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Abstract

In a Futures-Exchange, such as the Chicago Mercantile Exchange, traders buy and sell contractual promises
(futures) to acquire or deliver, at some future pre-specified date, assets ranging from wheat to crude oil and from
bacon to cash in a desired currency. The interactions between economic and security properties and the exchange’s
essentially non-monotonic security behavior; a valid trader’s valid action can invalidate other traders’ previously valid
positions, are a challenge for security research. We show the security properties that guarantee an Exchange’s economic
viability (availability of trading information, liquidity, confidentiality of positions, absence of price discrimination,
risk-management) and an attack when traders’ anonymity is broken. We describe all key operations for a secure, fully
distributed Futures-Exchange, hereafter referred to as simply the ‘Exchange’. Our distributed, asynchronous protocol
simulates the centralized functionality under the assumptions of anonymity of the physical layer and availability
of a distributed ledger. We consider security with abort (in absence of honest majority) and extend it to penalties.
Our proof of concept implementation and its optimization (based on zk-SNARKs and SPDZ) demonstrate that the
computation of actual trading days (along Thomson-Reuters Tick History DB) is feasible for low-frequency markets;
however, more research is needed for high-frequency ones.

I. INTRODUCTION

A futures contract is a standardized agreements between two parties to buy or sell an underlying asset,
at a price agreed upon today with the settlement occurring at some future date [56]. They are “promises”
to buy or sell, and these “promises” can themselves be traded. Such trading is conducted in a double
auction market operated by a centralized clearing house called Futures Exchange [1], such as the Chicago
Mercantile Exchange (CME). 1 Traders can ‘quote’ a future by specifying a price and notional volume of
assets at which they will buy or sell (a limit order), or initiate a trade by placing a market order for a
“promise” of a quantity (purchase or sale) at the best price from the standing quotes.

General financial intermediation as embodied by a Futures Exchange is still centralized and more
expensive than traditional payment networks which have been successfully challenged by Bitcoin [48].
ZeroCash [7] amongst others.

As opposed to simple decentralized price discovery [20], making a full trading exchange distributed
requires the designed to solve several security challenges, besides the typical security issues of distributed
payments which can be solved by leveraging (and indeed we do so) on ZeroCash [7]: zero-knowledge
succinct non-interactive arguments of knowledge, i.e. zk-SNARKs [10].

The first challenge is the interplay between security and economic viability [43]. Whereas integrity is
obviously needed for payments (see the Ethereum DAO mishaps [21]), confidentiality seemed less critical
for exchanges [20]; one can trace all transactions to a Bitcoin’s ID by using public information in the
blockchain, yet this hardly stopped Bitcoin from thriving [7, p. 459]. Here, disclosing a trader’s account
allows attacks based on price discrimination and would inevitably lead to a market collapse (we illustrate
this effect in §III).

FuturesMEX technologies are the object of the following patent applications: US62/625,428 and PG448130GB.
1On the CME, futures contracts range from bushels of corn to Euro/US$ exchange rates. Recently, CBOE and CME launched Bitcoin futures

markets. These are ‘cash-futures’, that is as they are settled in cash. Eurodollars futures are the largest world market by notional volume: in
quadrillions of dollars/year. See https://en.wikipedia.org/wiki/List of futures exchanges.
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Another challenge w.r.t. other crypto applications such as auctions (e.g., [54]) is the simultaneous need
to i) make publicly available all offers by all parties, ii) withhold the information on who actually made
the quote and iii) trace the honest consequences of an anonymous public action to the responsible actor.
The prototypical example is posting a public, anonymous buy order while personally accruing the revenues
from the sale (without even the seller knowing the actual buyer and vice-versa). The Exchange must also
guarantee that iv) actors do not offer beyond their means, which is an issue related to double spending [4],
double voting [12], or groundless reputation rating [62]. E-voting provides traceability for one’s own vote,
not to the ensemble of agents. Applications of e-cash and privacy-preserving reputation systems guarantee
anonymity for honest actions and traceability only in case of malfeasance, not for honest behavior.

Further, e-cash or voting protocols are essentially monotonic in terms of legitimacy of digital assets of
honest parties when other honest parties join: valid security evidence (e.g. commitments, etc.) accrue over
protocol steps performed by honest parties. Once’s Alice proved she has money (or she casted a correct
vote), the protocol can move on and check Bob’s assets. Alice’s claims are never invalidated by Bob (if
she stays honest and is not compromised). Monotonicity is clearly visible in the security proofs for cash
fungibility in ZeroCash [7], or vote’s eligibility in E2E [33]. This allows for efficient optimization (e.g.
[62]) as a multi-party computation (MPC) with n interacting parties may be replaced by n independent
non-interactive proofs (i.e. zk-SNARK).

In contrast, financial intermediation is not monotonic: Alice’s asset (e.g. a trader’s inventory) might be
proven (cryptographically) valid by Alice and later made (economically) invalid by the honest Bob who,
by just offering to sell assets and thus changing the market price, can make Alice bankrupt without any
action on her side. Hence, v) security evidence by honest parties must be potentially discarded, and vi) the
protocol must account for Alice’s “honest losses” and fix them because there is no centralized exchange
covering them.

Our contribution. We provide the first, secure, distributed Futures Market Exchange which replicates the
functionalities from the CME Globex specifications manual, including each of the main quote types (limit
and market orders), needed to build more complex quotes and all standard margin accounting and marking
to market features. Our goals are the following:

1) To put forward a cryptographic ideal functionality for a distributed futures market, that captures all of
the key security requirements. This is an ideal realization of a distributed futures market, where the market
is run by a trusted third party which knows the secret inputs of all participating traders, and lets the market
evolve on their behalf. Such a functionality, by construction, embodies features (i)-(vi) described above.

2) To design a cryptographic protocol securely realizing our ideal functionality. Our protocol combines
multiparty computation (MPC) and non-interactive zero-knowledge proofs on committed inputs, only
relying on the basic assumptions of secure broadcast channels between traders and an anonymous network.
These assumptions already appeared in several prior works, most notably [7]. We replace the local constraints
verification of the MPC with non-interactive proofs for efficient generation of publicly verifiable transactions
and scalability w.r.t. the number of traders. Full MPC is only performed for sub-tasks capturing the non-
monotonicity and anonymity requirements of the market. We prove the security of our protocol with security-
with-abort—where we allow an adversary to abort the computation after receiving its own intermediate
outputs [32]—and extend it so that an aborting adversary is penalized by forfeiting its hard won stake in
the market, the ultimate discouragement in our setting.

3) To show that our approach is feasible. We do so, by providing a proof of concept implementation using
zk-SNARKs for the zero-knowledge proofs, and the SPDZ protocol [24] for securely realizing the required
MPC sub-tasks. We further optimize our protocol in order to yield a 70% efficiency gain. Our results show
that our solution is feasible for low frequency markets at CME (e.g. trading in Lean Hog commodities):
a trading day can be executed in a day by an Amazon’s EC2 large VM. Further optimizations are needed
for high frequency trading in the largest markets (Eurodollar, Foreign Exchange and Crude Oil futures),
for instance by parallelizing proof generation as most of them are independent, improvements in the zk-
SNARK implementation; different commitment functions or batch proofs for good standing (e.g. proving
the validity of a trader’s inventory for a range of prices); or buying a 30M$/year hardware such as the CME
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data centre.2

Non-Goals. The focus of our paper is to protect against operational attacks on integrity, anonymity
and confidentiality, economics and social attacks are, and always will be, possible similarly to centralized
systems (e.g. insider trading or cartels manipulating the underlying assets) and they are typically dealt with,
ex-post law enforcement [42].

Technical challenges. The main difficulty that we need to face is the fact that futures markets are fully
stateful systems where at each round the functionality changes its internal state, due to a valid move
performed by an agent which updates the public information and her own private information. As mentioned,
the global constraint is such that an agent’s legitimate move can unpredictably make another agent’s state
invalid due to the change in the public information. The market as a whole must transit to a new state
where the legitimate move is accepted and the invalid state is fixed. This intrinsic feature (which we feel is
best described by non-monotonicity) limits the ability of protocol designers to improve on communication
complexity by replacing interactive MPC steps with independent non-interactive proofs.

While the satisfaction of individual constraints could be solved by a standard “commit-and-prove”
approach among the concerned individuals, this would not work for the global constraints. The alternative
would be to implement the whole functionality via general-purpose MPC. However, this solution is
unacceptable given the large variance in trading activity: some traders only make few large orders, others
make several trades every few milliseconds, or even fractions of milliseconds [41]. This leads to an efficiency
requirement (which we dub proportional burden), informally stating that each computation should be
mainly a burden for the trader benefiting from it, which cannot be met by a naı̈ve MPC implementation.
This intuition is confirmed by our experiments, which show that our approach is superior under some
general conditions that are realized in practice.

Paper organization. In the rest of the paper we introduce the key aspects of futures markets (§II) and
illustrate a price discrimination attack due to loss of confidentiality (§III). A formal model of the centralized
futures market (§IV) is followed by the description of the ideal functionality its secure distributed version
(§V). Then we describe the (nonmonotonic) security state of the functionality (§VII), our crypto building
blocks (§VI), and our protocol (§VIII). We provide a proof sketch on its security (§IX) and discuss how to
go beyond security-with-abort (§X). Our proof of concept and its performance results are presented in §XI
and §XII. Finally, we survey related work (§XIII), and conclude the paper (§XIV).

II. AN INTRODUCTION TO FUTURES MARKETS

To illustrate how markets work, we explain the key trading mechanisms and discuss some aspects of the
market microstructure of futures contracts [30], [31]. Fundamental participants in a futures market include
traders, exchanges and regulatory bodies as summarized in Table I.

Traders post buy (bid) or sell (ask) orders for a specific futures contract in the market. The trading
position characterizes a trader as a buyer or a seller: sellers take short positions by selling an amount
of futures contracts; buyers take long positions by buying futures. Obviously buyers prefer to purchase
contracts at lower prices and sellers prefer to sell contracts at higher prices. Traders can also cancel orders
immediately after having posted them to adapt to fast changing markets (a heavily used feature).

The Exchange acts as centralized intermediary between buyers and sellers and guarantees price discovery,
matching and clearing. It manages risks and guarantees the fairness of the market (See Table I for a short
summary of key requirements from an economic perspective).

The first important functionality is to made available to all traders an aggregated list of all waiting buy
and sell (anonymized) orders: the central limited order book. It includes the volume of contracts being bid
or offered at each price point. It is illustrated in Figure 1.

Buy and sell orders at the same prices are matched by the Exchange until the required volume of contracts
is reached. Matched orders will go through a clearing and settlement process to complete a transaction [52].
The exchange usually operates its own clearing house which is responsible for having a daily settlement

2See “Lease back datacenter” in the last CME SEC 10-K report (page 58).
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TABLE I: Key Compositions and Characteristics of Futures Market

Traders Characteristics:
Possible Positions Buy-side traders holding long positions. Sell-side traders holding short positions.
Possible Actions Submit (Market/Limit Orders) and Cancel (Limit) Orders.
Exchanges Main Functions:
Price discovery and order
matching

Disseminating the real-time market data to market participants; Providing a central limited order book
(cf. Fig 1): an electronic list of all waiting buy and sell quotes organized by price levels and entry time.
Matching engines use algorithms to match buy and sell quotes with a price and time priority principle.

Risk management and
clearing of orders

Clearing house is responsible for having a daily/final settlement by the process of “mark-to-market”, so
that no pending promise (to buy or sell) and no debt remains unfulfilled. Traders need to deposit an
initial margin and maintain a minimum funding in the margin account above the maintenance margin;
otherwise, they will receive a margin call for additional funding. Traders failing below the minimum are
forced to liquidate their open positions and netted out.

Market fairness and ab-
sence of price discrimina-
tions

For fairness, traders are anonymous as exchanges hold all info about them and never reveal it to others.
A trader only see the details of her own orders, and not even the ID of the counter party of an order
matching her own order executed through the exchange, as this would allow for price discrimination.

Major Players
Chicago Mercantile Exch. The largest derivatives market with 3.53 billion of contracts traded in 2015 [26].
Eurex Exchange (Eurex) The largest European derivatives market with 2.27 billion of contracts traded in 2015 [26].
Regulatory Bodies Futures markets are regulated by independent government agencies to protect market participants and

prevent fraud and manipulation activities, such as the CFTC [57] and the SEC [58].

Sell
Limit
Orders

Price = 6.2, Volume = 100
Sell level 3

Price = 5.5, Volume = 120
Sell level 2

Price = 5, Volume = 260
Sell level 1

Mid price = 3.5

Buy
Limit
Orders

Price = 2, Volume = 320
Buy level 1

Price = 1.5, Volume = 170
Buy level 2

Price = 0.5, Volume = 90
Buy level 3

An order book with limit orders. The dashed line is the average mid-price which is calculated by the CME as the (unweighted)
average of all price levels. Traders’ holdings are evaluated against the mid-price.

Fig. 1: Order Book

TABLE II: Samples of Market Activity

The table shows the maximum number of active traders (#T), number of posted orders (#PO), and matching orders (#MO) for
some futures contracts (Eurodollar being world’s largest). Cancelled orders’ number is close to that of posted orders. Data is
obtained from the CME tapes via the Thomson Reuters Tick History database.

Contract Lean Hog LHZ7 Eurodollar GEH0
Trading Day #T #PO #MO #T #PO #MO
Low 15 1067 46 14 23469 85
Normal 17 3580 146 199 267089 7907
High 33 6709 536 520 376075 8402

for each futures contract by the process of “mark-to-market”, which is valuing the assets covered in future
contracts at the end of each trading day. Then profit and loss are settled between long positions and short
positions.

Table II illustrates the variability of the markets by comparing some days for the Eurodollar, the largest
market in the world, together with Lean Hog, a less frequently traded futures.

Informal Properties. From a security perspective an exchange is clearly an instance of a multi-party
reactive security functionality [17]: every agent must satisfy individual constraints (monotonic) and the
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TABLE III: Forcing Alice out of the market

Alice accumulates 90 selling contracts currently at the price of 10 and have a cash margin of 1400. As the price fluctuates by
δP her inventory liquidation price is XAlice = −90× (10 + δP ), and her net position is NAlice = 1400 +XAlice = 500−90× δP .
When δP = 0, she holds a small margin (at $500). When δP = 6, her net position drops to -$40 and she has to be netted out
from the market.

Price = $10
Trader Cash Contracts Position
Alice 1400 -90 500
Bob 1200 30 1500
Carol 1200 30 1500
Eve 1200 30 1500

Price = $16
Position

-40
1680
1680
1680

system as a whole must satisfy global constraint (possibly non-monotonic). The economic requirements in
Table I can be directly transformed into the security requirements below.

Availability of Order Book with Confidentiality of Trader Inventory. Acting as counter party for each
trader, the exchange must hold all trading information including prices, volumes, margins, and traders
ownership of orders, etc. It has to protect a trader’s own inventory without leaking it to other traders.

Market Integrity and Loss Avoidance. The exchange implements trading (execute matching orders), and
guarantee final settlements (traders’ margin meet posted orders) after each event to ensure the integrity of
the marketplace. More constraints such as limiting a trader’s largest position are added in practice (we omit
them due to lack of space).

Trader’s Anonymity. The exchange must prevent the linkage of orders by the same trader. This is done
by managing an anonymous central limit order book where only bid and ask prices are publicly available.
In this way, traders will not be able to identify and forecast others’ trading strategies.

Trader’s Precedence Traceability. The exchange must allow the linking of limit orders to the individual
traders so that matching orders can be accrued to the traders who made them in the exact order in which
they where posted.

In traditional applications of MPC, such as auctions and e-voting, there is no difference between the
parties: everybody submits one bid or casts one vote. This is not true for general financial intermediation:
retail and institutional investors are 71% of traders in the TSX market, but only make 18% of the orders [41].
Traders responsible for the bulk of the over 300K orders per day were “algorithmic traders” who, in 99%
of the cases, only submitted limit orders (i.e., never to be matched in an actual trade). Such a difference
must be accounted for by any protocol, an efficiency constraint that we state below.

Proportional Burden: Each computation should be mainly a burden for the trader benefiting from it (e.g.
posting an order or proving one’s solvency). Other traders should join the protocol only to avoid risks (of
failed solvency).

III. LOSS OF ANONYMITY AND PRICE DISCRIMINATION

If confidentiality and anonymity fail, some traders can act strategically by posting orders that they do not
intend to honor so that other traders will be maliciously forced out of the market(see the Risk Management
entry from Table I in §II). This attack has been first reported by [43].

Assume Alice, Bob, Carol, and Eve are in a market. Alice accumulates a large short position of 90
contracts selling at $10 each, each other trader buys 30 contracts from Alice at this price. In English, her
inventory holds 90 promises to sell. To estimate a trader’s exposure, the Exchange assumes that all contracts
are bought and sold instantaneously at the current mid price of $10 (See Figure 1). So, to fulfill her promise
to sell 90 contracts Alice would have to buy them first from the current mid price and reduce her cash
availability to 1400− 90 · 10 = 500. We have the situation shown in Table III (left).

If Alice could wait, she could post a buy order of $9.50. If somebody eventually matched her order
later in the day she would obtain a modest profit (50c per contract). If Carol and Eve know that Alice is
a small investor and needs cash, they can generate an instant profit by changing the liquidity profile of
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TABLE IV: Market Indicators for the current round t of the Futures Market

Indicator Notation Definition Description
Best sell price index lsell min{`′ | (t′, `′, i′, v′ < 0) ∈ O} Index of the lowest price of all sell orders in the order book
Best buy price index lbuy max{`′ | (t′, `′, i′, v′ > 0) ∈ O Index of the highest price of all buy orders in the order book
Mid price p̄ (plsell + plbuy )/2 The average value of the best buy price plbuy and best sell price

plsell

Available volume at price
ph

Vh

∑
(t′≤t,h,i′,v′)∈O|v

′| The sum of volumes over all orders at price ph

Available sell volume up
to ph

V sell
h

∑h
`=lsell

V` Aggregation of all volumes available from the best sell price lsell

to the final maximum acceptable price p` (` ≥ lsell)
Available buy volume
down to ph

V buy
h

∑h
`=lbuy

V` Aggregation of all volumes available from the best buy price lbuy

to the final least acceptable price h (` ≤ lbuy)

the market. They can post buy orders at slightly higher prices, this changes the mid prices and pushes the
liquidation price of Alice’s position higher. Alice could try to sell to those buy orders, but this pushes the
contracts more deeply negative in a rising market exacerbating her problem of being close to the margin
call. Eventually, the liquidation price is high enough, e.g. $16, that Alice’s net position is below the margin
call threshold and Alice is cashed out, with a realized payout to the other traders, i.e. her $500 is given to
the other traders.

The other traders can then cancel their orders and the price could then decrease back to $10 or even
lower (when Alice’s trades would have been profitable), but Alice cannot benefit from this price as she has
already been cashed out. The other traders have not actually traded anything and still forced out Alice by
adjusting their buy quotes strategically. Eve and Carol have price discriminated Alice: their pricing strategy
could only work because they knew exactly how much was in Alice’s pocket and therefore how much was
needed to nudge her out. The opposite problem can be generated from a long position and the market then
being artificially deflated.

IV. FORMAL FUTURES MARKET DEFINITION

Formally a futures market consists of N traders, each trader identified via an index i ∈ [N ], and a
sequence of L available prices3 (for the limit orders) in ascending order (i.e., p1 < p` < pL for ` ∈ [L]).
The market evolves in rounds, where T is the maximum (constant) number of rounds4. The data stored
(and updated) for the current round t ∈ [T ] is a tuple (O, I).
• The set O is the limit order book, and consists of a sequence of tuples o′ = (t′, `′, i′, v′), where o′

represents a limit order posted at round t′ ≤ t by a trader Pi′ for a desired volume v′ 6= 0 of price p`′ .
A limit order is a “sell” order if v′ < 0, and a “buy” order otherwise.
• Ii = (mi, vi) is the inventory of a trader i ∈ [N ] where:
◦ The value vi is the number of contracts held by the trader (for long positions vi > 0, for short ones
vi < 0);
◦ The value mi is the cash available to the trader.

Initially, every trader starts with no contract in the inventory as well as a non-negative deposit (i.e.,
∀i ∈ [N ] : vi = 0,mi ≥ 0), and the market is an empty order book (i.e., O = ∅).

To express the constraints that a trader can meet her obligations and make orders within her means we
introduce some auxiliary functions. The instant net position ηi is the cash she can get (or must pay) upon
liquidating all her contracts:

ηi = mi + cash(vi) (1)

3 In the CME Globex, trading operations starts with an indicative opening price (IOP). Other prices are an integer number of upward or
downward ticks from the IOP. A price is always non-zero and each underlying asset of a futures contract usually has a reasonable upper bound
for the price. Hence we can map possible prices into a finite list of L available prices and refer to a price only with its index `.

4At CME an open cry starts at 7:20 and ends at 13:59:00, the evolution of time is accounted for by with the number of rounds.
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TABLE V: Value cash(v) to liquidate an inventory of volume v

Cases Definition Description
v > 0 (long) and V buy

1 ≥ v
∑l+1

h=lbuy
ph · Vh + p` · (v − V buy

l+1) Cash a trader can get upon selling all volume v at the current buy
quotes in the order book, where l is the least index s.t. V buy

l ≥ v.
v > 0 (long) and V buy

1 < v
∑1

h=lbuy
ph · Vh + p1 · (v − V buy

1 ) The order book does not have enough supply on the buy side.

v < 0 (short) and V sell
L ≥ |v| −

∑l−1
h=lsell

ph · Vh + pl · (|v| − V sell
l−1) Cost a trader must pay to buy all volume v from the current sell

quotes in the order book, where l is the least index s.t. V sell
l ≥ |v|

v < 0 (short) and V sell
L < |v| −

∑L
h=lsell

ph · Vh + pL · (|v| − V sell
L ) The order book does not have enough supply on the sell side.

where cash(vi) represents the liquid value of the inventory, i.e., the amount of cash a trader Pi can get (or
must pay) upon selling (or buying) all volume holding vi at the current buy (or sell) quotes in the order
book.

The function ·̂ represents the estimated value of a trader’s inventory variables if the market accepted her
new order. Auxiliary definitions used in the calculation of market conditions are listed in Table IV (mid
price, best sell price, etc.) while cash(vi) is defined in Table V. For the estimated value of the inventory
when a trader Pi posts an order (t, `, i, v) at price p` for a volume v in round t, we have:

m̂i = mi − p` · v, v̂i = vi + v, η̂i = m̂i + cash(v̂i) (2)

We can now formalize the properties, which must hold at every round, corresponding to the
security/economic requirements informally introduced in §II.

Definition 1 (Market Integrity). The amount of cash available by all traders is constant (
∑N

i=1m
′
i =∑N

i=1mi) where m′i is the margin at time t′ ≤ t), the total volume holding is zero (
∑N

i=1 vi = 0), and the
best buy price is less than the best sell price (1 ≤ lbuy < lsell ≤ L).

Definition 2 (Traders Solvency). All traders have a positive instant net position (ηi ≥ 0) and can afford
the new limit order at posting time (η̂i ≥ 0).

Definition 3 (Availability of Orders with Anonymity of Trader). For any order (t, `, i, v) posted at time t,
the order information (t, `, v) must be made public before time t + 1, whilst information about i is only
known to Pi.

Definition 4 (Confidentiality of Trader Inventory). Only Pi knows the values of Ii = (mi, vi) as well as ηi
with the exception of time T after mark-to-market when vi = 0.

The two previous requirements imply that m̂i and v̂i, as well as η̂i must also be confidential (otherwise
one could recover the inventory by reversing the computation from orders).

Definition 5 (Trader’s Precedence Traceability). Let O be the current order book, (t, `, i, v) be an order,
and t′ be the smallest round t′ < t such that (t′, `, i′,−v′) ∈ O then the order book O∗ at time t+1 respects
traders precedence given order (t, `, i, v) and order book O iff

1) if no such t′ exists for O, then O∗=O ∪ {(t, `, i, v)},
2) if |v|<|v′|, then O∗=O∪{(t′, `, i′, v−v′)}\{(t′, `, i′,−v′)}
3) else O∗ respects traders precedence given order (t, `, i, v − v′) and order book O \ {(t′, `, i′,−v′)}

V. THE IDEAL REACTIVE FUNCTIONALITY

For expository purposes, both in the functionality’s and in the protocol’s description we allow an adversary
to abort the computation after receiving its own intermediate outputs. This flavor of security is known as
security with aborts [32]. In Section X we change the protocol to avoid scot-free aborts.

The futures market evolution is captured by an ideal reactive functionality FCFM where all the traders
send their private initial inventory to a trusted third party (during the so-called Initialize phase), which lets
the market evolve on their behalf. A typical evolution of the market includes processing orders (Post/Cancel
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Futures Exchange Ideal Functionality FCFM runs in phases with a set of traders (P1, . . . , PN ) and a list of prices
(p1, . . . , pL).
Initialization: Upon (init, Pi,mi) from all traders, accept the input iff mi ≥ 0. Hence, store (mi, vi := 0) as the inventory

of Pi. Finally, initialize t := 0 and O := ∅.
Post/Cancel Order: If t < T , upon receiving (post order, Pi, `, v) (resp. (cancel order, Pi, t

′)) from Pi, let t := t+ 1.
1) Check ` ≥ lbuy for v < 0 (` ≤ lsell for v > 0). In case of Cancel Order, retrieve (t′, `′, j, v′) from O and check
j = i..

2) Let I∗i be an identical copy of Ii, check η̂i ≥ 0 w.r.t. to I∗i and the order book O∗ := O ∪ (t, `, i, v) (resp.
O∗ := O \ (t′, `′, j, v′)):

3) If any check fails, send (invalid post, t, `, v) (resp. (invalid cancel, t′)) to every trader; else send
(post order, t, `, v) (resp. (cancel order, t′)) to every trader and proceed to Margin Settlement with input I∗i
and O∗ (c.f. Fig. 3). ; if “succeed”, let Ii = I∗i , O := O∗, otherwise proceed to Mark to Market.

4) In case of Post Order, fulfill the order starting from the earliest opposite order of the same price already in the
order book, until the new order is filled or there is no past order to match it with. (c.f. Fig. 3).

Mark To Market: at t = T , offset all positions, i.e. ∀Pi : mi := mi + vi · p̄, and vi := 0.

Fig. 2: The operations of the ideal functionality FCFM for posting, cancelling and marking to market

Order phases), netting out traders with insufficient funds to maintain their position, we refer to these traders
hereon as “broke” traders (Margin Settlement phase), and finally offset all positions (Mark to Market
phase). A formal description is in Fig. 2.

Intuitively, the matching process performed during the Post Order phase (c.f. Fig. 2). takes the new
order (t, `, i, v) and tries to match it with all previous limit orders of opposite side in the order book that
have the same price. In other words, if the limit order is a buy order it will be matched with a sell order,
and vice versa. The priority to match is given to the limit order with a smaller round index. When a match
is found, the trade is reconciled, and the available cash, as well as the volume holding of the traders,
is updated accordingly (i.e., on buy side: increase volume, decrease cash; on sell side: decrease volume,
increase cash). The matching process stops either when the new order is fulfilled, or there is no past order
that can fill the new one. In the latter case, the remaining volume is left in the order book as a new limit
order.

An important feature of FCFM, is to guarantee payable losses by each trader (i.e., ηi ≥ 0). Hence, when
the last round is reached, all traders must then offset their position, so that the data at round T will consist
of all zero volumes, non-negative balances, and an empty order book.

Since the net position might change (due to the updates of the order book) it is necessary to check
the new instant net position η∗i of each trader Pi after the update. In case of any negative net position,
the last update cannot be committed until all broke traders Pi (i.e., ηi < 0) are netted out, which is done
in the so-called Margin Settlement phase. (c.f. Fig. 3). This requires each new broke trader to cancel all
pending orders (becomes canceled), and buy/sell all contracts in the inventory that the trader is short/long,
at whatever price available at the moment (becomes netted). At the end of the Margin Settlement phase
the order fulfillment is resumed, and the update will be committed.

For simplicity, after a trader Pi is netted out, the trader cannot participate in the market in the subsequent
rounds. In the worst-case scenario where: (i) the market cannot supply the margin settlement of broke
traders (because, e.g., they hold too many contracts comparing to the current available volume in the order
book), or (ii) even the margin settlement cannot bring a broke trader’s position back to non-negative, the
ideal functionality proceeds directly to Mark to Market.

Non-monotonicity. A challenging feature of the futures market’s ideal functionality is its intrinsic non-
monotonic behaviour, in a sense made precise below.

Remark 1. The properties of private values belonging to a honest trader Pi executing the ideal functionality
of Fig. 2–3 are non-monotonic in the actions of other honest traders: Let Pi be a good trader (private value
ηi > 0) at round t with order book O, and further assume that at round t+ 1 the order book gets updated
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Margin Settlement is run with a candidate order book O∗ and a candidate inventory I∗ starting with a set of new broke
traders B := ∅.

1) Repeat the following steps until η∗i ≥ 0 for all good traders Pi:
a) Compute the new instant net position η∗i of all good traders Pi; if η∗i < 0 let B := B ∪ {Pi}.
b) For each Pi ∈ B, remove all limit orders oi := (t′, l′, i, v′) from both O∗ and O, send (remove, (t′, l′, v′)) to each

trader.
2) if B = ∅, return “succeed’; else let O∗ := O and I∗ := I and repeat the following steps for each Pi ∈ B, until
B := ∅:
a) Net out Pi by repeatedly running Order Fullfilment with fixed input (t, lsell, i, vi) for short position (or (t, lbuy, i, vi)

for long position), until vi = 0. If the market cannot supply the margin settlement of Pi, i.e, there is no order to
match, return “fail”.

b) Let B := B \ {Pi}.
3) Return “succeed”.

Order Fulfillment for oi = (t, l, i, v) starts with t′ = 1, repeat the following for each entry oj = (t′, l, j, v′) ∈ O such that
v · v′ < 0:
• Send (match, t′, l, v′) to each trader;
• Compute the matched volume δ := min(|v|, |v′|), then remove δ from oi and oj , i.e. in case v > 0, o∗i := (t, l, i, v −
δ) and o∗j := (t′, l, j, v′ + δ) (otherwise swap i and j).

• Let O∗ be an identical copy of O, where the orders oi and oj are replaced, respectively, with o∗i and o∗j .
• In case v > 0, update the inventories as follows (in case v < 0, swap i and j in the equations below):

m∗i := mi − plδ v∗i := vi + δ m∗j := mj + plδ v∗j := vj − δ;

• Let I∗ be an identical copy of I where the inventories of Pi and Pj are replaced, respectively, with (m∗i , v
∗
i ) and

(m∗j , v
∗
j ).

• Run Margin Settlement with input O∗ and I∗.
• If Margin Settlement returns “fail”, proceed to Mark to Market (Fig.2) otherwise, let O := O∗, I := I∗, and:

if v′ = 0, let O := O \ oj ; if v = 0 , let O = O \ oi

• Define t′ := t′ + 1, and repeat the above until t′ = t or v = 0.

Fig. 3: The operations of the ideal functionality FCFM for margin settlement and order fulfillment

to O∗ due to an offer posted by another good trader Pj 6= Pi. The new order book O∗ affects the value
cash(vi) (Table V), which might result in a negative instant net position ηi (Eq. (1)), thus making Pi a bad
trader at round t+ 1, even if it was inactive during that round.

Security properties. We briefly illustrate why FCFM fulfils the security requirements of the futures market
in §II. The Availability of Orders with Anonymity of Trader property is guaranteed by broadcasting only
(post order, `, v) upon receiving a (post order, Pi, `, v) from Pi. The same reasoning applies for canceling
orders. Confidentiality of Trader Inventory is guaranteed as FCFM keeps the trader’s inventory secret, all
broadcasts post order, cancel order, invalid post, invalid cancel, match and remove contains no inventory
information (mi, vi, ηi m̂i or v̂i). As all the computations of FCFM respect the conditions in Def. 1 and
Def. 2, Market Integrity and Traders Solvency properties are preserved. The Trader’s Precedence Traceability
property is also maintained due to: (i) only the owner of an order can match/cancel that order and (ii) only
a good trader can post/cancel in normal phase while only broke traders can cancel and canceled traders
can post during margin settlement phase. The Proportional Burden is obviously satisfied because we have
a centralized functionality. We return to its satisfaction on the actual distributed protocol.

VI. ASSUMPTIONS AND CRYPTO BUILDING BLOCKS

We elected to use as many standard crypto blocks as possible for both protocol construction and reliability
of security proofs.
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a) Anonymous Communication Network and Secure Broadcast Channel: Recall that the futures market
ideal functionality guarantees full anonymity of the traders. To this end, we assume an underlying anonymous
network that hides the traders’ identifying information (e.g., their IP address). This assumption was already
used in several prior works, most notably [7]. We also assume secure broadcast channels between the
traders. Such channels could be implemented by utilizing a consensus protocol, e.g. PBFT [18].

Initial Bootstrap: As we employ several zero knowledge functionalities in our protocol, instantiated with
zk-SNARK [10], an initial setup is required for global information such as proving keys and verifying keys,
which can be achieved securely in practice with MPC as in [9].

b) Commitment Schemes.: We rely on a non-interactive commitment scheme Com, with domain {0, 1}∗.
We typically write JvK := Com(v; rv) for a commitment to value v using randomness rv ∈ {0, 1}∗. To open
a given commitment JvK, it suffices to reveal (v, rv), so that a verifier can check that JvK = Com(v; rv).
For the proof of security we need that JvK statistically hides the committed value v, and after publishing
JvK it is computationally infeasible to open the commitment in two different ways. We follow [28] for the
formal definitions.

We use the following standard NP relations: (i) Rvc, for validity of commitments; (ii) Roc, for ownership
of an opening; (iii) Rzero− (resp. Rzero+ , R−) for commitments to non-positive (resp. non-negative, negative)
values; (iv) Rec, for equality of two openings; (v) Rnec, for commitments to values different from a pre-
defined constant.

c) Hybrid Ideal Functionalities.: To implement FCFM we use hybrid ideal functionalities, with the
usual simulation-based proofs relying on the composition theorem [16].

All our functionalities receive some values/randomnesses and the corresponding commitments, and must
first check whether the commitment actually corresponds to the claimed value, returning ⊥ otherwise (as
in Rvc). The remaining features outlined below are specific to our application. They are similar to range
proofs [14], [15].
• The Secure All Positive Check functionality Fpcheck receives from every trader the net position ηi and

guarantees solvency (i.e.,
∧
i ηi ≥ 0).

• The Secure Sum Comparison functionality Fcompare receives from every party a pair of old and new
binary flags {fi, f ∗i }. It checks whether the total number of flags has not changed (i.e.,

∑
i fi =

∑
i f
∗
i ).

• Finally, the zero-knowledge functionality FRzk is parameterized by an NP relation R and receive inputs
from a trader Pi in the role of a prover, while all other traders {Pj}j 6=i play the role of verifiers. As
usual the prover sends the statement xi and the corresponding witness wi to the functionality, while
each verifier sends its own statement xj to be checked. Each verifier gets the outcome of R(xj, wi)
if xi = xj , otherwise it gets ⊥. For simplicity we omit the zk subscript. MPC will be identified by
subscripts and zk by superscripts.

The NP relations we use are summarized in Table VII. To describe them, we use some auxiliary values
that are not needed in the ideal functionality FCFM (albeit they might well be present in an actual centralized
exchange implementation). These additional values are defined in §VII and Table VI. Some of our relations
directly test the requirements of Def. 1,2 and 5, whereas other relations are used to validate intermediate
results in our protocol construction, and share similarities with the NP statement POUR in [7].

VII. SOLUTION OVERVIEW

The first challenging part of the protocol construction is to identify a suitable form for the state of the
reactive security functionality implementing FCFM that would account for its non-monotonic behavior in the
legitimacy of traders and assets. A simple (but wrong) solution would be to use just the private inventory
values of the individual traders. Each trader could prove in ZK that it respect the constraints stated in
Def. 1, 2 and 5. Unfortunately, the arrival of new valid orders could make the constraints of some other
trader invalid, i.e. the protocol should no longer consider her ZK proof valid.
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TABLE VI: Futures Market Notation

Nota. Description
ρ Root of a Merkle tree
path Authentication path of a token τi in a Merkle tree with root ρ
Obuy Current range choices for long position trader to use in net position calculation, defined as {((p1, Vmax), (p1, V

buy
1 )), ((p1,

V buy
1 ), (p2, V

buy
2 )) . . . , ((plbuy , V

buy
lbuy

), (0, 0))}
Osell Current range choices for short position trader to use in net position calculation, defined as {((0, 0), (plsell , V

sell
lsell

)), . . . ,

((pL−1, V
sell
L−1), (pL, V

sell
L )), ((pL, V

sell
L ), (pL, Vmax))}

plb Lower bound price used for net position calculation
Vlb Lower bound cumulative volume used for net position calculation
pub Upper bound price used for net position calculation
Vub Lower bound cumulative volume used for net position calculation
δc Incremental value for the pending order counter

TABLE VII: Futures Market Relations

Relation Additional Conditions
Rtoken Token τi is correctly constructed from the inventory

values, i.e.
τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri)

Rinv The new inventory values mi, vi, m̂i, v̂i, ci,
fbad,i, fdel,i, fout,i are correctly constructed from an old
inventory (with token τ ′i ), i.e. Auth(ρ, pathi, Jτ ′iK) = 1;
τ ′i = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; r

′
i)

Ruinv The new inventory values m̂i
∗, v̂i

∗, c∗i are correctly up-
dated from an old inventory (w.r.t. δc, l, v), i.e.
m̂i
∗ = m̂i − δc · pl · v; v̂i∗ = v̂i + δc · v; c∗i = ci + δc

Rrng The upper and lower bounds of cumulative volumes and
prices plb, Vlb, pub, Vub are correctly selected from the
Obuy or Osell, i.e. Vlb ≤ |v| ≤ Vub and one of the
following holds:
v > 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Obuy

or v < 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Osell

or v = 0 ∧ (plbVlb) = (pub, Vub) = (0, 0)
Rnet (Estimation) of an instant net position ηi (resp. η̂i) are

correctly computed, i.e. ηi = mi+plb·Vlb+pub·(|vi|−Vlb)
Rmatch The order fulfillment is correctly done, i.e. m∗i = mi −

pl · v; v∗i = vi + v; c∗i = ci + δc
Rflags The transition from the flags (fbad,i, fdel,i, fout,i) to the

flags (f∗bad,i, f
∗
del,i, f

∗
out,i) is consistent with the values

(η∗i , v
∗
i , c
∗
i ), as shown in the diagram in Fig. 4

Rmtm A trader Pi is correctly marked to market, i.e. m∗i =
mi + p̄ · vi

We must also store such a state in a way that after an order is accepted by the market (i.e. the ensemble
of agents) it is not possible to link it to the next order by the same trader. This cannot just be the union of
the individual (unopened) inventories. By looking at the unchanged inventories the traders could identify
the trader who did the order. A global MPC step to update the entire state would be a solution but it would
put an unnecessary burden on the other traders. A further challenge is that we must keep a fully ordered
list (Matching orders must be executed according to arrival time).

First, we augment the private state of each trader with additional information besides the inventory mi

and vi. We memoize the value of the estimation m̂i and v̂i, and a counter ci to track the number of pending
orders. Each time a trader Pi posts an order (`, v), the memoized values are updated as m̂i = mi − p` · v,
v̂i = vi + v, and ci = ci + δc where δc = 1. For order cancellations, or complete matches of pending orders,
the reverse computation is performed (δc = −1). The use of memoized values is a quick calculation to
do and to verify cryptographically. Yet, the foremost reason for such device is that the values m̂i, v̂i of a
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0,0,0
(good)start

1,0,0
(broke)

1,1,0
(canceled)

1,1,1
(netted)

η∗i ≥ 0

η∗i < 0

η∗i < 0 ∧ c∗i = 0

c∗i > 0

c∗i = 0

v∗i 6= 0

v∗i = 0

Fig. 4: Inventory flags state transition diagram

trader are needed to prevent the linking of limit orders during the verification procedure, while allowing
the instantaneous computation of η̂i.

Memoization avoids the use of MPC when addressing the conflicting requirements of i) providing a
public trail of events, ii) publicly verifying a constraint on a private subset of such events as well as iii)
showing that such private events are all and only applicable events. To meet (iii) Alice would have had to
show which orders belonged to her to add them to her estimated net position. Since the full order book
is visible (i), her full trading strategy would then be visible to the other players. In contrast, if we make
sure that an order is private to trader Bob (ii), this very property does not allow Alice to prove that the
order in question does not belong to her (and does not make her over budget), so failing (iii). A full MPC
protocol would be a solution but this would force other traders to participate to the posting of any order
from a third party. As mentioned, such burden would be considered unacceptable.

Next we introduce three flags to represent the status as a potentially broke trader. A trader’s inventory
is marked with a state represented by the three flags fbad,i, fdel,i, fout,i. We call an inventory with a non-
negative instant net position a good inventory (fbad,i=0, fdel,i=0, fout,i=0), otherwise it is a broke inventory
(fbad,i=1, fdel,i=0, fout,i=0). A good trader can do a normal post/cancel action, while a broke trader has
to cancel a previous order in the Margin Settlement phase. Finally, we call an inventory canceled if it
is a broke inventory with no pending order (after canceling all orders in the Margin Settlement phase)
at the time of commitment (fbad,i=1, fdel,i=1, fout,i=0); an inventory is, instead, netted if it has a zero
volume holding (after matching to an offset position during Margin Settlement) at the time of commitment
(fbad,i=1, fdel,i=1, fout,i=1). The state transition diagram in Fig. 4 shows how the inventory switches from
one state to another, as well as the condition causing the transition. This status will be key to capture
the non-monotonic evolution of the validity of commitments and zk proofs once a valid order (of another
trader) is accepted.

The overall state is then captured by a token τi that is a commitment of all values in the inventory (with
fresh randomness ri); initially, such value is only known to the trader itself. Each trader keeps the token
secret and broadcasts a commitment to it in order to commit to a new inventory; such an inventory is
considered as unspent. At a later point, a trader can reveal the token and retrieve a previously committed
inventory, in which case we say the inventory is spent, as the corresponding token cannot be used anymore.

The anonymity of the inventory is guaranteed by relying on Merkle trees [44] in conjunction with the
zero-knowledge proofs (as in [55]). Throughout the execution of the protocol, a Merkle tree T based on
a collision-resistant hash function H : {0, 1}∗ → {0, 1}∗, where the leafs are commitments, is maintained
and updated. ρ denotes the root of the tree, and path denotes the authentication path from a leaf JvK to
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TABLE VIII: Merkle Tree’s supported operations

Definition Description
ρ = Add(T , Jv′K) Adds a new leaf (the hash of Jv′K) to the tree and generates a new root

ρ.
path = Path(T , Jv′K) Returns the authentication path from Jv′K to ρ.
{0, 1} ← Auth(ρ, path, JvK) Authenticates JvK in T w.r.t. the authentication path path (where output

1 means the authentication succeeded).

the root ρ. As in [55], [7], the number of leafs is not fixed a-priori, one can efficiently update a Merkle
tree T by appending a new leaf, resulting in a new tree T ′ with root ρ; this can be done in time/space
proportional to tree depth. Table VIII summarizes the supported ops Add, Path and Auth of a Merkle tree
T .

Preserving Traders’ Anonymity. The commitment (the retrieval) of trader inventories to the Merkle Tree
T is obtained by running a sub-protocols Πput (resp. Πget) as follows:
• Executing protocol Πput, the trader broadcasts a commitment to the token corresponding to the current

inventory:
τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri)
Thus, the trader proves that the token is correctly constructed (using F token) and appended into the
Merkle tree T (with operation Add), before broadcasting the new root of the tree. The other traders
will check that the new root is correctly computed before accepting it.
• In an execution of protocol Πget, a trader can retrieve a previously committed inventory (say, at round
t′ < t), and spend it for posting or canceling an order (l, v), by revealing the secret unspent token τ ′i
and proving that the newly committed values are consistent updates of the values committed at round t′;
this is done using F inv (to retrieve the inventory) and then Fuinv (to update the inventory); in particular,
Jτ ′iK is a leaf of the current tree and mi = m′i, vi = v′i, m̂i = m̂i

′ − δc · pl · v, v̂i = v̂i
′ + δc · v, and

ci = c′i + δc, while all the flags fbad,i, fdel,i, fout,i stay the same. Every time an inventory is retrieved,
two sets of commitments are generated corresponding to the inventory values before and after the
update. The token τ ′i is now marked as spent and will not be usable for retrieving any inventory.

The main Merkle tree T can also be forked (via sub-protocol Πbackup, see below) into a backup tree TU
to use during the Mark to Market phase in case there are still traders with a negative net position even
after the Margin Settlement phase. We use this feature to challenge the non-monotonicity of security and
go beyond security-with-abort.

VIII. PROTOCOL CONSTRUCTION

At this point an easy solution would be to just run the entire reactive functionality as a global MPC. As
we mentioned, this would be unacceptable from the perspective of most traders: the burden of computation
should be shifted to parties wishing to prove something (e.g. their good and bad standing). As such, only
when global consistency of the market is at stake should all traders be involved. We illustrate this empirically
in §XII.

Fig. 5 summarizes how the various security functionalities and sub-protocols have been used to implement
each step of the global ideal functionality.

First we present a few useful sub-protocols that are extensively used during different phases of our main
protocol.

a) Common Sub-Protocols: The protocols in Fig. 6 below are used extensively as sub-routines in our
main protocol.

We denote by the superscript ·∗ the updated values, computed locally by Pi after an update of the order
book, e.g. m∗i , which are used as common inputs for the sub-protocols. We use it in particular on the
commitments of the inventory values, e.g. JmiK, the related order information (δc, l, v) and the the Merkle
Tree T , where Pi additionally holds the committed values and the corresponding randomnesses.
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Post/ Cancel:
ZK: 7 (rng, net,
zero+, oc)
MPC: -

Initialize: Πput

Margin Settl.:
ZK: 6 (rng,
net, flags)
MPC: 2
(Fcompare,
Fpcheck)

Order Fulfillment:
ZK: 4 (match)
MPC: -

Mark To Market:
ZK: 4 (mtm)
MPC: -

Margin Settl. Cancel:
ZK: 5 (rng, net)
MPC: 1 (Fcompare)

Margin Settl. Offset:
ZK: 6 (rng, net, match)
MPC: 2 (Fcompare)

Order is valid:
Πvalid

No broke traders and there are matches
Πnet

No broke
traders: Πnet

Order Fulfilled
Πmatch

Found broke traders: Πnet

Cancel Order:

No broke traders’
pending order:
Fcompare

Liquidate Inventory:
Πmatch

Broke traders
netted out:
Fcompare

End of
day

Unfixable
Crashes

Πnet

Our stateful functionality traverses several states. For every state of we show which NI-ZK proof steps are required, as well as
the MPC steps. The subprotocols Πget, Πput and their functionalities inv, uinv, token are always needed to interact with the
trader’s inventory.

Fig. 5: Hybrid Implementation of the Ideal Functionality

Πvalid: Every time a trader Pi posts or cancels an order, say (δc, l, v), the protocol has to check for its
validity.

Πnet: Every time the order book is updated via (i) a post/cancel action of a trader Pi, or (ii) a match of
two traders Pi and Pi′ , all the traders (including Pi and Pi′), need to be checked for negative instant net
position.

Πmatch: for matching an order between Pi and Pi′ .
Πbackup: fork a backup tree TU∗ from the main tree T ∗ to serve as a starting point during the Mark to

Market phase in the case there are still traders with a negative net position even after Margin Settlement.
The protocol runs with the commitments of the inventory values, as well as the new net position of all
traders, as the common inputs.

b) Protocol Description: The overall protocol runs in 4 phases, which we describe on a high-level
below. Formal description can be found in §A of the appendix.
Initialization Every trader participating in the futures market has to commit to a valid initial inventory.
This is done during the first round, by each trader individually, as follows.
• Pi holds an initial non-negative secret amount of cash (i.e., mi ≥ 0), zero volume holding (i.e., vi = 0),

an initial estimation of the cost to pay for pending orders (i.e., m̂i = mi), and an zero estimation of
the volume holding for pending orders (i.e., v̂i = 0) as well as all initial zero inventory flags.
• Pi commits to its initial inventory and proves in zero knowledge that such an inventory is valid (as

defined above), using the functionalities F zero+ for mi and F ec m̂i; while simply decommitting vi and
v̂i and the flags is sufficient to prove that they are all zeros.
• The traders run protocol Πput to commit the inventory of Pi; the backup tree TU is initially identical
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Sub-protocol Πvalid is run by (P1, . . . , PN ) in order to let Pi prove a valid Post Order or Cancel Order action w.r.t.
(δc, l, v).
1) In case of Cancel Order, Pi sends (Pi, JiK, (i, r)) to Foc, while Pj 6=i sends (Pj , JiK) for the ownership of the

order.
2) All traders run Πget then Pi proves that s/he can perform the action by decommitting the inventory flags to show:

a) fbad,i = 0 in a normal post/cancel action;
b) (fbad,i = 1) ∧ (fdel,i = 0) for a cancel action during Margin Settlement;
c) (fbad,i = 1) ∧ (fdel,i = 1) ∧ (fout,i = 0) for a post action during Margin Settlement.

3) Pi proves it has a non-negative estimation for instant net position η̂i (only in a normal post/cancel action):
a) Broadcast (JplbK, JVlbK, JpubK, JVubK) and send (Pi, x

rng
i , wrng

i ) to F rng, while Pj 6=i sends (Pj , x
rng
j ).

b) Broadcast Jη̂i∗K and send (Pi, x
net
i , wnet

i ) to Fnet, while Pj 6=i sends (Pj , x
net
j ).

c) Send (Pi, Jη̂i∗K, η̂i∗) to F zero+

, while Pj 6=i sends (Pj , Jη̂i∗K).
4) All traders run Πput.

Sub-protocol Πnet is run for checking new broke traders.
1) Repeat the following for each trader Pi to retrieve the inventory then update and check their new inventory flags.

a) All traders run Πget.
b) Broadcast (JplbK, JVlbK, JpubK, JVubK) and send (Pi, x

rng
i , wrng

i ) to F rng, while Pj 6=i sends (Pj , x
rng
j ).

c) Broadcast Jη∗i K and send (Pi, x
net
i , wnet

i ) to Fnet, while Pj 6=i sends (Pj , x
net
j ).

d) Broadcast Jf∗bad,iK, Jf
∗
del,iK, Jf

∗
out,iK and send (Pi, x

flags
i , wflags

i ) to Fflags, while Pj 6=i sends (Pj , x
flags
j ).

e) Forward fbad,i and f∗bad,i to Fcompare.
2) If Fcompare returns 1, all traders run Πput (with T ∗) then run Πbackup.
3) Otherwise, the traders discard T ∗ and, for each trader Pi, all traders run Πput (with T ).

Sub-protocol Πmatch for updating the inventories upon a match of orders (t, l, JiK, v) of Pi and (t′, l, Ji′K, v′) of Pi′ (v ·v′ <
0).
1) Pi sends (Pi, JiK, (i, r)) to Foc, while Pj 6=i sends (Pj , JiK), then all traders run Πget.
2) In case v > 0, and for δ = min(|v|, |v′|), Pi computes m∗i = mi − pl · δ and v∗i = vi + δ.
3) (If v < 0, replace δ with −δ. If δ = |v|, let ci = ci + δc where δc = −1.)
4) Pi broadcasts Jm∗i K, Jv∗i K, Jm̂i

∗K, Jv̂i∗K, and Jc∗i K. and sends (Pi, x
match
i , wmatch

i ) to Fmatch, while Pj 6=i sends
(Pj , x

match
j ).

5) All traders run Πput.
6) Pi′ performs steps 1-5 (where δ := −δ, i := i′, and δc = −1 if δ = |v′|).

Sub-protocol Πbackup is run to fork a backup tree. Additionally, the common inputs include Jη∗i K, and Pi also holds η∗i .
1) Pi forwards η∗i to Fpcheck.
2) If Fpcheck returns 1, all traders run Πput to obtain TU∗.

Fig. 6: Sub-protocols Πvalid, Πnet, Πmatch and Πbackup

to T .
Post/Cancel Order A good trader can post a new order (δc = 1, l, v) or cancel a previous order (δc =
−1, l′, v′).
• The traders run Πvalid.
• The traders run Πnet; this can lead to Mark to Market.
• The traders run Πmatch for each match in the order book (only for Post Order).
• After the match, all traders run Πnet again.

Margin Settlement This phase is (re) started every time there is at least one new trader with a bad
standing (i.e., fbad,i = 0 and η∗i < 0). It proceeds as described below; afterwards the protocol goes back to
the previous phase (whatever it was).
• For each pending order (t′, l′, i, v′) of a broke trader Pi:
◦ The traders run Πget with parameters (−1, l, v), to retrieve Pi’s two inventories: one before the

cancellation of the pending order and one after that.
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◦ The traders run Πvalid.
◦ All traders forward the necessary flags f ∗del,i and fbad,i to Fcompare to check whether

∑
f ∗del,i =∑

fbad,i. If the check is successful, move to next step.
• The traders run Πnet to check and restart this phase if there are new broke traders.
• The broke traders offset their positions until all broke traders are netted out.
◦ The traders run Πget to retrieve their inventory.
◦ The traders find matches on the order book at the current best price, say between Pi and Pi′; both

traders locally update their inventory, commit to the new inventory, and prove in zero knowledge
that the matching was done correctly (using Fmatch).
◦ All traders forward the necessary flags f ∗out,i and fbad,i to Fcompare to check whether

∑
f ∗out,i =∑

fbad,i, if the check is successful, go to next step.
• The traders run Πnet to check and restart this phase if there is a new broke trader.
• All traders run Πbackup to check if a backup tree can be forked, if not, go to Mark to Market phase.

Mark to Market This phase is invoked at the last round t = T , or during Margin Settlement.
• The traders run Πget to retrieve their inventory.
• The traders locally update their inventory, commit to the new inventory, and prove in zero knowledge

that the matching was done correctly (using Fmtm).
• Finally the new inventory is added back to the Merkle tree T by running Πput.
The Proportional Burden is fulfilled for what is technically possible as we require traders post-

ing/canceling an order to prove the validity of their actions before other traders prove the validity of
their inventories according to the new order book. The latter is necessary for distributed risk management.
It could be optimized by having a trader proving the validity of an inventory for a range of price values
rather than just the current price (e.g. up/downward ticks as appropriate).

IX. SECURITY ANALYSIS (SKETCH)

The theorem below states the security of protocol ΠDFM.

Theorem 1. Let Com be a statistically hiding (and computationally binding) commitment scheme. Protocol
ΠDFM securely realizes the ideal functionality FCFM in the (Fzk,Fcompare,Fpcheck)-hybrid model, where the
zero-knowledge functionality Fzk supports all NP relations defined in §VI.

We sketch here the key step of the security proof (See Appendix B for details). As in standard simulation-
based security proofs, we exhibit an efficient simulator interacting with the ideal functionality FCFM that is
able to fake the view of any efficient adversaries corrupting a subset I ⊆ [N ] of the traders in an execution
of protocol ΠDFM.5.

Our protocol is designed in a “hybrid world” with several auxiliary ideal functionalities (mainly for zero-
knowledge proofs and for running secure comparisons). Importantly, in such a world, there is no security
issue when using these functionalities: a composition theorem ensures that our protocol is still secure when
we replace the auxiliary ideal functionalities with sub-protocols securely realizing them. An advantage of
working in the hybrid model is that the simulator gets to see the inputs that corrupted traders forward to
the auxiliary ideal functionalities in the clear.

On a very high level, our simulator S works as follows. During the Initialize phase, it commits to
zero values for each commitment forwarded by a honest trader in the real protocol; the commitments to
the token of each inventory are added to a simulated Merkle Tree that is maintained internally by the
simulator. During a Post/Cancel Order action, it relies on the ideal functionality FCFM to post/cancel the
corresponding orders; afterwards, in the Margin Settlement phase, for each match notification received
from the ideal functionality FCFM, the simulator commits to zero for each commitment forwarded by a

5We assume the set I is fixed before the protocol execution starts.
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honest trader in the real protocol execution. During the Mark to Market phase, it commits to zero values
for each commitment forwarded by a honest trader in the real protocol.

The hiding property of the commitment scheme implies that the above simulation is indistinguishable to
the view generated in a mental experiment where the simulator S is given the real inputs corresponding
to each honest trader. The only difference between this mental experiment and a real protocol execution
is that in the former experiment the market evolves using the inventories held at the beginning by each
corrupted trader, whereas in the latter experiment the adversary can try to cheat and fake the inventory of a
corrupted trader (e.g., by claiming an order pertaining to a honest trader). However, the binding property of
the commitment scheme and the collision resistance of the Merkle Tree, ensure that such cheating attempts
only succeed with a negligible probability.

This allows us to conclude that the view simulated in the ideal world (with the functionality FCFM) is
computationally indistinguishable from the view in a real execution of the protocol, thus establishing the
security of ΠDFM.

X. BEYOND SECURITY-WITH-ABORT

If every single party participates to the computation, the baseline protocol is secure. However, an adversary
can refuse to join Fcompare or Fpcheck, or to match an order in Πmatch, or refuse to cancel pending orders
and liquidate her own inventory during the Margin Settlement phase. Therefore, if even a single party is
byzantine and aborts, the base protocol cannot continue operating, leading to a clear scalability issue.

A preliminary observation is that in practice one cannot initialize a market with a self-claimed account.
The cash that get deposited into the market must be backed by a verifiable source where a debit is
acknowledged by every market participants, for instance ZeroCash. Hence, such source must be able to
publicly verify the validity of the transactions resulting from the market’s operation at the end of the day
to credit each the account with the corresponding amount.

An approach is to penalize a faulty participant upon aborting in an MPC, hence make the adversary lose
some digital cash in proportion to their actions. For instance, [36] and [37] require the adversary to make
deposits and forfeit them upon dropping out. Unfortunately those protocols are not usable in our scenario.
Technically the parties have to move in a fixed order since order of revelation is important (the see-saw
mechanism, [36, p. 7]) for the aforementioned penalty mechanism to work. This fixed order conflicts with
our protocol’s anonymity requirement since this will reveal the identity of the trader who made a posting.
Most importantly, those protocols are not economically viable as the baseline deposit would need to be
progressively staggered in a see-saw fashion which is unachievable due to the anticipated variety in financial
capability of traders. In a low-frequency market the trader going first would have to deposit assets 35x times
the stake of the trader going last, and in large markets that increases to 500 times larger (See Table II,
where a single Eurodollar contract has a notional value of 1M dollars and margins are measured in basis
points).

Hence we opt towards the mechanism of Hawk [34, Appendix G, §B] in which private deposits are frozen
and the identified aborting parties cannot claim the deposits back in the withdraw phase. This fits precisely
with our scenario as the deposit can be made to match the initial margin (which is the largest amount6 a
trader can lose when being netted out).

At first we must show that honest participants can eventually move by themselves to a Mark To Market
phase at least to cash their own inventory. Let us denote by Adv the set of adversaries who abort between
time t and time t + 1 given a backup tree TU with a solvable inventory of all traders (mi, vi) and the
corresponding mid price p̄. Since TU is a valid tree, it satisfies the constraints from Def. 1 & 2, and
therefore ηi ≥ 0. Since ηi = mi + cash(vi) ≤ mi + p̄ · vi, we have

0 ≤
∑

i 6∈Adv
(mi + p̄ · vi) ≤

∑
i
m0
i

6In practice traders can deposit additional funds when receiving a margin call. These incremental deposits could be easily incorporated into
our setting by querying the deposit ledger for all deposited funds before time t < T as opposed to checking the single deposited value at time
0.
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This implies that there will be no unexpected loss to cover (0 ≤ . . .) nor additional money would be
created (. . . ≤

∑
im

0
i ). Then honest traders can proceed to the Mark To Market phase to split their own

trade proceedings. If enough traders accept the move so that it ends into the public ledger this would be
considered an acceptable solution. From an economics perspective, the adversary would be penalized with
at least its initial cash margin which could be substantial.

Now we just need to extend our protocol to identify the aborting parties in various protocol steps and
prevent them from claiming the deposit in Mark To Market phase by requiring each trader to present a
proof of participation in the round where the abort happens. A further step can possibly be taken to divide
the money of the adversary if at the end of the Initialize phase the total sum of money is computed (by an
MPC protocol, i.e. Fsum that receives mi from each trader and computes

∑
imi). In the Mark To Market

phase, by computing the sum of money of the honest traders after the updates of the inventories we can
find the difference corresponding to the money of the adversary and shares it by updating the inventories
again adding the shares.

Formally, in an abort, every honest traders maintain a set of spent tokens τ ′i of the participants. The
Mark To Market phase now runs exactly the same as before except that a trader must prove in zk s/he
knows the opening to a token τ ′i that was present in the last step with the relation Roinv which takes as
input the statement xoinv

i = (τ ′i) and witness woinv
i = (r′i,mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i). The output of

Roinv is defined to be one if and only if τ ′i = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; r
′
i). In the simplest

settings, as in a joint step, the set of tokens from participants can be easily constructed. We discuss the
disqualification of an adversary in a more complex case, where s/he refuses to match an order o′:

1) All traders Pi cancel all orders o with o 6= o′.
2) All traders Pi prove they do not own o′ by decommitting JciK and showing that ci = 0.

Similarly, if the Margin Settlement phase is aborted,
1) In cancellation phase, all traders retrieve their inventory with a token τ ′i , and prove that the inventory

flags is not broke, i.e (fbad,i, fdel,i, fout,i) 6= (1, 0, 0).
2) In liquidation phase, all traders retrieve their inventory with a token τ ′i , and prove that the inventory

flags is not canceled, i.e (fbad,i, fdel,i, fout,i) 6= (1, 1, 0).

XI. IMPLEMENTATION

All phases of our protocol have been implemented and optimized. For the anonymous network and the
distributed consensus protocol, off-the-shelf implementations will do7.

a) Implementation of Components.: We use a digital cash network that supports a private payment
scheme, e.g. zcash8 for bootstrapping the market’s initial cash. We extend zcash’s POUR transaction to
accept one more input/output: the commitment JmiK, to deposit and withdraw the market’s digital cash
from and back to the zcash network.

We follow [7] in the instantiation of our building blocks, at a security level of 128 bits. Let H(·) be
a collision-resistant compression hash function that maps l bits input (l ≥ 512) into 256 bits output (e.g.
SHA256). We use H(·) to instantiate the commitment scheme Com and also the hash function for the binary
Merkle Tree T . The zero-knowledge functionality FR is instantiated with zk-SNARKs9 for arithmetic circuit
satisfiability [10], while generic MPC is used for the hybrid ideal functionalities Fcompare and Fpcheck.

Our zk code is based on the libsnark10 library. We split F inv into F invm to first check whether the token
is one of the leaf of the Merkle Tree, and then F invt to check consistency of new commitments and old

7We use a distributed ledger, e.g. HyperLedger in PBFT mode (https://www.hyperledger.org) as a byzantine fault tolerant storage for each
protocol step, i.e. each broadcast is replaced with a write into the distributed ledger. To communicate anonymously, the traders hide behind a
Tor network. While we mention Tor, zcash, and HyperLedger in our implementation, we can replace any sub-protocol with other protocols
for the same task, without affecting security. See [2], [59] for a comparison between different solutions.

8https://z.cash.
9While SNARKs are problematic in the setting of universal composability [35], they are still sufficient for sequential composition.
10https://github.com/scipr-lab/libsnark.
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tokens11. Our MPC uses the SPDZ12 library, along the construction in [11], [24], [49].13

b) Optimization: We also experimented with an optimized version to reduce the cost to only 30%
and overcome the limit of 10 traders for the MPC. To improve the performance of the protocol we first
streamline the number of the validations of the commitments by packing fbad,i, fdel,i, fout,i into a single
integer fi, this improves the circuit F token, F invt as well as Fflags. Then we can combine the circuits F invt

and Fuinv, F rng and Fnet. Proof generations can also be parallelized in a protocol step, e.g. in Πvalid, F invt,
Fuinv, F rng, Fnet, F zero+ and F token are independent of each other.

Further, functionalities Fcompare and Fpcheck are used extensively throughout our protocol. As we shall
see in Table X, the consistency check of the commitments slow down the whole protocol. We can replace
Fcompare with a lighter functionality Fdtc below to detect the flag in an unwanted state (without validating
the consistency of the commitments) and randomly select a Py owning an unwanted state to open the flag to
check. This is not a problem as Py cannot be traced to any traders from the previous steps or the subsequent
ones due to the anonymity mechanism (Merkle Tree and ZK Functionalities). She is just an anonymous
volunteer for this round. The functionality Fpcheck can be similarly replaced.

The Secure Detection Fdtc runs on common input (f) and interacts with a set of players (P1, . . . , PN)
and receive (Pi, fi, ri) from each Pi. Upon receiving all inputs, let cf be the number of pairs (fi = f ), if
cf > 0 output y =

∑
ri mod cf to all players and ⊥ otherwise. In the protocol, first each trader samples a

random ri and forwards Pi, fi, ri to Fdtc with common input f to obtain y or ⊥. In case of ⊥, each trader
Pi proves that her flag is different from the f (using Fnec). Otherwise trader Py proves that the inventory
flag is the same as the common input (by decommitting the flags). Any trader not able to prove this is
considered as aborting.

XII. EVALUATION

We evaluate our protocol in 3 steps. First we evaluate the performance of the cryptographic primitives
that we use in our protocol, i.e. the zk-SNARK circuits and the MPC functionalities, both in the offline and
online phase on a concrete implementation. Then, we use the obtained values to estimate the performance
of each phase of our protocol. Finally, we evaluate the full protocol’s performance by matching the above
estimates with the public data available from the order books. Whilst network latencies are critical for high
speed trading, we ignore them here since this issue is well understood by traders by either using known
optimizations [47], [38], or by even buying dark fiber to cut delays between exchanges.14

All our experiments are run with an Amazon EC2 r4.4xlarge instance (Intel Xeon E5-2686 v4 @ 2.3Ghz,
16 cores, 122 GB RAM) so we exclude the communication cost15. The MPC protocol’s off-line phase can
also be pipelined with zk-SNARKs proof generation thus we exclude it as well.

a) zk-SNARK Circuits Performance: In Table IX, we report the performance metrics for the pre-
processing steps: the key generation time (Key Gen), the size of the proving keys (PK), and the size of the
verifying (VK) keys. We also report the time to generate a proof (Proving Time) and to verify it (Verify
time), as well as the size of the proof during the actual trading execution described above. As shown,
proving key size and proof generation time scale linearly with the number of commitments part of the
relation.

b) Performance of the MPC functionalities: To gauge the effectiveness of our MPC components, we
evaluate the performance for each functionality separately. Table X reports the size of the bytecode and the
corresponding running times for 3, 5 and 10 traders. The memory requirement for the compilation of the

11Our prototype supports 32 bits signed integers (See footnote 3 on prices in §IV), a Merkle Tree of depth 10 and the net position range
choices (i.e. Osell and Obuy) used in F rng are up to 10 .

12https://github.com/bristolcrypto/SPDZ-2.
13While libsnark is efficient and scalable, SPDZ hits the limit of 10 parties due to the complexity in implementing SHA256 with the library,

i.e. right-shift is not natively supported for 32-bits word, and we had to implement it using left-shift and other bitwise operations.
14http://www.forbes.com/forbes/2010/0927/outfront-netscape-jim-barksdale- daniel-spivey-wall-street-speed-war.html
15However, each operation requires less than 20 commitments and 10 zk-SNARKs proof, thus per operation the data is less than 4KB. See

Table IX.



19

TABLE IX: zk-SNARK Simple and Opt. Circuits Performance

Pre-processing On-Line Trading
Circuit KeyGen | PK | | VK | Prove | Proof | Verify

(ms) (MB) (KB) (ms) (B) (ms)
F rng 8759 119 9 4752 287 31
F invm 16778 210 2 8447 .. 29
F token 15925 189 .. 7642 .. 27
Fflags 12943 171 .. 6115 .. ..
F invt 12954 171 .. 6111 .. ..
Fuinv 9650 116 .. 4748 .. ..
Fmatch 9644 116 .. 4748 .. ..
Fnet 9638 115 .. 4691 .. ..
Fmtm 5456 57 .. 2365 .. ..
F ec 3343 38 .. 1429 .. ..
F zero+ 1639 19 .. 739 .. 26
Fmax 1635 19 .. 739 .. ..
Foc 1635 19 .. 729 .. ..
Optimized
F token .. 157 .. 5691 .. ..
Fflags .. 97 .. 3908 .. ..
F invt+Fuinv .. 137 .. 5193 .. ..
F rng+Fnet .. 84 .. 3509 .. ..

TABLE X: MPC Performance

MPC Funct Bytecode Size On-Line Time
#Traders 3 5 10 3 5 10
Fcompare 425 MB 709 MB 1.4 GB 14s 24s 67s
Fpcheck 212 MB 354 MB 708 MB 7s 13s 36s

MPC functionalities using SHA-1 commitments crashed after 10 traders by exceeding 120 GB. We found
that the dynamic memory requirement is typically 100x the final bytecode size. This was not reported before
(e.g. [24]), and it is an important insight on the limit of the technology.

c) Overall Evaluation: In our experiment, we employ the futures trades in the first quarter 2017 for the
Lean Hog futures market (See Table II) from the mentioned Thomson Reuters Tick History database16. For
each day, we have five level limit orders (buy and sell, which we also chose for the F rng) and transaction
data at ticks level with millisecond timestamps. At a low end, we must be able to support a minimum of 10
traders and this is the limit we chose for illustrating our prototype. From the dataset we cannot determine
the status of each trader (trader anonymity!), so we assume they have a large margin and never enter a broke
state (i.e. we exclude Margin Settlement). We can combine the number of post, cancel and matched orders
from market data (e.g. Table II and XI) to estimate the corresponding execution overhead throughout a
day of trading. The final results are reported in Table XI. The actual timing of the protocol is still slow
compared to the millisecond delay required by the CME but, if we compare the cost of our hardware (a
$500 EC2 instance) to the “centralizedcompetitors” (CME’s cost for IT infrastructure is $30 millions per
year), we believe that a 103 delay (seconds vs milliseconds) with a 107 cheaper kit is acceptable.

Fig. 7 shows the overall record for the plain and optimized version as well as an estimation of a naive
MPC implementation of the ideal functionality. For most of the entire quarter our distributed protocol can
be optimized to have no overhead and executes all trades in the very same day.

To estimate the cost of a naı̈ve MPC implementation, we use as building block the simplest of our
stateless MPC functionalities Fdtc which is used to detect negative inputs and open one index. It costs
only 0.2s for 10 traders. We then estimate the cost of a naı̈ve MPC implementation of our stateful ideal

16https://tickhistory.thomsonreuters.com.
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TABLE XI: Runtime of Individual Market Operations

Each individual operations can be done in few seconds for a market of 10 traders. With simple optimizations, we boost the
performance and reduce the role of other traders in the computation which is a critical “ecological” constraint.

Plain Prot. Runtime Opt. Prot. Runtime
Protocol Trader Others (%) Trader Others (%)
Initialize 11s - 9s -
Post Order 39s 148s (79%) 24s 27s (53%)
Cancel Order 40s 148s (79%) 25s 27s (52%)
Match Order 29s 148s (84%) 26s 27s (51%)
MarkToMarket 28s - 25s -
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Performance in terms of execution overhead to the expected processing time (1 day). For the optimized version, only one day
of trading exhibits overheads greater than 10x and only ten days greater than 5x. These overheads could be already offset by
parallelizing the traders ZK-proofs (each trader has to do several of them) which would yield an improvement factor of 6x.

Fig. 7: Crypto Protocol Evaluation on Q1 of Lean-Hog

functionality by accumulating the steps in Fig. 2 and Fig. 5 under the favorable assumption (for MPC) that
execution times accrue linearly with the number of steps.

Pure MPC impose a significant burden on retail traders (the overwhelming majority of the market)
in particular during peak times when algorithmic traders frequently post and almost immediately cancel
practically all orders (See [41]). Our hybrid approach shift the burden on computation on algorithmic
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With MPC retail traders have to always participate whether they make an order or not (and they overwhelmingly don’t [41]).
They would be supplying to algorithmic traders some orders of magnitude of costly computing resources. With our approach
the burden on retail traders is significantly smaller.

Fig. 8: Total Burden of Computation by Retail Traders

traders. As seen from Figure 8, retail traders would devote significant computational resources in a pure
MPC implementation for allowing speculators to indeed speculate.

The optimized implementation can already break the barrier of ten traders and do the full 66 traders of
the peak day. Parallelization can further reduce the runtime of the sub-protocol to just 8s (comparing to 24s
of sequential proof generation). Furthermore, additional practical design decisions can further increase the
protocol throughput, e.g. if traders can prove that their inventory is valid for a range of prices they would
only need prove validity again when the price fluctuates out of that range, or by allowing multiple traders
to post/cancel in one round, etc. We leave this for future investigation.

XIII. RELATED WORK

Distributed Ledgers are ledgers maintained by a network of nodes. The most important property, e.g.
for distributed payment networks, is consensus among the nodes, while still being fully decentralized. The
most prominent example of a distributed payment network is Bitcoin [48], whose core components are
the Proofs-of-Work and the Blockchain. The current bottleneck of Bitcoin is its low throughput in terms
of transactions-per-second (TPS). (Roughly, 10 TPS compared to 2000 TPS achieved by, for instance,
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Visa.) Several variants/extensions of Bitcoin appeared recently, including ZeroCoin [46], ZeroCash [7], and
Ethereum [25].

Secure Multiparty Computation Seminal feasibility results in the theory of MPC established that any
functionality is securely realizable via a distributed protocol in the computational (resp. information-
theoretic) setting, assuming honest minority (resp. majority) [61], [29], [6], [19], [53]. The recent progress
on efficient implementations of general-purpose MPC protocols (see, e.g., [24], [23], [3]) opened up the
way to advanced applications, e.g. to privacy-preserving data mining [40]. See also [50] for an overview of
applications of MPC. Privacy-preserving reputation systems only address half of our requirements (posting
a public, yet anonymous, order, e.g. a rating of a service provider [62]), but not the other half (personally
accruing the order’s revenues).

SNARKs. The influential work of Micali on computationally sound proofs [45] gave the first zero-
knowledge succinct non-interactive argument of knowledge (zk-SNARK) for all of NP , relying on the
random oracle heuristic [5]. Later work (starting with [22], [13]), showed that zk-SNARKs exist in
the standard model, based on so-called knowledge-of-exponent assumptions; interestingly, these type of
assumptions seem to be inherent for constructing zk-SNARKs [27]. An overview of these (and more)
results can be found in [60]. In terms of implementation, the most efficient ones include [8], [10], [51].

XIV. CONCLUSIONS

This paper shows the first practical realization of distributed, secure, full financial intermediation without a
trusted third party. Our chosen example has been one of the landmark institution of financial intermediation: a
Futures Market Exchange. Besides the practical relevance of the application, such realization was interesting
from a security perspectives as it requires to provide a rich security functionality with varied and potentially
conflicting requirements. One needs to support a public availability of information about all actions
performed by traders in the market (such as post or cancel orders) as well as public verifiability of integrity
of private information from the traders. Further we need to provide participants anonymity and public
unlinkability together with global integrity guarantees and private linkability.

Our hybrid protocol offers an efficient solution to the requirement of a proportional burden of computation.
Traders infrequently making bids must only participate to the protocol to control market risk with a
significant saving of the computational resources they would need to stake if general purpose MPC was
used to implement the ideal functionality.

Our analysis of actual trading days using the Thomson-Reuters database, including a complete trading
history at the level of milliseconds, have shown that the computation behind our protocol is within
engineering reach: we simulated that on a low frequency market a secure protocol using a normal server
(as opposed to traders’ typical supercomputers) could still be executed within a day with an handful of
exceptions. runs 10+ traders for 100+ transactions a day, so within our reach.

The first interesting avenue of future research is the choice of majority for the distributed consensus
protocol. These solutions need further validation by financial economists: majority of traders or by weighted
volumes? Should traders making offers far from the market price be considered as their offers might never be
executed? Another direction is to analyze liveliness and robustness against collusion and price discrimination.
For simplicity, our protocol by default goes to mark-to-market upon failure. Alternatives are possible, e.g.
margin-call for additional funds, we leave them to future work.

In terms of practical implementation, we found the zk-SNARKs library to be pretty scalable, whilst the
SPDZ library of our unoptimized implementation hit a hard limit at 10 traders due to the dynamic memory
requirements (with the natural encoding of SHA256 in Python). This was surprising, as the final size of
SPDZ bytecode was acceptable and consistent with the results from the literature [24]. We leave this issue
for further investigations.
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[19] D. Chaum, C. Crépeau, and I. Damgård, “Multiparty unconditionally secure protocols (extended abstract),” in Proc. of ACM STOC,
1988, pp. 11–19.

[20] J. Clark, J. Bonneau, E. W. Felten, J. A. Kroll, A. Miller, and A. Narayanan, “On decentralizing prediction markets and order books,”
in Workshop on the Economics of Information Security, State College, Pennsylvania, 2014.

[21] CoinDesk, “Understanding the dao attack,” http://www.coindesk.com/understanding-dao-hack-journalists/, 2016.
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APPENDIX

A. Supporting Material: Protocol Construction

Fig. 9 provides the formal description for Πput and Πget whereas Fig. 10 contains a formal description
of our protocol.

B. Supporting Material: Security Analysis

Theorem 1 in §IX states the security of our protocol ΠDFM from §VIII. Below, we formalize security in
the stand-alone setting with a malicious adversary. We refer to [28], [39] for a more extensive discussion
of the standard formal definitions.

Proof: It is clear that ΠDFM computes FCFM. We proceed to prove the security of ΠDFM. Let A be a
non-uniform deterministic PPT adversary. The simulator S is given access to the ideal functionality FCFM,
and can also read the stored/updated values of the corrupted traders (that A controls) from FCFM; recall
that, since we prove only static security, the set of corrupted traders I is fixed before the protocol execution
starts.
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Sub-protocol Πput: The protocol is run by (P1, . . . , PN ) in order to let Pi commit to a new inventory by adding the
commitment of the inventory token to a Merkle Tree T (resulting in a new root ρ∗).
1) Pi picks ri←$ {0, 1}∗, computes τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri), and broadcasts

JτiK←$ Com(τi).
2) Pi sends (Pi, x

token
i , wtoken

i ) and each other Pj 6=i sends (Pj , x
token
j ) to F token.

3) Pi runs ρ∗ = Add(T , JτiK) and broadcasts ρ∗. The other traders accept ρ∗ iff the token has been correctly added
to the tree.

Sub-protocol Πget: The protocol is used when a trader either to post a new order (δc = 1, l, v), or cancel a pending order
(δc = −1, l, v), or simply retrieve an unspent inventory that was committed at round t′ ≤ t into a Merkle Tree T ;
any spent token is rejected.
1) Pi recovers path = path(T , Jτ ′iK) and broadcasts τ ′i .
2) Pi sends (Pi, x

inv
i , winv

i ) and each other Pj 6=i sends (Pj , x
inv
j ) to F inv. The token τ ′i is now marked as spent by all

traders.
3) If (δc, l, v) 6= (0, 0, 0), additionally Pi sends (Pi, x

uinv
i , wuinv

i ) and each other Pj 6=i sends (Pj , x
uinv
j ) to Fuinv.

Fig. 9: Sub-protocols Πput and Πget

a) Sub-routines.: To simplify the simulator’s description, we introduce sub-routines Sput, Sget as well
as Svalid, Sbackup, Snet, Smatch that will call Sput, Sget when it is related to commit and retrieve of inventories.
The sub-routines will be later invoked by S; while reading them, think of the simulator’s behaviour as a
simulation strategy for the corresponding protocols Πput, Πget, Πvalid, Πbackup, Πnet, and Πmatch. Each sub-
routine invokes A and receives messages from it. The sub-routines use Sget and Sput above. Since we
are working in the hybrid model, whenever A interacts with an ideal functionality the simulator receives
A’s inputs to the functionality in the clear, and thus it can perfectly emulate the output of the hybrid
functionality.
Sput: When a trader Pi commits to an inventory, it acts as a prover while the other traders act as verifiers.

If Pi is corrupted, S needs to simulate the views of both the prover Pi and the corrupted verifiers Pj ,
by receiving the inputs from Pi and forwarding them to each corrupted verifier Pj 6=i. Otherwise, S
only needs to simulate the view of the corrupted verifiers Pj , by forwarding J0K and ρ = Add(T , J0K)
to each corrupted verifier Pj . In both case S simulates the output of F token for each corrupted players,
abort the simulation if any check fails.

Sget: Similar to Sput but using F inv and Fuinv.
Svalid: Similar to Sput but using Foc, F rng, Fnet, and F zero+ .
Sbackup: Similar to Sput but with F rng, Fnet and Fpcheck.
Snet: When a trader Pi needs to be checked for a non-negative instant net position, it acts as a prover

while the other traders act as verifiers. The steps are also similar to Sput but with F rng, Fnet, Fflags

and Fcompare.
Smatch: When a trader Pi posts an order, it acts as a prover together with some other trader Pi′ with a

matching order, while the other traders act as verifiers. We distinguish four cases for the honesty of
Pi and Pi′ . The steps are also similar to Sput but with Foc and Fmatch.
b) Simulator description.: We are now ready to describe the simulator. In each round t ≤ T , the

simulator S runs as follows depending on the current phase the protocol.
Initialization: Let Pi be the trader committing to a good inventory. If Pi is corrupted:

1) Receive the commitments of inventory values and JτiK from Pi; obtain the inputs that A sends to
F zero+ and F ec, and simulate the output of such ideal functionalities for each corrupted trader in I .

2) Forward (init, Pi,mi) to FCFM; if the ideal functionality returns 0 simulate an abort of the protocol.
3) Receive the decommitments corresponding to JviK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK, and simulate an

abort of the protocol in case such values are not valid openings.
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Initialize Phase: This phase runs in the first round where each trader Pi commits to a good inventory with cash mi.
1) Trader Pi commits to and broadcasts JmiK, JviK, Jm̂iK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK

where (m̂i = mi and vi = v̂i = ci = fbad,i = fdel,i = fout,i = 0).
2) Trader Pi broadcasts a token JτiK, where τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri) with ri←$ {0, 1}∗.
3) Pi sends (Pi, JmiK,mi) and each other Pj 6=i sends (Pj , JmiK) to F zero+

.
4) Pi sends (Pi, (Jm̂iK, JmiK), (m̂i,mi)) and each other Pj 6=i sends (Pj , (Jm̂iK, JmiK)) to F ec.
5) Pi decommits JviK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK to show the values are 0.
6) All traders run Πput.
7) Set TU := T .

Post/Cancel Order Phase: This phase is run in order to post an order o = (t, l, i, v) at round t (where l ≥ lbuy for v < 0,
and l ≤ lsell for v > 0) or to cancel an order o = (t′, l, i, v).
1) Pi broadcasts the values (1, l, v) and a commitment JiK (resp. Pi broadcasts the values t′ and (−1, l, v) in Cancel

Order).
2) All traders run Πvalid then Πnet.
3) In case of Post Order, starting from t′ = 1, for each matching entry (t′, l, Ji′K, v′) ∈ O such that v · v′ < 0, until
v = 0 or t′ = t, all traders run Πmatch then Πnet.

Margin Settlement Phase: This phase is run whenever at least one inventory was added to the Merkle Tree T during the
sub-protocol Πnet. The protocol goes back to the invoking phase afterward.
1) For every unspent inventory of Pi in T , each o′ = (t′, l, JiK, v) has to be canceled:

a) Pi broadcasts the values t′ and (−1, l, v).
b) Pi sends (Pi, JiK, ri) to Foc, while Pj 6=i sends (Pj , JiK).
c) All traders run Πvalid.
d) Pi forwards f∗del,i and fbad,i to Fcompare; if Fcompare returns 1, proceed to next step, else go back to step (a).

2) The traders run Πnet, and return to step 1 if there is any new broke inventory.
3) For every broke unspent inventory of trader Pi in T , offset the volume holding vi until vi = 0. In particular, Pi

locally looks up the order book from t′ = 1 to t′ = t for an order o′ = (t′, l, Ji′K, v′) (where l = lsell for vi < 0,
and l = lbuy if vi > 0), and then the following steps are performed for each o′:
a) The traders run Πmatch.
b) Pi forwards f∗out,i and fbad,i to Fcompare. If Fcompare returns 1, proceed to next step, and else go back to step

(a).
4) The traders run Πnet, and return to step 1 if there is any new broke inventory.
5) All traders run Πbackup to check and fork a backup tree, otherwise, the traders proceed to Mark to Market using

the tree TU .
Mark to Market Phase: This phase is either called during Margin Settlement, or in the last round, where every trader

Pi retrieves and commits to a good inventory with new marked-to-market values.
1) All traders run Πget.
2) Pi computes m∗i := m̂i

∗
:= mi + p̄ · vi and set v∗i := v̂i

∗ := c∗i := f∗bad,i := f∗del,i := f∗out,i := 0.
3) Pi broadcasts Jm∗i K, Jv∗i K, Jm̂i

∗K, Jv̂i∗K, Jc∗i K and Jf∗bad,iK, Jf∗del,iK, Jf∗out,iK.
4) Pi decommits Jv∗i K, Jv̂i∗K, Jc∗i K and Jf∗bad,iK, Jf∗del,iK, Jf∗out,iK. to show the values are 0.
5) Pi sends (Pi, x

mtm
i , wmtm

i ) to Fmtm, while Pj 6=i sends (Pj , x
mtm
j ).

6) Pi sends (Pi, (Jm̂i
∗K, Jm∗i K), (m̂i

∗
,m∗i )) and each other Pj 6=i sends (Pj , (Jm̂i

∗K, Jm∗i K)) to F ec.
7) All traders run Πput.

Fig. 10: The protocol ΠDFM

4) Run Sput (for the case of corrupted Pi).
If Pi is honest we proceed as follows.

1) Forward commitments to zero for each of the values broadcast by Pi in the first step of the initialize
phase; obtain the inputs that A sends to F zero+ and F ec, and simulate the output of such ideal
functionalities for each corrupted trader in I .

2) Open the commitments to zero corresponding to JviK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK.
3) Run Sput (for the case of honest Pi).
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Post/Cancel Order: Let Pi be the trader posting an order or canceling a previous order. We distinguish
two cases for Cancel Order and 4 cases for Post Order. If Pi is corrupted::

1) In case of Post Order, receive the values (1, l, v) and JiK from Pi; forward (post order, Pi, t, l, v) to
FCFM. Otherwise, receive the values t′ and (−1, l, v) from Pi; forward (cancel order, Pi, t

′) to FCFM.
2) Run Svalid and Snet (for the case of corrupted Pi).
3) In case of Post Order, for each command (match, t′, l, v′) received from FCFM run Smatch and then Snet

(for the case of corrupted Pi).
If Pi is honest: we proceed as follows.

1) In case of Post Order, receive (post order, t, l, v) from FCFM. Otherwise receive (cancel order, t′) from
FCFM.

2) Run Svalid and Snet (for the case of honest Pi).
3) In case of Post Order, for each command (match, t′, l, v′) received from FCFM run Smatch and then Snet

(for the case of honest Pi).
If Pi is honest and Pi′ is corrupted (or viceversa): proceed as above, depending on who is

honest/corrupted.
Margin Settlement: Note that during this phase S always learns the list of pending orders that are canceled,
as a public output of FCFM. If Pi is corrupted we proceed as follows.

1) For each order to be canceled in an unspent inventory:
a) Receive the values t′ and (−1, l, v) from Pi; obtain the inputs that A sends to Foc, and simulate

the output of such ideal functionality for each corrupted trader in I .
b) Run Svalid and Snet (for the case of corrupted Pi).
c) Obtain the inputs that A sends to Fcompare, and simulate the output of such ideal functionality for

each corrupted trader in I .
2) For each broke unspent inventory:

a) Run Smatch and Snet (for the case of corrupted Pi).
b) Obtain the inputs that A sends to Fcompare, and simulate the output of such ideal functionality for

each corrupted trader in I .
3) Run Sbackup (for the case of corrupted Pi).
If Pi is honest: Same as above, except that the values (l, v′) for each order to be canceled are obtained

from FCFM.
Mark To Market: Let Pi be the trader committing to a good inventory with marked-to-market values. If
Pi is corrupted:

1) Run Sget (for the case of corrupted Pi).
2) Receive the commitments and obtain the inputs that A sends to Fmtm, and simulate the output of such

ideal functionality for each corrupted trader in I .
3) Run Sput (for the case of corrupted Pi).

If Pi is honest: Proceed as follows.
1) Run Sget (for the case of honest Pi).
2) Forward commitments to zero for each of the values broadcast by Pi in the second step of the Mark

to Market phase; obtain the inputs that A sends to Fmtm, and simulate the output of such ideal
functionality for each corrupted trader in I .

3) Run Sput (for the case of honest Pi).
c) Indistinguishability of the simulation.: We need to show that for all PPT adversaries A, all I ⊆ [N ],

and every auxiliary input z ∈ {0, 1}∗, the following holds:

REALΠDFM,A(z),I ≈c IDEALFCFM,S(z),I .

We start by considering a hybrid experiment HYBRID1
A(z),S1,I with a simulator S1 that runs exactly the

same as S, except that S1 also plays the role of the ideal functionality FCFM on its own. This means that S1

directly receives the inputs of other honest traders that are not under control of A. Clearly, for all adversaries
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A, all subsets I , and every auxiliary in put z ∈ {0, 1}∗, we have that HYBRID1
A(z),S1,I ≡ IDEALFCFM,S(z),I , as

there is no difference in generating the view of A in the two experiments.
Next, we consider another hybrid experiment HYBRID2

A(z),S2,I with a simulator S2 that runs exactly the
same as S1, except that whenever S1 committs to zero values when dealing with dishonest verifiers,
S2 commits to the real values received from the honest provers. The lemma below shows that the two
experiments are statistically close.

Lemma 1. For all (unbounded) adversaries A, all I ⊆ [N ], and every z ∈ {0, 1}∗: HYBRID1
A(z),S1,I ≈s

HYBRID2
A(z),S2,I

Proof: The proof is down to the statistical hiding property of the non-interactive commitment Com.
We consider a variant of the statistical hiding property where a distinguisher D is given access to a left-

or-right oracle Olr(b, ·), parametrized by a bit b ∈ {0, 1}, that upon input v ∈ {0, 1}∗ returns JvK (if b = 0)
or J0K (if b = 1), where |0| = |v|; hence, we have Com is statistically hiding if for all computationally
unbounded D, ∣∣Pr

[
DOlr(0,·)(1λ) = 1

]
− Pr

[
DOlr(1,·)(1λ) = 1

]∣∣ ≤ ν(λ),

for a negligible function ν : N→ [0, 1]. By a standard hybrid argument, as long as D makes a polynomial
(in λ) number of oracle queries, the above flavor of statistical hiding is equivalent to that of Com.

Assume there exists a distinguisher D′ and a polynomial p(λ), such that, for some I ⊆ [N ] and z ∈
{0, 1}∗, and for infinitely many values of λ ∈ N, we have that∣∣∣∣∣Pr

[
D′(HYBRID1

A(z),S1,I) = 1
]

− Pr
[
D′(HYBRID2

A(z),S2,I) = 1
] ∣∣∣∣∣ ≥ 1/p(λ).

We can construct a distinguisher D breaking the statistical hiding property of Com as follows. D runs
A and simulates an execution of protocol ΠDFM exactly as S1 does, except that whenever S1 forwards a
commitment to zero, D asks a query to the left-or-right oracle and sends the output of the oracle to A; the
value v for each oracle query is equal to the value S2 would commit to (instead of committing to zero).

In case D receives always commitments to zero, the view of A when run by D is identical to the view
in the first hybrid experiment; on the other hand, in case D receives always commitments to the values
queries to the left-or-right oracle, the view of A when run by D is identical to the view in the second
hybrid experiment.

Thus, D retains the same advantage of D′. This concludes the proof.
The lemma below says that the view of the adversary in the last hybrid experiment is computationally

indistinguishable from the view in the real experiment.

Lemma 2. For all PPT adversaries A, all I ⊆ [N ], and every z ∈ {0, 1}∗, it is HYBRID2
A(z),S2,I ≈c

REALΠDFM,A(z),I .

Proof: Fix I ⊆ [N ], and z ∈ {0, 1}∗. Consider the following events, defined over the probability space
of the last hybrid experiment.

Event Badinv: The event becomes true whenever A can modify the inventory of a corrupted trader Pi,
by finding two distinct valid openings for a token τi. The computational binding property of Com implies
that Pr [Badinv] is negligible.

Event Badspend: The event becomes true whenever A can double spend the inventory of a corrupted trader
Pi, by finding two distinct valid openings for JτiK. The computational binding property of Com implies that
Pr [Badinv] is negligible.

Event Badforge: The event becomes true whenever A forges an inventory of a trader Pi, by finding two
distinct valid authentication paths for a leaf JτiK of the Merkle Tree. The computational binding property
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of the Merkle Tree, which follows from the collision resistance of the underlying hash function, implies
that Pr [Badforge] is negligible.

Event Badswap: The event becomes true whenever A claim a pending order of an honest trader Pi′ , by
finding two valid openings for the commitment Ji′K. The computational binding property of Com implies
that Pr [Badswap] is negligible.

Define Bad := Badinv ∨ Badspend ∨ Badforge ∨ Badswap. It is not hard to see that conditioning on Bad not
happening, the view of A is identical in the two experiments. This is because the only difference between the
last hybrid and the real experiment is that in the former experiment the values mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i,
fout,i are read from the internal storage of S2 (playing the role of FCFM), whereas in the latter experiment
these values are specified by the attacker. Hence, by a standard argument, for all PPT distinguishers D:∣∣∣Pr

[
D(HYBRID2

A(z),S2,I) = 1
]

− Pr
[
D(REALΠDFM,A(z),I) = 1

] ∣∣∣ ≤ Pr [Bad] .

The proof of the lemma now follows by a union bound.
Combining the above two lemmas, we obtain that the real and ideal experiment are computationally

close, as desired.

C. Estimating the Cost of Computation
To estimate the burden of computation, we observe that the summary of each data point from the THTR

is described by a tuple 〈d, np, nc, nm, nt〉 where:
• d is the trading date,
• np is the number of post orders (# increases),
• nc is the number of cancelled orders (# decreases),
• nm is the number of matched orders (# actual trades),
• and nt is the number of traders.
As the plain implementation cannot go beyond 10 traders we have assumed that only 10 traders could

actually participate (so we cap nt at 10). With this cap made, we estimate the required computation in a
naı̈ve MPC implementation according to Fig. 2 as follows.
• For Post/Cancel Order, an order requires 3 sub-steps per trader which yields 3nt sub-steps to process

an order.
• Similarly, for Match Order, an order requires 2 sub-steps per trader hence 2nt sub-steps to match a

trade.
• In each sub-step, one phase must walk through np

2
orders in average (These operations contribute to

most of the generic MPC overhead).
They are then multiplied by the time τmpc(nt) required by the elementary MPC operation Fdtc.

Differently, while generic MPC requires all traders to compute for one trader, the hybrid protocol allows
traders to produce and verify the proof by themselves at the same time so the cost is not affected by nt. The
proof generation time chybi,gen and the proof verification time chybi,ver are actually performed by different traders.
This is is not important to calculate the overall crypto-overhead of operating the market in a distributed
fashion (before moving to the next order both operations must be done) but will be important for the
calculation of the proportional burden.

Therefore the total time to process a trading day d reported in Fig. 7 of the single trader follows the
equations below:

Tmpcd =
np
2

(∑
i=p,c

ni3nt + nm2nt

)
τmpc(nt)

T hybd =
∑

i=p,c,m

ni

(
τhybi,gen + τhybi,ver + τhybi,mpc(nt)

)
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and similarly for the optimized version where the costs have estimated according to Table XI.
To estimate the fraction of retail and institutional traders ρt we use the data from [41] as well as the

fraction of orders performed by retail traders ρo (ρt = 0.71, ρo = 0.18). Albeit TSX and CME are different
exchanges, the skeweness against retail traders might be even more pronounced the more active the market.
For the MPC naı̈ve computation a party has to participate to the computation irrespectively to whether she
actually made any order. So the overall burden of computation by retail traders for naı̈ve MPC (Fig. 8) is
as follows:

Rmpc
d = ρtntT

mpc
d

In the hybrid approach, a retail trader only needs to verify proofs when an institutional trader has to
generate proof, hence the computation by retail traders (Fig. 8) is determined by the following equation:

Rhyb
d = ρtnt

∑
i=p,c,m

ni

(
ρoτ

hyb
i,gen + (1− ρo)τhybi,ver + τhybi,mpc

)


