squeeze algorithm is 

feasible for the fast testing and sorting system. 

TABLE I: THE CLUSTERING RESULTS FOR 10 BATTERY CELLS 

(THE LENGTH OF PARTIAL CURVE IS SET AS 2000S.) 
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1 884 [3.634, 2.804] [3.63, 2.80] Success 

2 37 [3.625, 2.035] [3.63, 2.03] Fail 

3 285 [3.692, 2.253] [3.69, 2.25] Success 

4 419 [3.604, 2.377] [3.60, 2.38] Success 

5 230 [3.671, 2.223] [3.67, 2.22] Success 

6 1053 [3.668, 2.953] [3.67, 2.95] Success 

7 368 [3.644, 2.326] [3.64, 2.33] Success 

8 94 [3.653, 2.082] [3.65, 2.08] Success 

9 449 [3.684, 2.401] [3.68, 2.40] Success 

10 80 [3.619, 2.073] [3.62, 2.07] Success 

 

 
Fig. 6(a). Match Result for the 5-th Partial Discharge Curve.                           (b). Match Result for the 5-th Partial Charge Curve. 

With different lengths of the partial curve, clustering 

results may have slight variations. It is analyzed that 

accuracy of the clustering results corresponds with the 

matched length, as a longer voltage curve brings a wider 

match part to get more accurate clustering results. The 

relationship between the length of the partial curve and 

the success clustering rate in the experiment is displayed 

in Table 2. It is obvious that the success clustering rate 

increases with the length of the partial curve. Taking into 

account both the fast test time and the success clustering 

rate, the option of 2000 s as the length of the partial curve 

is an optimal solution, leading to high efficiency and 

accuracy at the same time. 

TABLE II: THE SUCCESS CLUSTERING RATE WITH DIFFERENT LENGTHS 

B.  Clustering Results for the Battery Cell Test 

The clustering results for the battery cell test shows 

that the proposed squeeze algorithm works well on 

battery fast testing and sorting. In the 100 clustering 

samples, most battery cells would be clustered with the 

right database battery, while very few cells have small 

deviations in the clustering results. It is because the 

Length of the Partial Curve (s) Success Clustering Rate 

1000 79% 

2000 86% 

3000 88% 

4000 89% 



 

partial curve is sampled at the forepart of the discharge 

characteristic curve and the back of the charge 

characteristic curve, which are both high-voltage areas. In 

some cases, the differences among the characteristic 

curves are reflected at the low-voltage area. As a result, 

certain samples match with the wrong clustering group, 

ending up with the clustering error. Besides, if the 

parameters of the partial curve lie at the middle of the 

intervals, the distances to the 4 curves in a group are 

close to each other. It is very likely to choose the wrong 

curve. Those are the reasons for the clustering errors in 

the experiment. 

The squeeze algorithm is based on an established 

database of battery characteristic curves. In the 

experiment, the parameters of the database batteries are 

set with specified values, which is different from the 

actual batteries. In real cases, the database characteristic 

curves could be set up by selecting a series of battery 

curves from numerous battery tests. The size of the 

database depends on the requirements of the non-

discrepancies of the battery cells to be clustered. For a 

real battery test, the choice of the charge and discharge 

current may vary according to the demand of test time. 

Thus, the fast test time would also change 

correspondingly. 

The whole experiment is conducted by simulation. 

Although the proposed squeeze algorithm is feasible for 

the simulation experiment, further work is necessary to 

verify the application significance of this algorithm. The 

differences between simulation and actual experiment 

should be taken into consideration. One is that the 

Simulink test model is built with ideal circuit elements to 

get the faultless characteristic curves, while the actual 

experiment system contains noises and all kinds of errors 

for the results (influenced by the temperature, for 

example). The algorithm may need some improvements 

for better effect. Another problem is that there are various 

kinds of LIBs in real life. The dynamic characteristics of 

battery cells may vary with the type or manufacturer, 

resulting in divergences on characteristic curves. 

IV.  CONCLUSION 

In this work, the previous research on battery 

clustering has been compared and analyzed. To improve 

the efficiency, this paper proposes a new algorithm, the 

squeeze algorithm, to apply in a fast testing and 

clustering system. A battery test circuit model is 

established in Simulink to get a database of characteristic 

curves. For a battery cell to be clustered, it will be 

charged and discharged for a short time to get a partial 

curve and then matched with the database curves to get 

clustered. 

The experiment is conducted with 100 partial curves 

from the fast test and 1111 database complete 

characteristic curves using the squeeze algorithm. The 

final success clustering rate reaches 86%, which reflects 

the feasibility for the proposed algorithm. Compared to 

the traditional battery clustering methods, this method 

could save test time to a large extent, with high efficiency 

and accuracy at the same time.  
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