
Clique-width and Well-Quasi-Ordering of
Triangle-Free Graph Classes?

Konrad K. Dabrowski1, Vadim V. Lozin2, and Daniël Paulusma1

1 School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom

{konrad.dabrowski,daniel.paulusma}@durham.ac.uk
2 Mathematics Institute, University of Warwick,

Coventry CV4 7AL, United Kingdom
v.lozin@warwick.ac.uk

Abstract. Daligault, Rao and Thomassé asked whether every hereditary
graph class that is well-quasi-ordered by the induced subgraph relation
has bounded clique-width. Lozin, Razgon and Zamaraev (WG 2015) gave
a negative answer to this question, but their counterexample is a class that
can only be characterised by infinitely many forbidden induced subgraphs.
This raises the issue of whether their question has a positive answer
for finitely defined hereditary graph classes. Apart from two stubborn
cases, this has been confirmed when at most two induced subgraphs
H1, H2 are forbidden. We confirm it for one of the two stubborn cases,
namely for the case (H1, H2) = (triangle, P2 + P4) by proving that the
class of (triangle, P2 + P4)-free graphs has bounded clique-width and is
well-quasi-ordered. Our technique is based on a special decomposition
of 3-partite graphs. We also use this technique to completely determine
which classes of (triangle, H)-free graphs are well-quasi-ordered.

1 Introduction

A graph class G is well-quasi-ordered by some containment relation if for any
infinite sequence G0, G1, . . . of graphs in G, there is a pair i, j with i < j such that
Gi is contained in Gj . A graph class G has bounded clique-width if there exists a
constant c such that every graph in G has clique-width at most c. Both being well-
quasi-ordered and having bounded clique-width are highly desirable properties of
graph classes in the area of theoretical computer science. To illustrate this, let us
mention the seminal project of Robertson and Seymour on graph minors that
culminated in 2004 in the proof of Wagner’s conjecture, which states that the set
of all finite graphs is well-quasi-ordered by the minor relation. As an algorithmic
consequence, given a minor-closed graph class, it is possible to test in cubic
time whether a given graph belongs to this class. The algorithmic importance
of having bounded clique-width follows from the fact that many well-known
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NP-hard problems, such as Graph Colouring and Hamilton Cycle, become
polynomial-time solvable for graph classes of bounded clique-width (this follows
from combining results from several papers [4,13,16,22] with a result of Oum and
Seymour [21]).

Courcelle [3] proved that the class of graphs obtained from graphs of clique-
width 3 via one or more edge contractions has unbounded clique-width. Hence
the clique-width of a graph can be much smaller than the clique-width of its
minors. On the other hand, the clique-width of a graph is at least the clique-width
of any of its induced subgraphs (see, for example, [5]). We therefore focus on
hereditary classes, that is, on graph classes that are closed under taking induced
subgraphs. Our goal is to increase our understanding of the relation between
well-quasi-orders and clique-width of hereditary graph classes.

It is readily seen that a class of graphs is hereditary if and only if it can be
characterised by a unique set F of minimal forbidden induced subgraphs, which
due to their minimality form an antichain, that is, no graph in F is an induced
subgraph of another graph in F . Note that the class of cycles is not well-quasi-
ordered by the induced subgraph relation. As every cycle has clique-width at
most 4, having bounded clique-width does not imply being well-quasi-ordered by
the induced subgraph relation. In 2010, Daligault, Rao and Thomassé [10] asked
about the reverse implication: does every hereditary graph class that is well-quasi-
ordered by the induced subgraph relation have bounded clique-width? In 2015,
Lozin, Razgon and Zamaraev [20] gave a negative answer. As the set F in their
counter-example is infinite, the question of Daligault, Rao and Thomassé [10]
remains open for finitely defined hereditary graph classes, that is, hereditary
graph classes for which F is finite.

Conjecture 1 ([20]). If a finitely defined hereditary class of graphs G is well-quasi-
ordered by the induced subgraph relation, then G has bounded clique-width.

If Conjecture 1 is true, then for finitely defined hereditary graph classes the
aforementioned algorithmic consequences of having bounded clique-width also
hold for the property of being well-quasi-ordered by the induced subgraph relation.
A hereditary graph class defined by a single forbidden induced subgraph H
is well-quasi-ordered by the induced subgraph relation if and only if it has
bounded clique-width if and only if H is an induced subgraph of P4 (see, for
instance, [9,11,18]). Hence Conjecture 1 holds when F has size 1. We consider
the case when F has size 2, say F = {H1, H2}. Such graph classes are called
bigenic or (H1, H2)-free graph classes. In this case Conjecture 1 is also known to
be true except for two stubborn open cases, namely (H1, H2) = (K3, P2 + P4)
and (H1, H2) = (P1 + P4, P2 + P3); see [7].

Our Results. We prove that the class of (K3, P2 +P4)-free graphs has bounded
clique-width and is well-quasi-ordered by the induced subgraph relation. We do
this by using a general technique explained in Section 3. This technique is based
on extending (a labelled version of) well-quasi-orderability or boundedness of
clique-width of the bipartite graphs in a hereditary graph class X to a special
subclass of 3-partite graphs in X. The crucial property of these 3-partite graphs
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is that no three vertices from the three different partition classes form a clique
or independent set. We call such 3-partite graphs curious. A more restricted
version of this concept was used to prove that (K3, P1 + P5)-free graphs have
bounded clique-width [6]. In Section 4 we show how to generalise results for
curious (K3, P2 + P4)-free graphs to the whole class of (K3, P2 + P4)-free graphs
and that our technique can also be applied to prove that (K3, P1+P5)-free graphs
are well-quasi-ordered.

Consequences of Our Results. Previously, well-quasi-orderability was known
for (K3, P6)-free graphs [1], (P2+P4)-free bipartite graphs [17] and (P1+P5)-free
bipartite graphs [17]. It has also been shown that H-free bipartite graphs are not
well-quasi-ordered if H contains an induced 3P1 + P2 [18], 3P2 [12] or 2P3 [17].
This leads to the following dichotomy.

Theorem 1. Let H be a graph. The class of H-free bipartite graphs is well-quasi-
ordered by the induced subgraph relation if and only if H = sP1 for some s ≥ 1
or H is an induced subgraph of P1 + P5, P2 + P4 or P6.

Now combining the aforementioned known results for (K3, H)-free graphs and
H-free bipartite graphs with our new results yields exactly the same dichotomy
for (K3, H)-free graphs as the one in Theorem 1.

Theorem 2. Let H be a graph. The class of (K3, H)-free graphs is well-quasi-
ordered by the induced subgraph relation if and only if H = sP1 for some s ≥ 1
or H is an induced subgraph of P1 + P5, P2 + P4, or P6.

Future Work. The class of (P1 + P4, P2 + P3)-free graphs is the only bigenic
graph class left for which Conjecture 1 still needs to be verified. After updating
the summaries in [7] with our new results, this class is also one of the six remaining
bigenic graph classes for which well-quasi-orderability is still open. And it is
one of the six remaining bigenic graph classes for which we do not know if their
clique-width is bounded [2]. Hence, a new approach is required to solve this case.

Besides our technique based on curious graphs, we also expect that Theorem 2
will itself be a useful ingredient for showing results for other graph classes, just
as Theorem 1 has already proven to be useful (see e.g. [17]).

For clique-width the following dichotomy is known for H-free bipartite graphs.

Theorem 3 ([8]). Let H be a graph. The class of H-free bipartite graphs has
bounded clique-width if and only if H = sP1 for some s ≥ 1 or H is an induced
subgraph of K1,3 + 3P1, K1,3 + P2, P1 + S1,1,3 or S1,2,3.

It would be interesting to determine whether (K3, H)-free graphs allow the same
dichotomy with respect to the boundedness of their clique-width. The evidence so
far is affirmative, but in order to answer this question two remaining cases need
to be solved, namely (H1, H2) = (K3, P1 + S1,1,3) and (H1, H2) = (K3, S1,2,3);
see Section 2 for the definition of the graph Sh,i,j . Both cases turn out to be
highly non-trivial; in particular, the class of (K3, P1+S1,1,3)-free graphs contains
the class of (K3, P1 + P5)-free graphs, and the class of (K3, S1,2,3)-free graphs
contains both the classes of (K3, P1 + P5)-free and (K3, P2 + P4)-free graphs.
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2 Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops.
The disjoint union (V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint graphs G
and H is denoted by G+H and the disjoint union of r copies of a graph G is
denoted by rG. The complement G of a graph G has vertex set V (G) = V (G)
and an edge between two distinct vertices u, v if and only if uv /∈ E(G). For
a subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S. If
S = {s1, . . . , sr}, we may also write G[s1, . . . , sr]. We write G′ ⊆i G to indicate
that G′ is an induced subgraph of G.

The graphs Cr, Kr, K1,r−1 and Pr denote the cycle, complete graph, star
and path on r vertices, respectively. The graphs K3 and K1,3 are also called the
triangle and claw, respectively. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the
subdivided claw, that is, the tree that has only one vertex x of degree 3 and exactly
three leaves, which are of distance h, i and j from x, respectively. Observe that
S1,1,1 = K1,3. We let S denote the class of graphs, each connected component of
which is either a subdivided claw or a path. For a set of graphs {H1, . . . ,Hp}, a
graph G is (H1, . . . ,Hp)-free if it has no induced subgraph isomorphic to a graph
in {H1, . . . ,Hp}; if p = 1, we may write H1-free instead of (H1)-free.

For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the
neighbourhood of u ∈ V . A graph is k-partite if its vertex can be partitioned
into k (possibly empty) independent sets; 2-partite graphs are also known as
bipartite graphs.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \ X is
complete to X if it is adjacent to every vertex of X and anti-complete to X if
it is adjacent to no vertex of X. A set of vertices Y ⊆ V \X is complete (resp.
anti-complete) to X if every vertex in Y is complete (resp. anti-complete) to X. A
vertex y ∈ V \X distinguishes X if y has both a neighbour and a non-neighbour
in X. The set X is a module of G if no vertex in V \ X distinguishes X. A
module X is non-trivial if 1 < |X| < |V |, otherwise it is trivial. A graph is prime
if it has only trivial modules. Two (non-adjacent) vertices are false twins if they
share the same neighbours. Prime graphs on at least three vertices contain no
false twins, as any such pair of vertices would form a non-trivial module.

The clique-width cw(G) of a graph G is the minimum number of labels needed
to construct G by using the following four operations:

1. i(v): creating a new graph consisting of a single vertex v with label i;
2. G1 ⊕G2: taking the disjoint union of two labelled graphs G1 and G2;
3. ηi,j : joining each vertex with label i to each vertex with label j (i 6= j);
4. ρi→j : renaming label i to j.

A class of graphs G has bounded clique-width if there is a constant c such
that the clique-width of every graph in G is at most c; otherwise the clique-
width is unbounded. For an induced subgraph G′ of a graph G, the subgraph
complementation operation replaces every edge present in G′ by a non-edge,
and vice versa. For two disjoint vertex subsets S and T in G, the bipartite
complementation operation replaces every edge with one end-vertex in S and the
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other one in T by a non-edge and vice versa. Let k ≥ 0 be a constant and let γ
be some graph operation. A class G′ is (k, γ)-obtained from a class G if:

1. every graph in G′ is obtained from a graph in G by performing γ at most k
times, and

2. for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant k
and any graph class G, any graph class G′ that is (k, γ)-obtained from G has
bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [19].
Fact 2. Subgraph complementation preserves boundedness of clique-width [15].
Fact 3. Bipartite complementation preserves boundedness of clique-width [15].

Lemma 1 ([5]). Let G be a graph and let P be the set of all induced subgraphs
of G that are prime. Then cw(G) = maxH∈P cw(H).

Lemma 2 ([6]). Let G be a connected (K3, C5, S1,2,3)-free graph that does not
contain a pair of false twins. Then G is either bipartite or a cycle.

A quasi order ≤ on a set X is a reflexive, transitive binary relation. Two elements
x, y ∈ X in this quasi-order are comparable if x ≤ y or y ≤ x, otherwise they are
incomparable. A set of elements in a quasi-order is a chain if every pair of elements
is comparable and it is an antichain if every pair of elements is incomparable.
The quasi-order ≤ is a well-quasi-order if any infinite sequence of elements
x1, x2, x3, . . . in X contains a pair (xi, xj) with xi ≤ xj and i < j. Equivalently, a
quasi-order is a well-quasi-order if and only if it has no infinite strictly decreasing
sequence x1  x2  x3  · · · and no infinite antichain. For an arbitrary set M ,
let M∗ denote the set of finite sequences of elements of M . A quasi-order ≤ on M
defines a quasi-order ≤∗ on M∗ as follows: (a1, . . . , am) ≤∗ (b1, . . . , bn) if and
only if there is a sequence of integers i1, . . . , im with 1 ≤ i1 < · · · < im ≤ n such
that aj ≤ bij for j ∈ {1, . . . ,m}. We call ≤∗ the subsequence relation.

Lemma 3 (Higman’s Lemma [14]). If (M,≤) is a well-quasi-order then
(M∗,≤∗) is a well-quasi-order.

For a quasi-order (W,≤), a graph G is a labelled graph if each vertex v of G
is equipped with an element lG(v) ∈ W (the label of v). Given two labelled
graphs G and H, we say that G is a labelled induced subgraph of H if G is
isomorphic to an induced subgraph of H and there is an isomorphism that maps
each vertex v of G to a vertex w of H with lG(v) ≤ lH(w). Clearly, if (W,≤) is a
well-quasi-order, then a class of graphs X cannot contain an infinite sequence of
labelled graphs that is strictly-decreasing with respect to the labelled induced
subgraph relation. We therefore say that a graph class X is well-quasi-ordered
by the labelled induced subgraph relation if it contains no infinite antichains of
labelled graphs whenever (W,≤) is a well-quasi-order. Such a class is readily
seen to also be well-quasi-ordered by the induced subgraph relation. Similarly
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to the notion of preserving boundedness of clique-width, we say that a graph
operation γ preserves well-quasi-orderability by the labelled induced subgraph
relation if for any finite constant k and any graph class G, any graph class G′ that
is (k, γ)-obtained from G is well-quasi-ordered by this relation if and only if G is.

Lemma 4 ([7]). Subgraph and bipartite complementations and vertex deletion
preserve well-quasi-orderability by the labelled induced subgraph relation.

Lemma 5 ([1]). A hereditary class X of graphs is well-quasi-ordered by the
labelled induced subgraph relation if and only if the set of prime graphs in X is.
In particular, X is well-quasi-ordered by the labelled induced subgraph relation if
and only if the set of connected graphs in X is.

Lemma 6 ([1,17]). (P7, S1,2,3)-free bipartite graphs are well-quasi-ordered by
the labelled induced subgraph relation.

Let (L1,≤1) and (L2,≤2) be well-quasi-orders. We define the Cartesian Product
(L1,≤1) × (L2,≤2) of these well-quasi-orders as the order (L,≤L) on the set
L := L1×L2 where (l1, l2) ≤L (l′1, l

′
2) if and only if l1 ≤1 l

′
1 and l2 ≤2 l

′
2. Lemma 3

implies that (L,≤L) is also a well-quasi-order. If G has a labelling with elements
of L1 and of L2, say l1 : V (G)→ L1 and l2 : V (G)→ L2, we can construct the
combined labelling in (L1,≤1)× (L2,≤2) that labels each vertex v of G with the
label (l1(v), l2(v)). We omit the proof of the next lemma.

Lemma 7. Fix a well-quasi-order (L1,≤1) that has at least one element. Let X
be a class of graphs. For each G ∈ X fix a labelling l1G : V (G) → L1. Then X
is well-quasi-ordered by the labelled induced subgraph relation if and only if for
every well-quasi-order (L2,≤2) and every labelling of the graphs in X by this
order, the combined labelling in (L1,≤1)× (L2,≤2) obtained from these labellings
also results in a well-quasi-ordered set of labelled graphs.

For an integer k ≥ 1, a graph G is k-uniform if there is a symmetric square 0, 1
matrixK of order k and a graph Fk on vertices 1, 2, . . . , k such that G ∈ P(K,Fk),
where P(K,Fk) is a graph class defined as follows. Let H be the disjoint union
of infinitely many copies of Fk. For i = 1, . . . , k, let Vi be the subset of V (H)
containing vertex i from each copy of Fk. Construct fromH an infinite graphH(K)
on the same vertex set by applying a subgraph complementation to Vi if and only
if K(i, i) = 1 and by applying a bipartite complementation to a pair Vi, Vj if and
only if K(i, j) = 1. Thus, two vertices u ∈ Vi and v ∈ Vj are adjacent in H(K)
if and only if uv ∈ E(H) and K(i, j) = 0 or uv /∈ E(H) and K(i, j) = 1. Then,
P(K,Fk) is the hereditary class consisting of all the finite induced subgraphs
of H(K). The minimum k such that G is k-uniform is the uniformicity of G. The
second of the next two lemmas follows directly from the above definitions.

Lemma 8 ([18]). Any class of graphs of bounded uniformicity is well-quasi-
ordered by the labelled induced subgraph relation.

Lemma 9. Every k-uniform graph has clique-width at most 2k.
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3 Partitioning 3-Partite Graphs

Let G be a 3-partite graph given with a partition of its vertex set into three
independent sets V1, V2 and V3. Suppose each Vi can be partitioned into
sets V 0

i , . . . , V
`
i such that, taking subscripts modulo 3: for i ∈ {1, 2, 3} if j < k

then V j
i is complete to V k

i+1 and anti-complete to V k
i+2. For i ∈ {0, . . . , `} let

Gi = G[V i
1 ∪V i

2 ∪V i
3 ]. Then the graphs Gi are the slices of G. If the slices belong

to some class X, then G can be partitioned into slices from X; see Fig. 1 for an
example.

V1 V2 V3

G0

G1

G2

G3

Fig. 1. A 3-partite graph that is partitioned into slices G0, . . . , G3 isomorphic to P3.

Lemma 10. If G is a 3-partite graph that can be partitioned into slices of
clique-width at most k then G has clique-width at most max(3k, 6).

Proof. Since every slice Gj of G has clique-width at most k, it can be constructed
using the labels 1, . . . , k. Applying relabelling operations if necessary, we may as-
sume that at the end of this construction, every vertex receives the label 1. We can
modify this construction so that we use the labels 11, . . . , k1, 12, . . . , k2, 13, . . . , k3
instead, in such a way that at all points in the construction, for each i ∈ {1, 2, 3}
every constructed vertex in Vi has a label in {1i, . . . , ki}. To do this we replace:

– creation operations i(v) by ij(v) if v ∈ Vj ,
– relabel operations ρj→k() by ρj1→k1

(ρj2→k2
(ρj3→k3

())) and
– join operations ηj,k() by

ηj1,k1(ηj1,k2(ηj1,k3(ηj2,k1(ηj2,k2(ηj2,k3(ηj3,k1(ηj3,k2(ηj3,k3())))))))).

This modified construction uses 3k labels and at the end of it, every vertex in Vi
is labelled with label 1i. We may do this for every slice Gj of G independently. We
now show how to use these constructed slices to construct G[V (G0)∪· · ·∪V (Gj)]
using six labels in such a way that every vertex in Vi is labelled with label 1i. We
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do this by induction. If j = 0 then G[V (G0)] = G0, so we are done. If j > 0 then
by the induction hypothesis, we can construct G[V (G0) ∪ · · · ∪ V (Gj−1)] in this
way. Consider the copy of Gj constructed earlier and relabel its vertices using the
operations ρ11→21 , ρ12→22 and ρ13→23 so that in this copy of Gj , every vertex
in Vi is labelled 2i. Next take the disjoint union of the obtained graph with the
constructed G[V (G0) ∪ · · · ∪ V (Gj−1)]. Then, apply join operations η11,22 , η12,23
and η13,21 . Finally, apply the relabelling operations ρ21→11 , ρ22→12 and ρ23→13 .
This constructs G[V (G0) ∪ · · · ∪ V (Gj)] in such a way that every vertex in Vi is
labelled with 1i. By induction, G has clique-width at most max(3k, 6). ut

Lemma 11. Let X be a hereditary graph class containing a class Z. Let Y be
the set of 3-partite graphs in X that can be partitioned into slices from Z. If Z is
well-quasi-ordered by the labelled induced subgraph relation then so is Y .

Proof. For each graph G in Y , we may fix a partition into independent sets
(V1, V2, V3) with respect to which the graph can be partitioned into slices from Z.
Let (L1,≤1) be the well-quasi-order with L1 = {1, 2, 3} in which every pair of
distinct elements is incomparable. By Lemma 7, we need only consider labellings of
graphs in G of the form (i, l(v)) where v ∈ Vi and l(v) belongs to an arbitrary well-
quasi-order L. Suppose G can be partitioned into slices G1, . . . , Gk, with vertices
labelled as in G. The slices along with the labellings completely describe the
edges in G. Suppose H is another such graph, partitioned into slices H1, . . . ,Hk.
If (H1, . . . ,H`) is smaller than (G1, . . . , Gk) under the subsequence relation,
then H is an induced subgraph of G. The result follows by Lemma 3. ut

We will now introduce curious graphs. Let G be a 3-partite graph given together
with a partition of its vertex set into three independent sets V1, V2 and V3. An
induced K3 or 3P1 in G is rainbow if it has exactly one vertex in each set Vi. We
say that G is curious with respect to the partition (V1, V2, V3) if it contains no
rainbow K3 or 3P1 when its vertex set is partitioned in this way. We say that G
is curious if there is a partition (V1, V2, V3) with respect to which G is curious.
We will prove that given a hereditary class X, if the bipartite graphs in X are
well-quasi-ordered by the labelled induced subgraph relation or have bounded
clique-width, then the same is true for the curious graphs in X. A linear order
(x1, x2, . . . , xk) of the vertices of an independent set I is

- increasing if i < j implies N(xi) ⊆ N(xj),
- decreasing if i < j implies N(xi) ⊇ N(xj),
- monotone if it is either increasing or decreasing.

Bipartite graphs that are 2P2-free are also known as bipartite chain graphs. It
is readily seen that a bipartite graph G is 2P2-free if and only if the vertices in
each independent set of the bipartition admit a monotone ordering. Suppose G
is a curious graph with respect to some partition (V1, V2, V3). We say that (with
respect to this partition) the graph G is a curious graph of type t if exactly t of
the graphs G[V1 ∪ V2], G[V1 ∪ V3] and G[V2 ∪ V3] contain an induced 2P2. If G
is a curious graph of type 0 or 1 with respect to the partition (V1, V2, V3) then
without loss of generality, we may assume that G[V1 ∪ V2] and G[V1 ∪ V3] are
both 2P2-free. We omit the proof of the next lemma.
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Lemma 12. Let G be a curious graph with respect to (V1, V2, V3), such that
G[V1 ∪ V2] and G[V1 ∪ V3] are both 2P2-free. Then the vertices of V1 admit a
linear ordering which is decreasing in G[V1 ∪ V2] and increasing in G[V1 ∪ V3].

Lemma 13. If G is a curious graph of type 0 or 1 with respect to a partition
(V1, V2, V3) then G can be partitioned into slices that are bipartite.

Proof. Let x1, . . . , x` be a linear order on V1 satisfying Lemma 12. Let V 0
1 = ∅

and for i ∈ {1, . . . , `}, let V i
1 = {xi}. We partition V2 and V3 as follows. For

i ∈ {0, . . . , `}, let V i
2 = {y ∈ V2 | xjy ∈ E(G) if and only if j ≤ i}. For

i ∈ {0, . . . , `}, let V i
3 = {z ∈ V3 | xjz /∈ E(G) if and only if j ≤ i}. In particular,

note that the vertices of V `
2 ∪ V 0

3 and V 0
2 ∪ V `

3 are complete and anti-complete
to V1, respectively. The following properties hold: if j < k then V j

1 is complete
to V k

2 and anti-complete to V k
3 , and if j > k then V j

1 is anti-complete to V k
2 and

complete to V k
3 . If j < k and y ∈ V j

2 is non-adjacent to z ∈ V k
3 then G[xk, y, z]

is a rainbow 3P1, a contradiction. If j > k and y ∈ V j
2 is adjacent to z ∈ V k

3 then
G[xj , y, z] is a rainbow K3, a contradiction. It follows that: if j < k then V j

2 is
complete to V k

3 and if j > k then V j
2 is anti-complete to V k

3 .
For i ∈ {0, . . . , `}, let Gi = G[V i

1 ∪ V i
2 ∪ V i

3 ]. The above properties about
the edges between the sets V i

j show that G can be partitioned into the slices
G0, . . . , G`. Now, for each i ∈ {0, . . . , `}, V i

1 is anti-complete to V i
3 , so every

slice Gi is bipartite. This completes the proof. ut

Lemma 14. Fix t ∈ {2, 3}. If G is a curious graph of type t with respect to a
partition (V1, V2, V3) then G can be partitioned into slices of type at most t− 1.

Proof Sketch. Fix t ∈ {2, 3} and let G be a curious graph of type t with respect to
a partition (V1, V2, V3). We may assume that G[V1 ∪ V2] contains an induced 2P2.

We start with the following claim (we omit the proof).
Claim 1. Given a 2P2 in G[V1∪V2], every vertex of V3 has exactly two neighbours
in the 2P2 and these neighbours either both lie in V1 or both lie in V2.
Consider a maximal set {H1, . . . ,Hq} of vertex-disjoint sets that induce copies
of 2P2 in G[V1 ∪ V2]. We say that a vertex of V3 distinguishes two graphs G[Hi]
and G[Hj ] if its neighbours in Hi and Hj do not belong to the same set Vk. We
group these sets Hi into blocks B1, . . . , Bp that are not distinguished by any
vertex of V3. In other words, every Bi contains at least one 2P2 and every vertex
of V3 is complete to one of the sets Bi ∩ V1 and Bi ∩ V2 and anti-complete to the
other. For j ∈ {1, 2}, let Bi

j = Bi ∩ Vj . We define a relation <B on the blocks as
follows: Bi <B Bj holds if Bi

1 is complete to Bj
2, while B

i
2 is anti-complete to Bj

1.
For distinct blocks Bi, Bj at most one of Bi <B Bj and Bj <B Bi can hold.

We need the following two claims (we omit their proofs).
Claim 2. Let Bi and Bj be distinct blocks. There is a vertex z ∈ V3 that differ-
entiates Bi and Bj. If z is complete to Bi

2 ∪ B
j
1 and anti-complete to Bi

1 ∪ B
j
2

then Bi <B Bj (see also Fig. 2). If z is complete to Bj
2 ∪Bi

1 and anti-complete
to Bj

1 ∪Bi
2 then Bj <B Bi.
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V1 V2 V3

Bi

Bj

z

Fig. 2. Two blocks Bi and Bj with Bi <B Bj and a vertex z ∈ V3 differentiating them.

Claim 3. The relation <B is transitive.
Combining Claims 1–3, we find that <B is a linear order on the blocks. We obtain
the following conclusion, which we call the chain property.
Claim 4. The set of blocks has a linear order B1 <B B2 <B · · · <B Bp so that

(i) if i < j then Bi
1 is complete to Bj

2, while B
i
2 is anti-complete to Bj

1 and
(ii) for each z ∈ V3 there exists an i ∈ {0, . . . , p} such that if j ≤ i then z is

complete to Bj
2 and anti-complete to Bj

1 and if j > i then z is anti-complete
to Bj

2 and complete to Bj
1.

We now consider the set of vertices in V1 ∪ V2 that do not belong to any set Bi.
Let R denote this set and note that G[R] is 2P2-free by maximality of the set
{H1, . . . ,Hq}. For i ∈ {1, 2} let Ri = R ∩ Vi. We make the following claim (we
omit its proof).
Claim 5. If x ∈ R1 has a neighbour in Bi

2, then x is complete to Bi+1
2 , and if x

has a non-neighbour in Bi
2, then x is anti-complete to Bi−1

2 . If x ∈ R2 has a
non-neighbour in Bi

1, then x is anti-complete to Bi+1
1 , and if x has a neighbour

in Bi
1, then x is complete to Bi−1

1 .
Claim 5 allows us to update the sequence of blocks as follows:

Update Procedure. For i ∈ {1, 2}, if Ri contains a vertex x that has both a
neighbour y and a non-neighbour y′ in Bj

3−i for some j, we add x to the sets Bj
i

and Bj and remove it from Ri.
We make the following claim (we omit its proof).
Claim 6. Applying the Update Procedure preserves the chain property of the
blocks Bi.

10



By Claim 6 we may apply the Update Procedure exhaustively, after which the
chain property will continue to hold. Once this procedure is complete, every
remaining vertex of R1 will be either complete or anti-complete to each set Bj

2. In
fact, by Claim 5, we know that for every vertex x ∈ R1, there is an i ∈ {0, . . . , p}
such that x has a neighbour in all Bj

2 with j > i (if such a j exists) and x has a
non-neighbour in all Bj

2 with j ≤ i (if any such j exists). Since x is complete or
anti-complete to each set Bj

2, we obtain the following conclusion:

– for every vertex x ∈ R1, there is an i ∈ {0, . . . , p} such that x is complete to
all Bj

2 with j > i (if such a j exists) and x is anti-complete to all Bj
2 with

j ≤ i (if any such j exists). We denote the corresponding subset of R1 by Y i
1 .

By symmetry, we also obtain the following:

– for every vertex x ∈ R2, there is an i ∈ {0, . . . , p} such that x is complete to
all Bj

1 with j ≤ i (if such a j exists) and x is anti-complete to all Bj
1 with

j > i (if any such j exists). We denote the corresponding subset of R2 by Y i
2 .

We also partition the vertices of V3 into p+ 1 subsets V 0
3 , . . . , V

p
3 such that

the vertices of V j
3 are complete to Bi

2 and anti-complete to Bi
1 for i ≤ j and

complete to Bi
1 and anti-complete to Bi

2 for i > j. (So V 0
3 is complete to B1

i for
all i and V p

3 is complete to B2
i for all i).

Claim 7. For each i, if j < i then V i
3 is anti-complete to Y j

1 and complete to Y j
2 ,

and if j > i then V i
3 is complete to Y j

1 and anti-complete to Y j
2 .

Suppose that z ∈ V i
3 and x ∈ Y j

1 and y ∈ Y j
2 (note that such vertices x and y

do not exist if Y j
1 or Y j

2 , respectively, is empty). First suppose that j < i and
choose arbitrary vertices x′ ∈ Bi

1, y′ ∈ Bi
2. Note that x and z are both complete

to Bi
2 and y and z are both anti-complete to Bi

1. Then z cannot be adjacent
to x otherwise G[x, y′, z] would be a rainbow K3 and z must be adjacent to y,
otherwise G[x′, y, z] would be a rainbow 3P1. Now suppose i < j and choose
arbitrary vertices x′ ∈ Bi+1

1 , y′ ∈ Bi+1
2 . Note that x and z are both anti-complete

to Bi+1
2 and y and z are both complete to Bi+1

1 . Then z must be adjacent to x
otherwise G[x, y′, z] would be a rainbow 3P1 and z must be non-adjacent to y,
otherwise G[x′, y, z] would be a rainbow K3. This completes the proof of Claim 7.

Let Gi denote the subgraph of G induced by Y i
1 ∩Y i

2 ∩V i
3 . By Claims 4, 6 and 7 the

graph G can be partitioned into slices: G0, G[B1], G1, G[B2], . . . , G[Bp], Gp. Re-
call that the graph G is of type t and G[V1 ∪ V2] contains an induced 2P2.
Since G[Y i

1 ∪ Y i
2 ] is 2P2-free (by construction, since the original sequence

H1, H2, . . . ,Hq of 2P2s was maximal), it follows that each Gi is of type at
most t− 1. Furthermore, since each G[Bi] is bipartite, it forms a curious graph in
which the set V3 is empty, so it has type at most 1. This completes the proof. ut

We are now ready to state the main result of this section.

Theorem 4. Let X be a hereditary class of graphs. If the set of bipartite graphs
in X is well-quasi-ordered by the labelled induced subgraph relation or has bounded
clique-width, then this property also holds for the set of curious graphs in X.
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Proof. Suppose that the class of bipartite graphs in X is well-quasi-ordered by the
labelled induced subgraph relation or has bounded clique-width. By Lemmas 10,
11 and 13, the curious graphs of type at most 1 also have this property. Applying
Lemmas 10, 11 and 14 once, we obtain the same conclusion for curious graphs
of type at most 2. Applying Lemmas 10, 11 and 14 again, we obtain the same
conclusion for curious graphs of type at most 3, that is, all curious graphs. ut

4 Applications of Our Technique

We start with two lemmas. The first is implicit in the proofs of Lemma 9 and
Theorem 3 in [6]; we omit the proof of the second.

Lemma 15 ([6]). There is a constant c, such that given any (K3, P1 + P5)-free
graph G that contains an induced C5, we can apply at most c vertex deletions
and at most c bipartite complementation operations to obtain a graph H that is
the disjoint union of (K3, P1 + P5)-free curious graphs.

Lemma 16. There is a constant c, such that given any prime (K3, P2 +P4)-free
graph G that contains an induced C5, we can apply at most c vertex deletions
and at most c bipartite complementation operations to obtain a graph H that is
the disjoint union of (K3, P2 + P4)-free curious graphs and 3-uniform graphs.

We can now prove the following theorem.3

Theorem 5. For H ∈ {P2 + P4, P1 + P5} the class of (K3, H)-free graphs is
well-quasi-ordered by the labelled induced subgraph relation and has bounded
clique-width.

Proof. Let H ∈ {P2 + P4, P1 + P5}. By Lemmas 1 and 5, we need only consider
prime graphs in this class. Recall that a prime graph on at least three vertices
cannot contain two vertices that are false twins, otherwise these two vertices
would form a non-trivial module. Therefore, by Lemma 2, and since H ⊆i S1,2,3,
the classes of prime (K3, H)-free graphs containing an induced C7 is precisely the
graph C7. We may therefore restrict ourselves to C7-free graphs. Since the graphs
in the class are H-free, it follows they contain no induced cycles on eight or more
vertices. We may therefore restrict ourselves to prime (K3, C7, H)-free graphs
that either contain an induced C5 or are bipartite. By Lemmas 15 or 16, given
any prime (K3, C7, H)-free that contains an induced C5, we can apply at most a
constant number of vertex deletions and bipartite complementation operations
to obtain a graph that is a disjoint union of (K3, H)-free curious graphs and
(in the H = P2 + P4 case) 3-uniform graphs. By Lemmas 4, 8 and 9, Facts 1
and 3, and Theorem 4, it is sufficient to only consider bipartite (K3, C7, H)-free
graphs. These graphs are H-free bipartite graphs. Furthermore, they form a
subclass of the class of (P7, S1,2,3)-free bipartite graphs, since H ⊆i P7, S1,2,3.
(P7, S1,2,3)-free bipartite graphs are well-quasi-ordered by the labelled induced
subgraph relation by Lemma 6 and have bounded clique-width by Theorem 3. ut
3 It was already known [6] that the class of (K3, P1 + P5)-free graphs has bounded
clique-width but it was not known that it is well-quasi-ordered.

12



References

1. A. Atminas and V. V. Lozin. Labelled induced subgraphs and well-quasi-ordering.
Order, 32(3):313–328, 2015.

2. A. Blanché, K. K. Dabrowski, M. Johnson, V. V. Lozin, D. Paulusma, and V. Zama-
raev. Clique-width for graph classes closed under complementation. Proc. MFCS
2017, LIPIcs, 83:73:1–73:14, 2017.

3. B. Courcelle. Clique-width and edge contraction. Information Processing Letters,
114(1–2):42–44, 2014.

4. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems,
33(2):125–150, 2000.

5. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1–3):77–114, 2000.

6. K. K. Dabrowski, F. Dross, and D. Paulusma. Colouring diamond-free graphs.
Journal of Computer and System Sciences, (in press).

7. K. K. Dabrowski, V. V. Lozin, and D. Paulusma. Well-quasi-ordering versus
clique-width: New results on bigenic classes. Order, (in press).

8. K. K. Dabrowski and D. Paulusma. Classifying the clique-width of H-free bipartite
graphs. Discrete Applied Mathematics, 200:43–51, 2016.

9. K. K. Dabrowski and D. Paulusma. Clique-width of graph classes defined by two
forbidden induced subgraphs. The Computer Journal, 59(5):650–666, 2016.

10. J. Daligault, M. Rao, and S. Thomassé. Well-quasi-order of relabel functions. Order,
27(3):301–315, 2010.

11. P. Damaschke. Induced subgraphs and well-quasi-ordering. Journal of Graph
Theory, 14(4):427–435, 1990.

12. G. Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489–
502, 1992.

13. W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems
on clique-width bounded graphs in polynomial time. Proc. WG 2001, LNCS,
2204:117–128, 2001.

14. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, s3–2(1):326–336, 1952.

15. M. Kamiński, V. V. Lozin, and M. Milanič. Recent developments on graphs of
bounded clique-width. Discrete Applied Mathematics, 157(12):2747–2761, 2009.

16. D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics, 126(2–3):197–221, 2003.

17. N. Korpelainen and V. V. Lozin. Bipartite induced subgraphs and well-quasi-
ordering. Journal of Graph Theory, 67(3):235–249, 2011.

18. N. Korpelainen and V. V. Lozin. Two forbidden induced subgraphs and well-quasi-
ordering. Discrete Mathematics, 311(16):1813–1822, 2011.

19. V. V. Lozin and D. Rautenbach. On the band-, tree-, and clique-width of graphs
with bounded vertex degree. SIAM Journal on Discrete Mathematics, 18(1):195–206,
2004.

20. V. V. Lozin, I. Razgon, and V. Zamaraev. Well-quasi-ordering does not imply
bounded clique-width. Proc. WG 2015, LNCS, 9224:351–359, 2016.

21. S.-I. Oum and P. D. Seymour. Approximating clique-width and branch-width.
Journal of Combinatorial Theory, Series B, 96(4):514–528, 2006.

22. M. Rao. MSOL partitioning problems on graphs of bounded treewidth and clique-
width. Theoretical Computer Science, 377(1–3):260–267, 2007.

13


	Clique-width and Well-Quasi-Ordering of Triangle-Free Graph Classes

