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Abstract. Daligault, Rao and Thomassé asked whether every hereditary
graph class that is well-quasi-ordered by the induced subgraph relation
has bounded clique-width. Lozin, Razgon and Zamaraev (WG 2015) gave
a negative answer to this question, but their counterexample is a class that
can only be characterised by infinitely many forbidden induced subgraphs.
This raises the issue of whether their question has a positive answer
for finitely defined hereditary graph classes. Apart from two stubborn
cases, this has been confirmed when at most two induced subgraphs
H,, Hy are forbidden. We confirm it for one of the two stubborn cases,
namely for the case (H1, H2) = (triangle, P> + Py) by proving that the
class of (triangle, P, + Py)-free graphs has bounded clique-width and is
well-quasi-ordered. Our technique is based on a special decomposition
of 3-partite graphs. We also use this technique to completely determine
which classes of (triangle, H)-free graphs are well-quasi-ordered.

1 Introduction

A graph class G is well-quasi-ordered by some containment relation if for any
infinite sequence Gy, Gy, ... of graphs in G, there is a pair i, j with ¢ < j such that
G is contained in G;. A graph class G has bounded clique-width if there exists a
constant ¢ such that every graph in G has clique-width at most c¢. Both being well-
quasi-ordered and having bounded clique-width are highly desirable properties of
graph classes in the area of theoretical computer science. To illustrate this, let us
mention the seminal project of Robertson and Seymour on graph minors that
culminated in 2004 in the proof of Wagner’s conjecture, which states that the set
of all finite graphs is well-quasi-ordered by the minor relation. As an algorithmic
consequence, given a minor-closed graph class, it is possible to test in cubic
time whether a given graph belongs to this class. The algorithmic importance
of having bounded clique-width follows from the fact that many well-known

* This paper received support from EPSRC (EP/K025090/1 and EP/L020408/1) and
Leverhulme Trust RPG-2016-258.



NP-hard problems, such as GRAPH COLOURING and HAMILTON CYCLE, become
polynomial-time solvable for graph classes of bounded clique-width (this follows
from combining results from several papers [AT3IT6122] with a result of Oum and
Seymour [21]).

Courcelle [3] proved that the class of graphs obtained from graphs of clique-
width 3 via one or more edge contractions has unbounded clique-width. Hence
the clique-width of a graph can be much smaller than the clique-width of its
minors. On the other hand, the clique-width of a graph is at least the clique-width
of any of its induced subgraphs (see, for example, [5]). We therefore focus on
hereditary classes, that is, on graph classes that are closed under taking induced
subgraphs. Our goal is to increase our understanding of the relation between
well-quasi-orders and clique-width of hereditary graph classes.

It is readily seen that a class of graphs is hereditary if and only if it can be
characterised by a unique set F of minimal forbidden induced subgraphs, which
due to their minimality form an antichain, that is, no graph in F is an induced
subgraph of another graph in F. Note that the class of cycles is not well-quasi-
ordered by the induced subgraph relation. As every cycle has clique-width at
most 4, having bounded clique-width does not imply being well-quasi-ordered by
the induced subgraph relation. In 2010, Daligault, Rao and Thomassé¢ [10] asked
about the reverse implication: does every hereditary graph class that is well-quasi-
ordered by the induced subgraph relation have bounded clique-width? In 2015,
Lozin, Razgon and Zamaraev [20] gave a negative answer. As the set F in their
counter-example is infinite, the question of Daligault, Rao and Thomassé [10]
remains open for finitely defined hereditary graph classes, that is, hereditary
graph classes for which F is finite.

Congecture 1 ([20]). If a finitely defined hereditary class of graphs G is well-quasi-
ordered by the induced subgraph relation, then G has bounded clique-width.

If Conjecture [I] is true, then for finitely defined hereditary graph classes the
aforementioned algorithmic consequences of having bounded clique-width also
hold for the property of being well-quasi-ordered by the induced subgraph relation.
A hereditary graph class defined by a single forbidden induced subgraph H
is well-quasi-ordered by the induced subgraph relation if and only if it has
bounded clique-width if and only if H is an induced subgraph of P, (see, for
instance, [ITJI8]). Hence Conjecture [1| holds when F has size 1. We consider
the case when F has size 2, say F = {H;, Hz}. Such graph classes are called
bigenic or (Hy, Hs)-free graph classes. In this case Conjecture [1|is also known to
be true except for two stubborn open cases, namely (Hy, Hy) = (K3, Py + Py)
and (Hl,HQ) = (P1 + P4,P2 + Pg), see [7]

Our Results. We prove that the class of (K3, Py + Py)-free graphs has bounded
clique-width and is well-quasi-ordered by the induced subgraph relation. We do
this by using a general technique explained in Section [3] This technique is based
on extending (a labelled version of) well-quasi-orderability or boundedness of
clique-width of the bipartite graphs in a hereditary graph class X to a special
subclass of 3-partite graphs in X. The crucial property of these 3-partite graphs



is that no three vertices from the three different partition classes form a clique
or independent set. We call such 3-partite graphs curious. A more restricted
version of this concept was used to prove that (K5, Py + Ps)-free graphs have
bounded clique-width [6]. In Section 4] we show how to generalise results for
curious (K33, Py + Py)-free graphs to the whole class of (K3, Py + Py)-free graphs
and that our technique can also be applied to prove that (K3, P + Ps)-free graphs
are well-quasi-ordered.

Consequences of Our Results. Previously, well-quasi-orderability was known
for (K3, Ps)-free graphs [I], (P, + Py)-free bipartite graphs [I7] and (P; + Ps)-free
bipartite graphs [I7]. It has also been shown that H-free bipartite graphs are not
well-quasi-ordered if H contains an induced 3P; + P» [18], 3P, [12] or 2P5 [17].
This leads to the following dichotomy.

Theorem 1. Let H be a graph. The class of H-free bipartite graphs is well-quasi-
ordered by the induced subgraph relation if and only if H = sPy for some s > 1
or H is an induced subgraph of Py + Ps, P, + P, or Ps.

Now combining the aforementioned known results for (K3, H)-free graphs and
H-free bipartite graphs with our new results yields exactly the same dichotomy
for (K3, H)-free graphs as the one in Theorem

Theorem 2. Let H be a graph. The class of (K3, H)-free graphs is well-quasi-
ordered by the induced subgraph relation if and only if H = sPy for some s > 1
or H is an induced subgraph of Py + Ps, P, + Py, or Ps.

Future Work. The class of (P, + Py, P, + Ps)-free graphs is the only bigenic
graph class left for which Conjecture [I] still needs to be verified. After updating
the summaries in [7] with our new results, this class is also one of the six remaining
bigenic graph classes for which well-quasi-orderability is still open. And it is
one of the six remaining bigenic graph classes for which we do not know if their
clique-width is bounded [2]. Hence, a new approach is required to solve this case.

Besides our technique based on curious graphs, we also expect that Theorem [2]
will itself be a useful ingredient for showing results for other graph classes, just
as Theorem [1| has already proven to be useful (see e.g. [I7]).

For clique-width the following dichotomy is known for H-free bipartite graphs.

Theorem 3 ([8]). Let H be a graph. The class of H-free bipartite graphs has
bounded clique-width if and only if H = sPy for some s > 1 or H is an induced
subgmph Of Kl’g + 3P1, K173 + PQ, P1 + 5171’3 or 8172’3.

It would be interesting to determine whether (K35, H)-free graphs allow the same
dichotomy with respect to the boundedness of their clique-width. The evidence so
far is affirmative, but in order to answer this question two remaining cases need
to be solved, namely (Hl,HQ) = (Kg,Pl + 5171,3) and (H17H2) = (K3,517273);
see Section [2] for the definition of the graph Sy, ; ;. Both cases turn out to be
highly non-trivial; in particular, the class of (K3, P; + .51 1,3)-free graphs contains
the class of (K3, Py + Ps)-free graphs, and the class of (K3, S1,2,3)-free graphs
contains both the classes of (K3, Py + Ps)-free and (K3, P + Py)-free graphs.



2 Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops.
The disjoint union (V(G)UV (H), E(G)UE(H)) of two vertex-disjoint graphs G
and H is denoted by G + H and the disjoint union of r copies of a graph G is
denoted by rG. The complement G of a graph G has vertex set V(G) = V(G)
and an edge between two distinct vertices u, v if and only if uv ¢ E(G). For
a subset S C V(G), we let G[S] denote the subgraph of G induced by S. If
S ={s1,...,8:}, we may also write G[s1,...,s,]. We write G’ C; G to indicate
that G’ is an induced subgraph of G.

The graphs C., K., K; -1 and P, denote the cycle, complete graph, star
and path on r vertices, respectively. The graphs K3 and K 3 are also called the
triangle and claw, respectively. The graph Sy ; ;, for 1 < h <14 < j, denotes the
subdivided claw, that is, the tree that has only one vertex x of degree 3 and exactly
three leaves, which are of distance h, i and j from x, respectively. Observe that
S1,1,1 = K1,3. We let S denote the class of graphs, each connected component of
which is either a subdivided claw or a path. For a set of graphs {Hi,...,Hp}, a
graph G is (Hy, ..., Hp)-free if it has no induced subgraph isomorphic to a graph
in {Hq,...,Hp}; if p=1, we may write Hy-free instead of (H)-free.

For a graph G = (V, E), the set N(u) = {v € V | wv € E} denotes the
neighbourhood of uw € V. A graph is k-partite if its vertex can be partitioned
into k (possibly empty) independent sets; 2-partite graphs are also known as
bipartite graphs.

Let X be a set of vertices in a graph G = (V) E). A vertex y € V \ X is
complete to X if it is adjacent to every vertex of X and anti-complete to X if
it is adjacent to no vertex of X. A set of vertices Y C V' \ X is complete (resp.
anti-complete) to X if every vertex in Y is complete (resp. anti-complete) to X. A
vertex y € V' \ X distinguishes X if y has both a neighbour and a non-neighbour
in X. The set X is a module of G if no vertex in V' \ X distinguishes X. A
module X is non-trivial if 1 < |X| < |V, otherwise it is trivial. A graph is prime
if it has only trivial modules. Two (non-adjacent) vertices are false twins if they
share the same neighbours. Prime graphs on at least three vertices contain no
false twins, as any such pair of vertices would form a non-trivial module.

The clique-width cw(G) of a graph G is the minimum number of labels needed
to construct G by using the following four operations:

1. i(v): creating a new graph consisting of a single vertex v with label 4;
2. G1 & G4: taking the disjoint union of two labelled graphs G; and Go;
3. 1;,;: joining each vertex with label i to each vertex with label j (i # j);
4. p;i—;: renaming label ¢ to j.

A class of graphs G has bounded clique-width if there is a constant ¢ such
that the clique-width of every graph in G is at most c¢; otherwise the clique-
width is unbounded. For an induced subgraph G’ of a graph G, the subgraph
complementation operation replaces every edge present in G’ by a non-edge,
and vice versa. For two disjoint vertex subsets S and T in G, the bipartite
complementation operation replaces every edge with one end-vertex in S and the



other one in T" by a non-edge and vice versa. Let k > 0 be a constant and let ~y
be some graph operation. A class G’ is (k, v)-obtained from a class G if:

1. every graph in G’ is obtained from a graph in G by performing ~ at most k
times, and

2. for every G € G there exists at least one graph in G’ obtained from G by
performing v at most k times.

We say that v preserves boundedness of clique-width if for any finite constant k
and any graph class G, any graph class G’ that is (k,7)-obtained from G has
bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [19].
Fact 2. Subgraph complementation preserves boundedness of clique-width [I5].
Fact 3. Bipartite complementation preserves boundedness of clique-width [I5].

Lemma 1 (|B]). Let G be a graph and let P be the set of all induced subgraphs
of G that are prime. Then cw(G) = maxyep cw(H).

Lemma 2 ([6]). Let G be a connected (Ks,C5,S1.23)-free graph that does not
contain a pair of false twins. Then G is either bipartite or a cycle.

A quasi order < on a set X is a reflexive, transitive binary relation. Two elements
x,y € X in this quasi-order are comparable if x < y or y < x, otherwise they are
incomparable. A set of elements in a quasi-order is a chain if every pair of elements
is comparable and it is an antichain if every pair of elements is incomparable.
The quasi-order < is a well-quasi-order if any infinite sequence of elements
x1,%2,T3,...in X contains a pair (z;,z;) with 2; < z; and ¢ < j. Equivalently, a
quasi-order is a well-quasi-order if and only if it has no infinite strictly decreasing
sequence x1 > x9 > x3 > --- and no infinite antichain. For an arbitrary set M,
let M* denote the set of finite sequences of elements of M. A quasi-order < on M
defines a quasi-order <* on M* as follows: (ai,...,am,) <* (b1,...,b,) if and
only if there is a sequence of integers i1,...,4, with 1 <i; < --- <4, < n such
that a; < b, for j € {1,...,m}. We call <* the subsequence relation.

Lemma 3 (Higman’s Lemma [14]). If (M, <) is a well-quasi-order then
(M*,<*) is a well-quasi-order.

For a quasi-order (W, <), a graph G is a labelled graph if each vertex v of G
is equipped with an element lg(v) € W (the label of v). Given two labelled
graphs G and H, we say that G is a labelled induced subgraph of H if G is
isomorphic to an induced subgraph of H and there is an isomorphism that maps
each vertex v of G to a vertex w of H with lg(v) < lp(w). Clearly, if (W, <) is a
well-quasi-order, then a class of graphs X cannot contain an infinite sequence of
labelled graphs that is strictly-decreasing with respect to the labelled induced
subgraph relation. We therefore say that a graph class X is well-quasi-ordered
by the labelled induced subgraph relation if it contains no infinite antichains of
labelled graphs whenever (W, <) is a wellquasi-order. Such a class is readily
seen to also be well-quasi-ordered by the induced subgraph relation. Similarly



to the notion of preserving boundedness of clique-width, we say that a graph
operation v preserves well-quasi-orderability by the labelled induced subgraph
relation if for any finite constant k and any graph class G, any graph class G’ that
is (k,~y)-obtained from G is well-quasi-ordered by this relation if and only if G is.

Lemma 4 ([7]). Subgraph and bipartite complementations and vertex deletion
preserve well-quasi-orderability by the labelled induced subgraph relation.

Lemma 5 ([I]). A hereditary class X of graphs is well-quasi-ordered by the
labelled induced subgraph relation if and only if the set of prime graphs in X 1is.
In particular, X is well-quasi-ordered by the labelled induced subgraph relation if
and only if the set of connected graphs in X is.

Lemma 6 ([IJ17]). (Pr, S1,2,3)-free bipartite graphs are well-quasi-ordered by
the labelled induced subgraph relation.

Let (L1,<;) and (Ls, <5) be well-quasi-orders. We define the Cartesian Product
(L1,<1) X (La,<3) of these well-quasi-orders as the order (L,<y) on the set
L := Ly x Ly where (I1,12) <p, (I1,14) ifand only if I; <; I} and I3 <5 1. Lemma
implies that (L, <p) is also a well-quasi-order. If G has a labelling with elements
of Ly and of Lo, say I : V(G) — Ly and Iy : V(G) — Lo, we can construct the
combined labelling in (L1,<71) x (L2, <2) that labels each vertex v of G with the
label (I1(v),l2(v)). We omit the proof of the next lemma.

Lemma 7. Fiz a well-quasi-order (L1, <1) that has at least one element. Let X
be a class of graphs. For each G € X fix a labelling I, : V(G) — Ly. Then X
is well-quasi-ordered by the labelled induced subgraph relation if and only if for
every well-quasi-order (Lo, <5) and every labelling of the graphs in X by this
order, the combined labelling in (L1, <1) X (La, <3) obtained from these labellings
also results in a well-quasi-ordered set of labelled graphs.

For an integer k > 1, a graph G is k-uniform if there is a symmetric square 0, 1
matrix K of order k and a graph F}, on vertices 1,2, ..., k such that G € P(K, F},),
where P (K, F}) is a graph class defined as follows. Let H be the disjoint union
of infinitely many copies of Fj. For i = 1,...,k, let V; be the subset of V(H)
containing vertex ¢ from each copy of Fj,. Construct from H an infinite graph H(K)
on the same vertex set by applying a subgraph complementation to V; if and only
if K(i,7) =1 and by applying a bipartite complementation to a pair V;, V; if and
only if K(4,j) = 1. Thus, two vertices u € V; and v € V; are adjacent in H(K)
if and only if uv € E(H) and K(i,5) =0 or uv ¢ E(H) and K(i,5) = 1. Then,
P(K, Fy) is the hereditary class consisting of all the finite induced subgraphs
of H(K). The minimum & such that G is k-uniform is the uniformicity of G. The
second of the next two lemmas follows directly from the above definitions.

Lemma 8 ([I8]). Any class of graphs of bounded uniformicity is well-quasi-
ordered by the labelled induced subgraph relation.

Lemma 9. Every k-uniform graph has clique-width at most 2k.



3 Partitioning 3-Partite Graphs

Let G be a 3-partite graph given with a partition of its vertex set into three
independent sets Vi, Vo and V3. Suppose each V; can be partitioned into
sets V0, ..., V¥ such that, taking subscripts modulo 3: for i € {1,2,3} if j < k
then V7 is complete to V¥ | and anti-complete to V;%,. For i € {0,...,¢} let
G" = GV} UV3 UVZ]. Then the graphs G* are the slices of G. If the slices belong
to some class X, then G can be partitioned into slices from X; see Fig. [I] for an
example.

Fig. 1. A 3-partite graph that is partitioned into slices G°, ..., G® isomorphic to Ps.

Lemma 10. If G is a 3-partite graph that can be partitioned into slices of
clique-width at most k then G has clique-width at most max(3k, 6).

Proof. Since every slice G7 of G has clique-width at most k, it can be constructed
using the labels 1,..., k. Applying relabelling operations if necessary, we may as-
sume that at the end of this construction, every vertex receives the label 1. We can
modify this construction so that we use the labels 11,...,k1,12,..., k2, 13,..., k3
instead, in such a way that at all points in the construction, for each ¢ € {1,2, 3}
every constructed vertex in V; has a label in {1;,...,k;}. To do this we replace:

— creation operations i(v) by ,(v) if v € V},
— relabel operations p;_x() by pj—ki (Pjo—ks (Pjs—ks () and
— join operations 7; () by
MNj1 k1 (77]'1’/62 (77]'1,]63 (77]'2’161 (an,kz (77]'2’163 (njs,kl (”7]'3’162 (njs,ks ()))))))))

This modified construction uses 3k labels and at the end of it, every vertex in V;
is labelled with label 1;. We may do this for every slice G’ of G independently. We
now show how to use these constructed slices to construct G[V (G°)U---UV (G7)]
using six labels in such a way that every vertex in V; is labelled with label 1;. We



do this by induction. If j = 0 then G[V(G)] = G, so we are done. If j > 0 then
by the induction hypothesis, we can construct G[V (G°) U--- U V(G?~1)] in this
way. Consider the copy of G7 constructed earlier and relabel its vertices using the
operations p1,2,, P1,2, and pi1,,2, so that in this copy of G, every vertex
in V; is labelled 2;. Next take the disjoint union of the obtained graph with the
constructed G[V (G®) U--- U V(G?~1)]. Then, apply join operations 71, 2,, 71,2,
and 71, 2,. Finally, apply the relabelling operations p2, 1., p2,-1, and pa,_1,.
This constructs G[V(G®) U---UV(G7)] in such a way that every vertex in V; is
labelled with 1;. By induction, G has clique-width at most max(3k, 6). O

Lemma 11. Let X be a hereditary graph class containing a class Z. Let Y be
the set of 3-partite graphs in X that can be partitioned into slices from Z. If Z is
well-quasi-ordered by the labelled induced subgraph relation then so is'Y .

Proof. For each graph G in Y, we may fix a partition into independent sets
(V1, Va, V3) with respect to which the graph can be partitioned into slices from Z.
Let (L1,<1) be the well-quasi-order with L; = {1,2,3} in which every pair of
distinct elements is incomparable. By Lemmal[7], we need only consider labellings of
graphs in G of the form (4,1(v)) where v € V; and I(v) belongs to an arbitrary well-
quasi-order L. Suppose G can be partitioned into slices G, ..., G*, with vertices
labelled as in G. The slices along with the labellings completely describe the
edges in G. Suppose H is another such graph, partitioned into slices H', ..., H*.
If (H',..., H") is smaller than (G',...,G*) under the subsequence relation,
then H is an induced subgraph of G. The result follows by Lemma ad

We will now introduce curious graphs. Let G be a 3-partite graph given together
with a partition of its vertex set into three independent sets Vi, V5 and V3. An
induced K3 or 3P; in G is rainbow if it has exactly one vertex in each set V;. We
say that G is curious with respect to the partition (Vi,Va,V3) if it contains no
rainbow K3 or 3P, when its vertex set is partitioned in this way. We say that G
is curious if there is a partition (Vi, Va2, V3) with respect to which G is curious.
We will prove that given a hereditary class X, if the bipartite graphs in X are
well-quasi-ordered by the labelled induced subgraph relation or have bounded
clique-width, then the same is true for the curious graphs in X. A linear order
(z1,x2,...,x) of the vertices of an independent set I is

- increasing if ¢ < j implies N (x;) C N(z;),

- decreasing if ¢ < j implies N(z;) 2 N(x;),

- monotone if it is either increasing or decreasing.

Bipartite graphs that are 2P»-free are also known as bipartite chain graphs. It
is readily seen that a bipartite graph G is 2P»-free if and only if the vertices in
each independent set of the bipartition admit a monotone ordering. Suppose G
is a curious graph with respect to some partition (Vq, Vs, V3). We say that (with
respect to this partition) the graph G is a curious graph of type t if exactly ¢ of
the graphs G[V; U Va], G[V1 U V3] and G|V, U V3] contain an induced 2P,. If G
is a curious graph of type 0 or 1 with respect to the partition (Vi, Va2, V3) then
without loss of generality, we may assume that G[V; U V,] and G[V; U V3] are
both 2P,-free. We omit the proof of the next lemma.



Lemma 12. Let G be a curious graph with respect to (Vi,V2,V3), such that
G[V1 U V3] and G[V1 U V3] are both 2P,-free. Then the vertices of Vi admit a
linear ordering which is decreasing in G[V1 U V] and increasing in G[V; U Vs].

Lemma 13. If G is a curious graph of type 0 or 1 with respect to a partition
(V1, Va2, V3) then G can be partitioned into slices that are bipartite.

Proof. Let x1,...,xy be a linear order on V; satisfying Lemma Let VP =0
and for i € {1,...,¢}, let V} = {z;}. We partition V5 and V3 as follows. For
i€ {0,....0} let Vi = {y € Vo | z;y € E(G) if and only if j < i}. For
i€{0,....0}, let Vi ={z € V5| x;z ¢ E(G) if and only if j < i}. In particular,
note that the vertices of Vi U VY and Vi’ UV are complete and anti-complete
to V3, respectively. The following properties hold: if j < k then V; is complete
to V§¥ and anti-complete to Vi, and if j > k then Vlj is anti-complete to V¥ and
complete to V. If j < k and y € VQJ is non-adjacent to z € V¥ then G[zy,y, 2]
is a rainbow 3Py, a contradiction. If j > k and y € V2j is adjacent to z € V¥ then
Glzj,y, 2] is a rainbow K33, a contradiction. It follows that: if j < k then sz is
complete to V¥ and if j > k then VJ is anti-complete to V.

For i € {0,...,¢}, let G* = G[V{ U V4 U VZ]. The above properties about
the edges between the sets Vj show that G can be partitioned into the slices
GO, ...,G* Now, for each i € {0,...,£}, V{ is anti-complete to V§, so every
slice G is bipartite. This completes the proof. a

Lemma 14. Fiz t € {2,3}. If G is a curious graph of type t with respect to a
partition (V1,Va,V3) then G can be partitioned into slices of type at most t — 1.

Proof Sketch. Fix t € {2,3} and let G be a curious graph of type ¢ with respect to
a partition (V1, Vo, V3). We may assume that G[V; U V3] contains an induced 2P.
We start with the following claim (we omit the proof).

Claim 1. Given a 2Py in G[V1 UV,], every vertex of V3 has exactly two neighbours
in the 2Py and these neighbours either both lie in Vi or both lie in V5.

Consider a maximal set {H®, ..., H?} of vertex-disjoint sets that induce copies
of 2P, in G[Vi U Va]. We say that a vertex of V3 distinguishes two graphs G[H']
and G[H] if its neighbours in H® and H’ do not belong to the same set Vj. We
group these sets H' into blocks B!,..., BP that are not distinguished by any
vertex of V. In other words, every B’ contains at least one 2P, and every vertex
of V3 is complete to one of the sets B NV} and B NV, and anti-complete to the
other. For j € {1,2}, let B} = B’ N V;. We define a relation <p on the blocks as
follows: B? <p B’ holds if Bi is complete to Bj, while Bj is anti-complete to BY.
For distinct blocks B?, BY at most one of B* < BJ and BJ <p B can hold.
We need the following two claims (we omit their proofs).

Claim 2. Let B' and BJ be distinct blocks. There is a verter z € V3 that differ-
entiates B' and B7. If z is complete to B} U B] and anti-complete to Bt U BJ
then B <p B’ (see also Fig. @ If z is complete to Bj U B! and anti-complete
to B) U B}, then Bi <p B'.
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Fig. 2. Two blocks B* and B? with B* <p B’ and a vertex z € Vi differentiating them.

Claim 8. The relation <p is transitive.

Combining Claims [IH3] we find that <p is a linear order on the blocks. We obtain

the following conclusion, which we call the chain property.

Claim 4. The set of blocks has a linear order B <g B? <p --- < BP so that
(i) if i < j then B is complete to Bé, while By is anti-complete to B{ and
(i) for each z € V3 there exists an i € {0,...,p} such that if j < i then z is

complete to BY and anti-complete to B] and if j > i then z is anti-complete
to Bg and complete to B{.

We now consider the set of vertices in V; U V5 that do not belong to any set B°.
Let R denote this set and note that G[R] is 2P;-free by maximality of the set
{H',...,HY9}. For i € {1,2} let R; = RN V;. We make the following claim (we
omit its proof).

Claim 5. If * € Ry has a neighbour in B, then x is complete to B;H, and if x
has a non-neighbour in B}, then x is anti-complete to B;fl. If x € Ry has a
non-neighbour in B, then x is anti-complete to Bi“, and if x has a neighbour
in BY, then x is complete to Bi™.

Claim [p| allows us to update the sequence of blocks as follows:

Update Procedure. For i € {1,2}, if R; contains a vertex x that has both a
neighbour y and a non-neighbour y' in BS_, for some j, we add x to the sets B}
and B7 and remove it from R;.

We make the following claim (we omit its proof).

Claim 6. Applying the Update Procedure preserves the chain property of the
blocks B°.

10



By Claim [6] we may apply the Update Procedure exhaustively, after which the
chain property will continue to hold. Once this procedure is complete, every
remaining vertex of Ry will be either complete or anti-complete to each set BJ. In
fact, by Claim [p} we know that for every vertex x € Ry, thereis ani € {0,...,p}
such that z has a neighbour in all Bj with j > i (if such a j exists) and x has a
non-neighbour in all Bg with j <4 (if any such j exists). Since z is complete or
anti-complete to each set Bg, we obtain the following conclusion:

— for every vertex x € Ry, there is an i € {0,...,p} such that x is complete to
all B with 57 > ¢ (if such a j exists) and z is anti-complete to all B} with
j < (if any such j exists). We denote the corresponding subset of Ry by Y7 .

By symmetry, we also obtain the following;:

— for every vertex x € Ry, there is an i € {0,...,p} such that x is complete to
all B with j <4 (if such a j exists) and z is anti-complete to all B] with
§ > i (if any such j exists). We denote the corresponding subset of Ry by Y.

We also partition the vertices of V3 into p + 1 subsets V2, ..., V¥ such that
the vertices of V§ are complete to Bj and anti-complete to B} for i < j and
complete to B! and anti-complete to B for i > j. (So V¥ is complete to B} for
all ¢ and V' is complete to B? for all 7).

Claim 7. For each i, if j < then V3 is anti-complete to Ylj and complete to Yzj,
and if j > i then Vi is complete to Ylj and anti-complete to Yzj.

Suppose that z € V4 and z € Y{ and y € Y§ (note that such vertices = and y
do not exist if Ylj or YQj7 respectively, is empty). First suppose that j < ¢ and
choose arbitrary vertices 2’ € Bi, y/ € Bi. Note that x and z are both complete
to B} and y and z are both anti-complete to Bi. Then z cannot be adjacent
to = otherwise G[z,y’, z] would be a rainbow K3 and z must be adjacent to y,
otherwise G[z’,y, z] would be a rainbow 3P;. Now suppose i < j and choose
arbitrary vertices 2’ € Bi“, y € Bé“. Note that = and z are both anti-complete
to Bé“ and y and z are both complete to Bf“. Then z must be adjacent to x
otherwise G[z,y’, z] would be a rainbow 3P; and z must be non-adjacent to y,
otherwise G[z', y, z] would be a rainbow K. This completes the proof of Claim

Let G* denote the subgraph of G induced by Y{NYy#NV4. By Claims[4] [f and [7]the
graph G can be partitioned into slices: G°, G|B'],G',G[B?],...,G[BP], GP. Re-
call that the graph G is of type ¢t and G[V; U V3] contains an induced 2P.
Since G[Y] U Yj] is 2P»-free (by construction, since the original sequence
HY H?,...,HY of 2P,s was maximal), it follows that each G* is of type at
most ¢ — 1. Furthermore, since each G[B;] is bipartite, it forms a curious graph in
which the set V3 is empty, so it has type at most 1. This completes the proof. O

We are now ready to state the main result of this section.

Theorem 4. Let X be a hereditary class of graphs. If the set of bipartite graphs
in X is well-quasi-ordered by the labelled induced subgraph relation or has bounded
clique-width, then this property also holds for the set of curious graphs in X.
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Proof. Suppose that the class of bipartite graphs in X is well-quasi-ordered by the
labelled induced subgraph relation or has bounded clique-width. By Lemmas [I0]
[[1] and [I3] the curious graphs of type at most 1 also have this property. Applying
Lemmas and [14] once, we obtain the same conclusion for curious graphs
of type at most 2. Applying Lemmas and [T4] again, we obtain the same
conclusion for curious graphs of type at most 3, that is, all curious graphs. O

4 Applications of Our Technique

We start with two lemmas. The first is implicit in the proofs of Lemma 9 and
Theorem 3 in [6]; we omit the proof of the second.

Lemma 15 ([6]). There is a constant ¢, such that given any (K3, Py + Ps)-free
graph G that contains an induced Cs, we can apply at most ¢ verter deletions
and at most ¢ bipartite complementation operations to obtain a graph H that is
the disjoint union of (K3, Py + Ps)-free curious graphs.

Lemma 16. There is a constant ¢, such that given any prime (Ks, Py + Py)-free
graph G that contains an induced Cs, we can apply at most ¢ verter deletions
and at most ¢ bipartite complementation operations to obtain a graph H that is
the disjoint union of (Ks, Py + Py)-free curious graphs and 3-uniform graphs.

We can now prove the following theoremﬂ

Theorem 5. For H € {Py + P4, P, + Ps} the class of (K3, H)-free graphs is
well-quasi-ordered by the labelled induced subgraph relation and has bounded
clique-width.

Proof. Let H € {Py + Py, Py + P5}. By Lemmas 1] and [5] we need only consider
prime graphs in this class. Recall that a prime graph on at least three vertices
cannot contain two vertices that are false twins, otherwise these two vertices
would form a non-trivial module. Therefore, by Lemma EL and since H C; 5123,
the classes of prime (K3, H)-free graphs containing an induced C7 is precisely the
graph C7. We may therefore restrict ourselves to C7-free graphs. Since the graphs
in the class are H-free, it follows they contain no induced cycles on eight or more
vertices. We may therefore restrict ourselves to prime (K3, Cr, H)-free graphs
that either contain an induced Cj or are bipartite. By Lemmas [I5] or [16] given
any prime (K3, C7, H)-free that contains an induced C5, we can apply at most a
constant number of vertex deletions and bipartite complementation operations
to obtain a graph that is a disjoint union of (K3, H)-free curious graphs and
(in the H = P, + P4 case) 3-uniform graphs. By Lemmas and @ Facts
and [3] and Theorem [4] it is sufficient to only consider bipartite (K3, Cy, H)-free
graphs. These graphs are H-free bipartite graphs. Furthermore, they form a
subclass of the class of (P7, S1,2,3)-free bipartite graphs, since H C; Pr, 51 23.
(P7, S1,2,3)-free bipartite graphs are well-quasi-ordered by the labelled induced
subgraph relation by Lemma[6]and have bounded clique-width by Theorem O

3 It was already known [6] that the class of (K3, Py + Ps)-free graphs has bounded
clique-width but it was not known that it is well-quasi-ordered.
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